Photosynthesis in *Flaveria brownii* A.M. Powell¹

A C₄-LIKE C₃-C₄ INTERMEDIATE

Received for publication January 20, 1987 and in revised form August 24, 1987

RUSSELL K. MONSON*, WILLIAM S. SCHUSTER, AND MAURICE S. B. KU Department of Environmental, Population and Organismic Biology, University of Colorado, Campus Box 334, Boulder, Colorado 80309 (R.K.M., W.S.S.); and Department of Botany, Washington State University, Pullman, Washington 99164 (M.S.B.K.)

ABSTRACT

Leaves of Flaveria brownii exhibited slightly higher amounts of oxygen inhibition of photosynthesis than the C4 species, Flaveria trinervia, but considerably less than the C₃ species, Flaveria cronquistii. The photosynthetic responses to intercellular CO₂, light and leaf temperature were much more C₄-like than C₃-like, although 21% oxygen inhibited the photosynthetic rate, depending on conditions, up to 17% of the photosynthesis rate observed in 2% O₂. The quantum yield for CO₂ uptake in F. brownii was slightly higher than that for the C4 species F. trinervia in 2% O₂, but not significantly different in 21% O₂. The quantum yield was inhibited 10% in the presence of 21% O₂ in F. brownii, yet no significant inhibition was observed in F. trinervia. An inhibition of 27% was observed for the quantum yield of F. cronquistii in the presence of 21% O₂. The photosynthetic response to very low intercellular CO₂ partial pressures exhibited a unique pattern in F. brownii, with a break in the linear slope observed at intercellular CO₂ partial pressure values between 15 and 20 μ bar when analyzed in 21% O₂. No significant break was observed when analyzed in 2% O₂. When taken collectively, the gas-exchange results reported here are consistent with previous biochemical studies that report incomplete intercellular compartmentation of the C3 and C4 enzymes in this species, and suggest that F. brownii is an advanced, C₄-like C₃-C₄ intermediate.

To date, nine species in the genus *Flaveria* (Asteraceae) have been characterized as exhibiting photosynthetic and photorespiratory traits intermediate to the C₃- and C₄-syndromes (1, 8, 11, 13). Several of these C₃-C₄ intermediates are capable of assimilating atmospheric CO₂ through the C₄-cycle (3, 15, 20). However, none of them exhibits sufficient integration and compartmentalization of the C₃- and C₄-cycles between the mesophyll and bundle-sheath cells to result in C₄-like carbon isotope fractionation ratios (1, 21, 22). Additionally, none of the C₃-C₄ species exhibit negligible levels of O₂ inhibition of photosynthesis, as is typical of fully expressed C₄ plants (13, 15).

Recently some evidence has been presented to suggest that *Flaveria brownii* is a C₄-like C₃-C₄ intermediate. In past studies, *F. brownii* has been treated as a typical C₄ species (18). However, recently it has been established that the principal photosynthetic carboxylation enzymes, PEP² carboxylase and Rubisco, and the decarboxylation enzyme NADP-malic enzyme, are not fully

compartmentalized between mesophyll and bundle-sheath cells, as is typically found in C₄ leaves (4, 6, 19). The localization of Rubisco in mesophyll cells, as well as bundle-sheath cells, suggests that atmospheric CO₂ may be assimilated through parallel C_3 and C_4 pathways. ¹⁴CO₂-pulse studies showed only 65 to 75% of the assimilated ¹⁴CO₂ was recovered as malate plus aspartate following pulses of 4 to 8 s (3, 6, 15, although also see 10). Additionally, carbon isotope ratios (measured as δ^{13} C) have been measured between -14.5‰ and -21‰ (DM Keefe, LJ Mets, University of Chicago, personal communication), with most values falling between -16 to -18% when the plants were grown in warm, long-photoperiod regimes. A δ^{13} C value of -17.3‰ was reported recently for F. brownii, although the growth conditions for the plant were not specified (22). These values are at the negative end of the range typically attributed to C4 plants (21). Finally, it was recently reported that PEP carboxylase of F. brownii exhibits intermediate kinetic and regulatory properties as compared to the enzyme from C_3 , C_3 - C_4 , and C_4 Flaveria species (5).

