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Abstract 

Background:  Shotgun metagenome sequencing data obtained from a host envi-
ronment will usually be contaminated with sequences from the host organism. Host 
sequences should be removed before further analysis to avoid biases, reduce down-
stream computational load, or ensure privacy in the case of a human host. The tools 
that we identified, as designed specifically to perform host contamination sequence 
removal, were either outdated, not maintained, or complicated to use. Consequently, 
we have developed HoCoRT, a fast and user-friendly tool that implements sev-
eral methods for optimised host sequence removal. We have evaluated the speed 
and accuracy of these methods.

Results:  HoCoRT is an open-source command-line tool for host contamination 
removal. It is designed to be easy to install and use, offering a one-step option 
for genome indexing. HoCoRT employs a variety of well-known mapping, classifica-
tion, and alignment methods to classify reads. The user can select the underlying 
classification method and its parameters, allowing adaptation to different scenarios. 
Based on our investigation of various methods and parameters using synthetic human 
gut and oral microbiomes, and on assessment of publicly available data, we provide 
recommendations for typical datasets with short and long reads.

Conclusions:  To decontaminate a human gut microbiome with short reads using 
HoCoRT, we found the optimal combination of speed and accuracy with BioBloom, 
Bowtie2 in end-to-end mode, and HISAT2. Kraken2 consistently demonstrated 
the highest speed, albeit with a trade-off in accuracy. The same applies to an oral 
microbiome, but here Bowtie2 was notably slower than the other tools. For long 
reads, the detection of human host reads is more difficult. In this case, a combination 
of Kraken2 and Minimap2 achieved the highest accuracy and detected 59% of human 
reads. In comparison to the dedicated DeconSeq tool, HoCoRT using Bowtie2 in end-
to-end mode proved considerably faster and slightly more accurate. HoCoRT is avail-
able as a Bioconda package, and the source code can be accessed at https://​github.​
com/​ignas​rum/​hocort along with the documentation. It is released under the MIT 
licence and is compatible with Linux and macOS (except for the BioBloom module).
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Background
Sequencing the genomes of microbial communities within a host organism’s environ-
ment has opened new avenues for research into host-microbe interactions. After 
metagenomic sequencing, several analysis steps are necessary to achieve a comprehen-
sive understanding of the microbiome’s composition. Due to the often massive amount 
of data involved, efficient processing is essential to minimise unnecessary computations. 
Sequenced data often contains sequences from the host and privacy concerns arise when 
the host is human. Additionally, non-microbial sequences could introduce bias in down-
stream analyses. Therefore, the removal of host sequences should be prioritised at an 
early stage [1].

Decontamination is often managed in an ad-hoc manner by utilising alignment tools 
to search reads against a host genome database. Ad-hoc approaches may be unnecessar-
ily complicated and could lead to suboptimal performance. The lack of standardised best 
practices for this procedure hinders comparison across studies.

Some generic metagenome analysis pipelines, such as ATLAS [2] and Sunbeam [3] 
have integrated modules for host decontamination. ATLAS employs BBsplit [4, 5], while 
Sunbeam employs BWA [6] as its decontamination method. Using Bowtie2 [7] with the 
‘un-conc’ option is also occasionally suggested for host decontamination. With the ‘un-
conc’ option, Bowtie2 requires both reads in a pair to map concordantly to the genome.

We could only identify two dedicated tools specifically designed for removing con-
taminating sequences: DeconSeq and GenCoF. DeconSeq [8] is a command-line tool 
for identifying and removing sequence contamination from genomic and metagenomic 
datasets. DeconSeq integrates a modified version of BWA-SW [6], its underlying classi-
fier, directly into its source code, making modifications challenging. DeconSeq supports 
only single-end Illumina reads, and its code has not been updated since 2013. GenCoF 
[9] is a graphical user interface for rapidly removing human genome contaminants from 
metagenomic datasets, limited to short reads. Its GUI nature makes it unsuitable for 
scripting, and extending GenCoF is difficult as it has Bowtie2 [7] integrated directly into 
its source code. Both tools have clear limitations, rendering them less suitable for most 
large-scale datasets. Thus, we developed the new tool HoCoRT to address this gap. To 
provide recommendations for different circumstances and default settings, we evaluated 
the performance of various underlying classification methods.

