Skip to main content
. 2023 Sep 18;127(38):7928–7936. doi: 10.1021/acs.jpca.3c04288

Table 1. C3–C4–C1′–C2′ and/or C3′–C4′–C1″–C2″ Dihedral Angles, S0S1 Excitation Energy in [eV] (Wavelength in [nm]), and δResp2PA in [au] of All of the Systems Considered in This Worka.

system dihedral angle (deg) excitation energy [eV] (wavelength in [nm]) δresp2PA(×103 [au])
B5RO –54.4 4.36 (285) 14.5
B6RO –89.4 4.52 (274) 0.01
B7RO –108.8 4.48 (277) 5.0
B5RC 0.0 3.99 (310) 16.5
B6RC –19.7 3.95 (314) 20.2
B7RC –46.4 4.16 (298) 16.7
B5RC-NH 0.0 3.96 (313) 11.1
B5RC-O 0.0 3.97 (313) 13.3
B5RC-S 0.0 3.95 (314) 15.9
B5RC-BH 0.0 2.28 (544) 4.1
B5RC-BF 0.0 2.72 (456) 4.3
T5RO 37.79, 36.36 4.07 (305) 45.9
T5RC-AB 37.46, 0.22 3.84 (323) 47.8
T5RC-BC –0.23, −36.49 3.93 (316) 46.9
T5RC-ABC –0.005, −0.01 3.72 (334) 49.8
T5RC-BH-AB –37.3, −0.3 2.28 (545) 4.1
T5RC-BH-BC –0.2, −36.0 2.64 (470) 14.8
T5RC-BH-ABC 0.0, −0.1 2.00 (621) 1.9
a

Ground-state geometry of all of the systems is optimized at B3LYP/6-311+G(d,p) and spectroscopic properties are calculated at the RI-CC2/cc-pVDZ level of theory.