In studies presented here, we examined the photosynthetic responses to oxygen, CO₂, light, and temperature in F. brownii leaves to determine whether such responses also reflect a C_3 - C_4 intermediate nature. There is some evidence from carbon isotope ratios that the relative expression of C_3 and C_4 pathways in F. brownii is under partial environmental control, with C4 photosynthesis reaching its greatest expression when grown in warm. long-photoperiod regimes (DM Keefe, LJ Mets, University of Chicago, personal communication). In order to establish photosynthetic traits of F. brownii in the most C_4 -like condition, and thus bias our results as far as possible away from the C₃-C₄ intermediate condition, we conducted experiments during the months of May-July on plants grown in a greenhouse with natural lighting and warm midday temperatures. It was our contention that in order to establish F. brownii as a true C_3 - C_4 intermediate species, we would have to observe such intermediate photosynthetic traits in plants that had been provided with every opportunity for C₄-cycle expression.

MATERIALS AND METHODS

Plant Material. Plants of *F. brownii* A.M. Powell were established during February 1986 from cuttings of clone B6 (obtained from the University of Chicago). Plants of *F. trinervia* C. Mohr (C₄) were grown from seed collected near Lubbock, TX. Plants of *F. cronquistii* A.M. Powell (C₃) were established from cuttings of clone K1 (obtained from Washington State University). All plants were grown in a greenhouse in Boulder, CO. By May 1986 the cuttings were fully rooted and exhibited vigorous growth. All gas-exchange measurements were conducted between June 15 and July 20, 1986, and again between May 15 and May 30,

¹ Supported by National Science Foundation grant BSR-8407488.

² Abbreviations: PEP, phosphoenolpyruvate; Rubisco, ribulose-1,5bisphosphate carboxylase/oxygenase; CE, carboxylation efficiency; C_{i} , intercellular CO₂ partial pressure; RPP, reductive pentose phosphate.

1987, when photoperiods were approximately 14.5 h. Midday photon flux densities were 750 to 800 μ mol m⁻² s⁻¹ on clear days, and midday temperatures were between 27 and 35°C. Plants that were used to examine the light-response of photosynthesis were grown in an unshaded part of the greenhouse where midday photon flux densities were 1500 to 1800 μ mol m⁻² s⁻¹. All plants were watered twice weekly with half-strength Hoagland solution.

Gas-Exchange Measurements. All gas-exchange measurements were conducted with an open, infrared gas analysis system as described in detail previously (15). The protocol for conducting the quantum yield studies has also been described previously (15). The photosynthetic response to light was determined by progressing from the highest to the lowest photon flux density, using cheesecloth screens to modify the incident light intensities. The response of photosynthesis rate to intercellular CO₂ concentration was determined beginning with the highest CO₂ concentration and progressing to the lowest value. In one experiment, the CO₂-response curve was restricted to intercellular CO₂ partial pressures between 70 μ bar and the CO₂ compensation point. The temperature dependence of photosynthesis was determined 20 to 37.5°C, beginning with the lowest temperature and progressing to the highest temperature. The leaf-to-air water vapor concentration gradient was maintained 9.5 to 15 mmol H₂O/mol air over the entire temperature range. The temperature response pattern was determined in the presence of 21% O₂ on 1 d and 2% O₂ on the next day. The same leaf was used on both days. Preliminary experiments showed no significant change in photosynthetic rates of several leaves during two successive days. All gas-exchange values were calculated according to von Caemmerer and Farquhar (23).