Implementation
HoCoRT is an open-source command-line-based tool written in Python 3. It is designed 
to be user-friendly and can be effortlessly installed as a package using Bioconda [10] or as 
a Docker container. HoCoRT features a modular pipeline design and utilises well-estab-
lished classification, mapping, and alignment tools to classify sequences into host and 
non-host (microbial) sequences. The current pipeline modules encompass the BBMap 
tool in the BBTools suite [4, 5], BioBloom [11], Bowtie2 [7], BWA-MEM2 [12], HISAT2 
[13], Kraken2 [14], and Minimap2 [15]. Moreover, modules can pipe data through dif-
ferent tools sequentially. While users can configure pipeline options, recommended 
defaults are provided. HoCoRT can be extended by creating new modules that utilise 
other tools. Additionally, HoCoRT offers a comprehensive Python library with an API 
that can serve as a backend for other tools. HoCoRT supports both reading and writing 
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optionally compressed FASTQ files. The tool also manages the construction of database 
index files. Built-in help functions and error messages ensure the tool’s documentation is 
readily accessible. HoCoRT relies on Samtools [16]. For a comprehensive list of all soft-
ware mentioned in this work, including version numbers and references, please refer to 
Additional file 1: Table S1.

Evaluation
The classification speed and accuracy of HoCoRT using several different underlying 
methods and settings were investigated with synthetic and real-world datasets. The 
GitHub repository at https://​github.​com/​ignas​rum/​hocort-​eval provides the scripts used 
to generate the synthetic datasets and conduct performance evaluations.

HoCoRT was evaluated on synthetic HiSeq, MiSeq and Nanopore data mimick-
ing human gut and oral microbiomes. The synthetic human gut microbiome datasets 
comprised a mix of 1% human host sequences and 99% microbial sequences, while the 
synthetic human oral microbiome datasets included a mix of 50% human host and 50% 
microbial sequences. Human reads were derived from the Genome Reference Con-
sortium Human Build 38 patch release 13 (GRCh38.p13), while microbial reads were 
extracted pseudo-randomly from a set of 100 bacterial, fungal, and viral sequences from 
NCBI GenBank [17]. Accession numbers for the microbial genome sequences are pro-
vided in the GitHub repository. To assess the variance in performance, seven different 
datasets (using distinct random seeds) were generated for each of the six combinations 
of microbiome (gut and oral) and sequencing technology (HiSeq, MiSeq, and Nano-
pore), resulting in a total of 42 datasets. Each synthetic short read dataset contains 5 
million read pairs randomly generated using InSilicoSeq [18] with the prebuilt HiSeq 
(2 × 125  bp) and MiSeq (2 × 300  bp) error profiles, while each long read dataset con-
tains 2.5 million single-ended reads generated using NanoSim [19] (average 2159  bp, 
range 54–98,320 bp). The ‘read profile’ used by NanoSim was generated from the NCBI 
Sequence Read Archive (SRA) dataset with accession ERR3279199. This dataset con-
sists of unpaired human Nanopore MinION sequencing reads, more specifically, the 
NA12878 sample and another individual with ataxia-pancytopenia syndrome. The 
Nanopore basecaller chosen was Guppy.