RESULTS

The photosynthetic response of *F. brownii* to C_i exhibited a pattern that was intermediate to those observed for the C_3 and C_4 species (Fig. 1), although it appeared more C_4 -like than C_3 -like. Photosynthesis rates at C_i values below 200 µbar were less than the C_4 species, but considerably greater than the C_3 species. The photosynthetic rate appeared to reach CO_2 saturation at a C_i of approximately 300 µbar in the C_4 species, but did not appear to saturate at C_i values as high as 335 µbar in *F. brownii*.

The photosynthetic response to photon flux density in leaves of *F. brownii* appeared to reach saturation at approximately 1600 μ mol m⁻² s⁻¹ (Fig. 2). This differed from the pattern exhibited by the C₄ species, *F. trinervia*, which did not completely saturate up to 2000 μ mol m⁻² s⁻¹. The C₃ species, *F. cronquistii* also exhibited saturation at approximately 1600 μ mol m⁻² s⁻¹.

The temperature dependence of photosynthesis for leaves of *F. brownii* was similar to that reported for C₄ plants, exhibiting an apparent optimum at 35°C in either 2% or 21% O₂ (Fig. 3a). The oxygen inhibition of photosynthesis, expressed as a percentage of the photosynthesis rate observed in 2% O₂, decreased progressively as leaf temperature increased above 25°C (Fig. 3b). Intercellular CO₂ concentrations decreased progressively from the lowest temperature to the temperature optimum (data not shown), which would eliminate the possibility of increased CO₂ concentrations underlying the reduced O₂ inhibition. The photosynthetic response at 21% O₂ to temperature in the C₃ species, *F. cronquistii*, exhibited an optimum at 30°C, whereas the C₄ species, *F. trinervia*, exhibited a temperature optimum of 35°C (Fig. 4).

Gas-exchange rates were measured under a single set of environmental conditions for several leaves of *F. brownii* and compared to F. trinervia (C₄) and *F. cronquistii* (C₃) (Table I). Leaves of *F. brownii* exhibited higher levels of inhibition of photosynthesis by 21% O₂, relative to the C₄ species *F. trinervia*, but considerably lower levels relative to the C₃ species *F. cronquistii*. The 23% inhibition of photosynthesis observed for *F. cronquistii*.

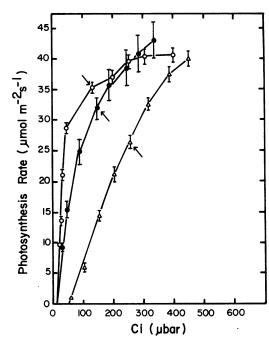


FIG. 1. The response of photosynthesis to intercellular CO₂ partial pressure (C_i) in *F. trinervia* (O), *F. cronquistii* (Δ), and *F. brownii* (\odot). Arrows indicate the points obtained when the atmospheric CO₂ partial pressure was 340 µbar. Other environmental conditions during the measurements were the same as listed in Table I. Vertical bars represent ±1 SE, n = 3. When error bars are not presented they were smaller than the size of the symbol.

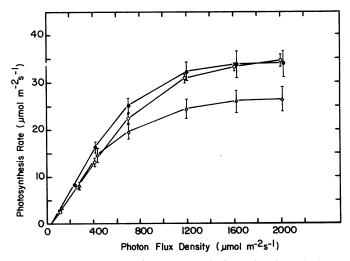


FIG. 2. The photosynthetic response to incident light intensity in F. brownii (\bullet), F. trinervia (O), and F. cronquistii (Δ). Other environmental conditions during the measurements were the same as listed in Table I. The vertical bars are described in Figure 1; n = 3.

is lower than the value of 33% reported in a previous study (20). However, the ambient CO₂ concentration (Ca) used in the latter study was 310 μ mol/mol, which corresponds to a CO₂ partial pressure of 288 μ bar (using a prevailing atmospheric pressure of 93 kPa for Pullman, WA; RK Monson, unpublished data). This is considerably less than the ambient CO₂ partial pressure of 340 μ bar used in this study. The higher CO₂ partial pressure used in this study might account for the lower measured O₂ inhibition of photosynthesis. Intercellular CO₂ partial pressures (C_i) and water-use efficiencies were intermediate in *F. brownii* relative to the C₃ and C₄ species, although they were closer in value to the

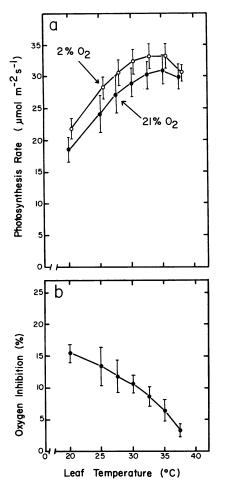


FIG. 3. a, The response of photosynthesis rate to leaf temperature in leaves of *F. brownii* in 2% and 21% O₂; b, the response of oxygen inhibition of photosynthesis, expressed as a percentage of the photosynthesis rate observed in 2% O₂, to leaf temperature in *F. brownii*. The vertical bars are described in Figure 1; n = 3.

C₄ species.

The response of photosynthesis rate to C_i values below 12 μ bar in leaves of F. trinervia exhibited a slight inhibition by 21% O₂ (Fig. 5a). Carboxylation efficiencies were measured as $1.08 \pm$ 0.02 μ mol m⁻² s⁻¹ μ bar⁻¹ (n = 3) in 2% O₂, and 0.91 ± 0.10 μ mol m⁻² s⁻¹ μ bar⁻¹ (n = 3) in 21% O₂. Inhibition of the carboxylation efficiency by 21% O2 at these extremely low CO2 partial pressures may be due to a CO_2/O_2 conductance of the bundle-sheath cells that is sufficiently high to permit the diffusion of atmospheric O₂ into, or C₄ acid-derived CO₂ out of, the cells, resulting in some photorespiration (12, 17). The CO₂ compensation point was measured as $3.1 \pm 0.04 \ \mu$ bar (n = 3) in 2% O_2 , and $3.4 \pm 0.2 \ \mu$ bar (n = 3) in 21% O_2 . The response of photosynthesis rate to C_i values near the CO_2 compensation point in leaves of the C₃ species, F. cronquistii, exhibited slight curvilinearity in both 2 and 21% O₂ (Fig. 5c). Such a pattern is presumably related to deactivation of Rubisco at very low C_i values (2, 9). The CO₂ compensation point was $52.5 \pm 1.4 \mu$ bar (n = 3) in 21% O₂ and 20.5 ± 0.5 µbar (n = 6) in 2% O₂. The high CO₂ compensation point in 2% O₂ was consistently observed in six different replicate experiments with F. cronquistii. In order to ensure that the high values were not due to artifacts of the analysis system, we conducted comparative measurements with fully expanded wheat leaves (Triticum aestivum). The CO₂ compensation point in wheat leaves was 50.5 μ bar in 21% O₂ and 11.4 μ bar in 2% O₂. The value in 2% O₂ is only slightly

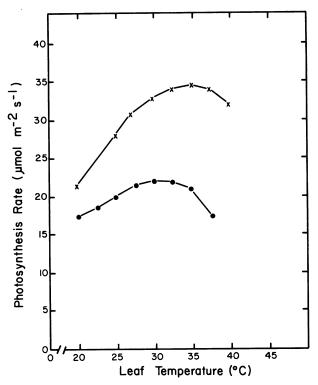
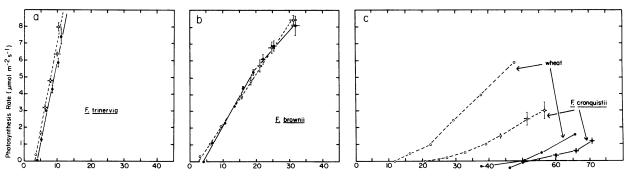