Seventeen pipelines were examined using Illumina data: Seal, BBDuk, BBSplit, 
BioBloom, Bowtie2 in end-to-end and local mode, both with and without the ‘un-conc’ 
option, HISAT2, Kraken2, BBMap in default and fast mode, BWA-MEM2, Kraken2 fol-
lowed by Bowtie2 in end-to-end mode, Kraken2 followed by HISAT2, Minimap2, and 
finally Kraken2 followed by Minimap2. Four pipelines were examined using Nanopore 
data: BioBloom, Minimap2, Kraken2 followed by Minimap2, and Kraken2. CONSULT 
[20] was considered, but the lack of pre-compiled binaries or packages and its considera-
ble memory requirements make it impractical. CLARK [21] was also considered, but not 
included due to its primary taxonomic classification focus. The newer Kraken2 tool has 
been shown to be many times faster and much less memory-demanding than CLARK 
without any loss of accuracy [14].

The ability to detect human host sequences was tested, and the sensitivity, precision, 
and accuracy were calculated. True positives (TP) were sequences correctly identified as 
human, while false positives (FP) were sequences incorrectly identified as human. True 

https://github.com/ignasrum/hocort-eval
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negatives (TN) represented sequences correctly identified as microbial, and false nega-
tives (FN) were sequences incorrectly identified as microbial. Sensitivity was calculated 
as TP/(TP + FN), precision was calculated as TP/(TP + FP), and accuracy was calculated 
as (TP + TN)/(TP + FP + TN + FN). Given the synthetic human gut microbiome data-
sets’ 1% human sequences, accuracy here primarily reflects precision, while the accuracy 
calculated for the oral microbiome datasets is more balanced. When recommend-
ing tools, accuracy was prioritised, followed by speed. Performance analysis utilised a 
Snakemake pipeline [22] on a desktop PC with an AMD Ryzen 7 1700X 8 core/16 thread 
3.4 GHz CPU, 64 GB RAM and 4 TB HDD running Linux. No quality filtering or other 
pre-processing was conducted.

HoCoRT’s performance was compared to DeconSeq using two synthetic human gut 
datasets with 5 million single-ended short reads each; one with HiSeq and one with 
MiSeq reads. They were generated as described above, but with single-ended reads, due 
to the inability of DeconSeq to handle paired-end reads.

The performance of HoCoRT was also evaluated using two real human gut micro-
biome datasets from the SRA. The first dataset (SRR18498477) consists of gut micro-
biomes from people living with HIV sequenced using Illumina HiSeq technology. The 
second dataset (SRR9847864) comprises three healthy human gut microbiome samples 
sequenced using Oxford Nanopore Technology. We employed BLAST [23] in MegaB-
LAST mode with an E-value threshold of 1∙10–10 and HoCoRT with both Bowtie2 and 
Minimap2 pipelines to assess the amount of remaining human host contamination.

Results and discussion
The classification speed and accuracy of HoCoRT on the synthetic gut microbiome 
are shown in Fig. 1 and Table 1. Overall, BioBloom, Bowtie2 in end-to-end mode, and 
HISAT2 performed best for short reads and are recommended due to high accuracy 
and speed across scenarios. The best tools detect almost all human short reads, but also 
incorrectly include a small number of bacterial reads. Kraken2 consistently displayed 
the highest speed with a minor reduction in accuracy. For long reads, the sensitivity 
decreased substantially, with only 59% of human reads detected in the best-case sce-
nario, achieved by a combination of Kraken2 and Minimap2. Synthetic oral microbiome 
results are presented in Additional file 1: Fig. S1 and Table S2. These results are similar 
to the gut microbiome results, but Bowtie2 was clearly slower than the other options, 
while also the most accurate, in particular for the MiSeq reads. This may be due to the 
higher number of aligned human sequences.

HoCoRT’s performance was compared to DeconSeq using human gut datasets with 
short reads. The HoCoRT Bowtie2 (end-to-end) pipeline exhibited substantially higher 
alignment speed than DeconSeq for both HiSeq (34X) and MiSeq (49X) reads, and 
slightly better accuracy, as shown in Additional file 1: Table S3.