FIG. 4. The response of photosynthesis rate to leaf temperature in leaves of *F. trinervia* (\times) and *F. cronquistii* (\odot) in 21% O₂ and 340 µbar atmospheric CO₂. The presented responses are for a single leaf and are representative of two replicates.

higher than the previously published value of 6 μ bar (measured at 20°C; 2). Given that the measurements in the current study were conducted at 30°C, the compensation points for wheat are reasonably comparable between the two studies. The basis for the high CO_2 compensation point in 2% O_2 in F. cronquistii, relative to other C₃ species (2), is not currently known. CE in leaves of F. brownii were lower than those for the C₄ species, F. trinervia but higher than in the C₃ species F. cronquistii (Fig. 5b). In F. brownii the CO_2 compensation point was measured as $3.7 \pm 0.8 \ \mu \text{bar} (n = 3) \text{ in } 21\% \text{ O}_2 \text{ and } 2.0 \pm 0.4 \ \mu \text{bar} (n = 3) \text{ in}$ 2% O₂. In leaves of F. brownii a change of slope occurred in the linear response of photosynthesis rate to C_i in the presence of 21% O₂. The result of the change in slope was that photosynthesis rates in 21% O_2 were slightly higher than those in 2% O_2 at C_i's 15 to 20 μ bar. The CE at 21% O₂ was measured as 0.21 ± 0.04 μ mol m⁻² s⁻¹ μ bar⁻¹ (n = 3) above the break in slope and 0.35 $\pm 0.01 \ \mu \text{mol} \ \text{m}^{-2} \ \text{s}^{-1} \ \mu \text{bar}^{-1} (n = 3)$ below the break. The slopes above and below the break were significantly different (analysis of covariance, P < 0.05).

The quantum yield for CO₂ uptake was not significantly affected by O₂ concentration in the C₄ plant *F. trinervia* (Fig. 6a). In leaves of the C₃ species, *F. cronquistii*, the quantum yield was reduced by 27% in 21% O₂ (Fig. 6c). In leaves of *F. brownii* the quantum yield for CO₂ uptake averaged 0.052 \pm 0.001 mol CO₂/mol quanta absorbed (n = 4) in 21% O₂ and 0.058 \pm 0.003 mol CO₂/mol quanta absorbed (n = 4) in 2% O₂, indicating a measurable inhibition of the quantum yield by 21% O₂, averaging 10.4 \pm 2.9% (n = 4).


DISCUSSION

The increased inhibition of photosynthesis by 21% O₂ in *F*. *brownii*, relative to *F*. *trinervia*, is consistent with the results of previous comparative studies on biochemical aspects of C₄ photosynthesis in these two species. Studies of ${}^{14}CO_2$ -pulse/ ${}^{12}CO_2$ -

Table I. Gas-Exchange Characteristics of F. brownii, F. trinervia (C₄), and F. cronquistii (C₃) Leaf temperature was 30°C for F. cronquistii, 32.5°C for F. brownii, and 35°C for F. trinervia. These temperatures are within 2°C of the respective photosynthetic temperature optima (see Figs. 3a, 4). The atmospheric CO₂ partial pressure was $340 \pm 5 \mu bar$, the leaf-to-air water vapor concentration gradient (ΔW) was 14 to 20 mmol H₂O/mol air, and the photon flux density (400-700 nm) was 1500 μ mol m⁻² s⁻¹.

Characteristic	F. brownii	F. trinervia	F. cronquistii
Photosynthesis rate (μ mol m ⁻² s ⁻¹)			
21% O ₂	27.6 ± 1.0^{a}	37.3 ± 1.2	21.5 ± 0.8
2% O ₂	29.6 ± 1.2	37.2 ± 1.1	27.9 ± 1.2
% inhibition by 21% O ₂	7.0 ± 1.0	-1.3 ± 0.9	23.0 ± 0.7
Stomatal conductance (mmol $m^{-2} s^{-1}$)	295 ± 31	384 ± 111	470 ± 41
Intercellular CO ₂ partial pressure (μ bar)	164 ± 7	141 ± 5	245 ± 5
Water-use efficiency (µmol CO ₂ /mmol H ₂ O)	5.5 ± 0.1	6.4 ± 0.1	4.0 ± 0.2

^a Values are mean \pm SE for F. brownii and F. trinervia, n = 5. For F. cronquistii, n = 8.

Intercellular CO2 Partial Pressure (µbar)

FIG. 5. The photosynthetic response to low intercellular CO₂ partial pressures in 2% O₂ (O) and 21% O₂ (\bullet) for *F. trinervia* (a), *F. brownii* (b), and *F. cronquistii* and wheat (c). Other environmental conditions during the measurements were the same as listed in Table I. Vertical bars and horizontal bars are ± 1 SE as described in Figure 1; n = 3.

chase patterns (3, 6, 15, 20) and enzyme compartmentation ((4, 6, 16, 19) have revealed incomplete expression of C₄ photosynthesis in *F. brownii*, and fully expressed C₄ photosynthesis in *F. trinervia*. Also, one of the key enzymes of C₄ photosynthesis, PEP carboxylase, in *F. brownii* is intermediate to the enzyme in C₃ and other C₃-C₄ intermediate compared with C₄ *Flaverias* in kinetic and regulatory properties (5). When taken together, these previous results, along with those presented here, confirm the C₃-C₄ intermediate nature of *F. brownii*. Unlike most other C₃-C₄ intermediates in the genus *Flaveria*, however, *F. brownii* possesses photosynthetic traits much more closely allied with C₄ plants than with C₃ plants.

Since Rubisco also occurs in the mesophyll cells of *F. brownii*, the increased O_2 inhibition of photosynthesis in *F. brownii*, relative to fully expressed C_4 plants, may be due exclusively to mesophyll oxygenase activity. Alternatively, the increased O_2 inhibition could be due, in part, to a relatively high bundlesheath conductance to atmospheric O_2 or C_4 acid-derived CO_2 , thus permitting competition between O_2 and CO_2 for active sites of Rubisco in the bundle-sheath cells (17).

The response of photosynthesis to intercellular CO_2 partial pressures exhibited a pattern that was C₄-like, yet still intermediate between C₄ and C₃ *Flaveria* species. The CO₂ response suggests a CO₂-concentrating mechanism in leaves of *F. brownii*, though once again, it is apparently not as effective as in fully expressed C₄ species, such as *F. trinervia*.

The relatively high photosynthetic temperature optimum in *F. brownii* is also suggestive of a CO₂-concentrating mechanism and concomitant reduced O₂ inhibition of photosynthesis as leaf temperature increases, relative to C₃ plants. Decreases in the percentage O₂ inhibition of photosynthesis as temperature increases clearly demonstrates a reduction in the competitive interaction between CO₂ and O₂. In C₃ plants the percentage of O₂

inhibition of photosynthesis typically increases with increasing leaf temperature to a maximum near 40°C or higher (14). Whether the reduced O_2 sensitivity of photosynthesis in *F*. *brownii* at higher temperatures is due to increased initial fixation of atmospheric CO₂ through the C₄-cycle relative to the C₃pathway awaits further investigation.

The quantum yield for CO_2 uptake was slightly higher in 2% O_2 in *F. brownii*, compared to the C₄ plant *F. trinervia*. This is presumably due to stimulation of the RPP pathway by low O_2 in the mesophyll cells of *F. brownii*. Inhibition of the quantum yield by 21% O_2 in *F. brownii* is, once again, likely due to incomplete enzyme compartmentation and exposure of the RPP pathway in the mesophyll cells to atmospheric O_2 .

The unique pattern exhibited in the photosynthetic response to very low C_i values in *F. brownii* (Fig. 5b) might reflect a complex interaction between the RPP pathway and the C_4 cycle, and the activation state of Rubisco. The fact that the break in slope is apparent in 21% O_2 , but not in 2% O_2 , suggests that it is related to the oxygenase activity of Rubisco. Further experimentation at the biochemical level is needed to resolve the patterns of photosynthesis at low C_i in this species.

Two previous studies indicated that F. brownii is unique among other C₄ Flaveria species in having a higher CO₂ compensation point (1, 11). However, the CO₂ compensation point of F. brownii obtained in this study is similar to that of the C₄ species F. trinervia. An earlier study using a different method to determine the compensation point also reported values comparable to fully-expressed C₄ species (7). Thus, despite a low, but measurable O₂ inhibition of photosynthesis, F. brownii exhibits very little or no apparent photorespiration. Presumably, this is due to an efficient recycling of the photorespiratory CO₂ through the C₄- and C₃-cycles. Relative to F. brownii, most other C₃-C₄ intermediate Flaverias have higher CO₂ compensation points,

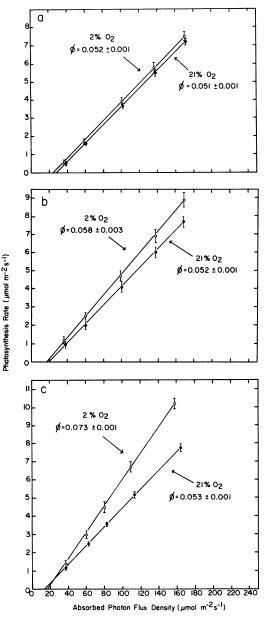


FIG. 6. The response of photosynthesis to low levels of absorbed light in *F. trinervia* (a), *F. brownii* (b), and *F. cronquistii* (c) in 2% and 21% O₂. The quantum yield for CO₂ uptake is indicated as \emptyset and has units of mol CO₂ mol⁻¹ absorbed quanta. Vertical bars represent ± 1 sE; n =3.

higher O_2 inhibition of photosynthesis, and lower capacity for C_4 photosynthesis (8). *F. brownii* is, by far, the most advanced C_3 - C_4 intermediate yet examined in the genus in terms of development of the C_4 syndrome.

LITERATURE CITED

- APEL P, I MAASS 1981 Photosynthesis in species of *Flaveria*: CO₂ compensation concentration, O₂ influence on photosynthetic gas exchange and δ¹³ values in species of *Flaveria* (Asteraceae). Biochem Physiol Pflanzen 179: 369–399
- AZCON-BIETO J 1986 Effect of oxygen on the contribution of respiration to the CO₂ compensation point in wheat and bean leaves. Plant Physiol 81: 379– 392
- BASSÜNER B, O KEERBERG, H BAUWE, T PYARNICK, H KEERBERG 1984 Photosynthetic CO₂ metabolism in C₃-C₄ intermediate and C₄ species of *Flaveria* (Asteraceae). Biochem Physiol Pflanzen 179: 631-634
- 4. BAUWE H 1984 Photosynthetic enzyme activities and immunofluorescence studies on the localization of ribulose-1, 5-bisphosphate carboxylase/oxygenase in leaves of C₃, C₄, and C₃-C₄ intermediate species of *Flaveria* (Asteraceae). Biochem Physiol Planzen 179: 213–268
- BAUWE H, R CHOLLET 1986 Kinetic properties of phosphoenolpyruvate carboxylase from C₃, C₄, and C₃-C₄ intermediate species of *Flaveria* (Asteraceae). Plant Physiol 82: 695-699
- CHENG S-H, BD MOORE, MSB KU 1986 Unusual cellular compartmentation of photosynthetic enzymes in the C₄ species *Flaveria brownii*. Plant Physiol 80: S-55
- CHENG S-H, HR FRANCESCHI, D KEEFE, LJ METS, KSB KU 1987 Photosynthetic characteristics of reciprocal Fl-hybrids between C₃-C₄ intermediate and C₄ Flaverias. In J Biggins, ed, Proceedings of the 8th International Photosynthesis Congress, Vol III. Martinus Nijhoff, Dordrecht, pp 637-640
- EDWARDS GE, MSB KU Biochemistry of C₃-C₄ intermediates. In MD Hatch, NK Boardman, eds, The Biochemistry of Plants: A Comprehensive Treatise, Vol 14: Photosynthesis. Academic Press, New York. In press
- FARQUHAR GD, TD SHARKEY 1982 Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33: 317–346
- HOLADAY AS, R CHOLLET 1983 Photosynthetic/photorespiratory carbon metabolism in the C₃-C₄ intermediate species Moricandia arvensis and Pancium milioides. Plant Physiol 73: 740-745
- HOLADAY AS, KW LEE, R CHOLLET 1984 C₃-C₄ intermediate species in the genus *Flaveria*: leaf anatomy, ultrastructure, and the effect of O₂ on the CO₂ compensation concentration. Planta 160: 25-32
- KU SB, GE EDWARDS 1980 Oxygen inhibition of photosynthesis in the C₄ species Amaranthus graecizans. Planta 147: 277-282
- 13. KU MSB, RK MONSON, RO LITTLEJOHN, H NAKAMOTO, DB FISHER, GE EDWARDS 1983 Photosynthetic characteristics of C₃-C₄ intermediate *Flaveria* species. I. Leaf anatomy, photosynthetic responses of O₂ and CO₂, and activities of key enzymes in the C₃ and C₄ pathways. Plant Physiol 71: 944– 948
- MONSON RK, MA STIDHAM, GJ WILLIAMS, GE EDWARDS, EG URIBE 1982 Temperature dependence of photosynthesis in Agropyron smithii Rydb. I. Factors affecting net CO₂ uptake in intact leaves and contribution from ribulose-1, 5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiol 69: 921-928
- MONSON RK, BD MOORE, MSB KU, GE EDWARDS 1986 Co-function of C₃and C₄-photosynthetic pathways in C₃, C₄ and C₃-C₄ intermediate *Flaveria* species. Planta 168: 493-502
- MOORE BD, MSB KU, GE EDWARDS 1984 Isolation of leaf bundle-sheath protoplasts from C₄ dicot species and intracellular localization of selected enzymes. Plant Sci Lett 135: 127-138
- MOORE BD, S-H CHENG, GE EDWARDS 1986 The influence of leaf development on the expression of C₄ metabolism in *Flaveria trinervia*, a C₄ dicot. Plant cell Physiol 27: 1159-1167
- POWELL AM 1979 Systematics of *Flaveria* (Flaveriinae-Asteraceae). Ann Mis Bot Gard 65: 590-636
- REED JE, R CHOLLET 1985 Immunofluorescent localization of phosphoenolpyruvate carboxylase and ribulose-1, 5-bisphosphate carboxylase proteins in leaves of C₃, C₄, and C₃-C₄ intermediate *Flaveria* species. Planta 165: 439-445
- 20. RUMPHO M, MSB KU, S-H CHENG, GE EDWARDS 1984 Photosynthetic characteristics of C₃-C₄ intermediate *Flaveria* species. III. Reduction of photorespiration by a limited C₄ pathway of photosynthesis in *Flaveria ramosissima*. Plant Physiol 75: 993–996
- SMITH BN, BL TURNER 1975 Distribution of Kranz syndrome among Asteraceae. Am J Bot 62: 541-545
- SMITH BN, AM POWELL 1984 C₄-like F1 hybrid of C₃ × C₄ Flaveria species. Naturwissenschaften 71: 217–218
- VON CAEMMERER S, GD FARQUHAR 1981 Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376-387

Acknowledgments—The authors are thankful to Dr. A. S. Holaday for providing seeds of *F. trinervia* and Dr. L. J. Mets for providing cuttings of *F. brownii* clone B6. We also thank Drs. B. Moore and G. Edwards for useful comments and discussion during preparation of the manuscript.