Lastly, HoCoRT’s performance was evaluated using two real human gut microbiome 
datasets. Up to 0.03% of the reads in these datasets were identified as human, as shown 
in Additional file 1: Table S4. Minimap2 identified the highest number of reads, followed 
by BLAST and then Bowtie2. BLAST required about 40 times more time than the other 
tools. Since the true number of human reads is unknown, we cannot calculate sensitivity 
and precision. Based on the results from the synthetic datasets, most of the true human 
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reads are probably detected, but how many of the predicted human reads that really are 
microbial is difficult to estimate.

For short reads, based on the overall very high sensitivity of most tools, it appears that 
almost all human host sequences can be detected reliably in microbiomes, while a small 
number of microbial sequences may be incorrectly classified as human. If necessary, 
some precision may be traded-off for decreased run-time, depending on the specific use 
case and how important it is to keep as many microbial sequences as possible.

For long reads, the situation is more challenging and only about 59% of the actual 
human host reads were detected in the best-case scenario. Improved tools are required 
to reliably detect human host contamination in long reads with the error profiles studied.

Additional results and a comprehensive description of HoCoRT can be found in the 
first author’s master’s thesis [24].

Conclusions
A dedicated, flexible, extendable, and modular tool for removing host sequence contam-
ination is now available, free of charge. We have conducted a comprehensive compari-
son of classification methods and offer corresponding recommendations. The HoCoRT 
tool is expected to streamline the decontamination step in microbiome data analysis and 
deliver reliable performance.

Fig. 1  Overview of HoCoRT performance on simulated gut microbiome datasets. Box plots of HoCoRT 
runtime in seconds (top) and classification accuracy (bottom) using several different classification modules 
and parameters on Illumina HiSeq (yellow, left), MiSeq (cyan, middle) and Nanopore data (red, right). Table 1 
contains additional results, including those for BioBloom (on Nanopore data), BBMap, BBSplit, Bowtie2 with 
the ‘un-conc’ option, and BWA-MEM2, which were excluded from this figure due to outliers
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Table 1  Detailed HoCoRT performance on simulated human gut microbiome datasets

The average runtime (in seconds), accuracy, precision, and sensitivity are shown for each pipeline and for each data type. 
The best (bold) and worst (italic) performing pipelines are indicated for each performance metric and data type

Pipeline Runtime Accuracy Precision Sensitivity

Paired-end HiSeq

 Seal 291.3 0.9975 0.8027 1.0000
 BBDuk 233.7 0.9952 0.6786 1.0000
 BBSplit 509.0 0.9982 0.8523 1.0000
 BioBloom 66.6 0.9990 0.9143 0.9995

 Bowtie2_end-to-end 77.4 0.9988 0.8978 1.0000
 Bowtie2_local 80.4 0.9978 0.8187 1.0000
 Bowtie2_end-to-end_un_conc 277.2 0.9934 0.9351 0.3625

 Bowtie2_local_un_conc 314.9 0.9941 0.8956 0.4614

 HISAT2 101.7 0.9990 0.9145 0.9998

 Kraken2 49.8 0.9980 0.8385 0.9928

 BBMap_default 1053.2 0.9982 0.8520 1.0000
 BBMap_fast 300.9 0.9986 0.8762 0.9999

 BWA_MEM2 381.3 0.9720 0.2635 1.0000
 Kraken2Bowtie2 87.7 0.9980 0.8385 1.0000
 Kraken2HISAT2 117.2 0.9980 0.8388 1.0000
 Minimap2_illumina 73.3 0.9977 0.8170 1.0000
 Kraken2Minimap2_illumina 105.2 0.9976 0.8107 1.0000

Paired-end MiSeq

 Seal 376.7 0.9967 0.7559 1.0000
 BBDuk 299.7 0.9916 0.5457 1.0000
 BBSplit 791.9 0.9985 0.8726 1.0000
 BioBloom 142.0 0.9990 0.9129 0.9969

 Bowtie2_end-to-end 159.0 0.9989 0.9041 0.9999

 Bowtie2_local 249.8 0.9975 0.8043 1.0000
 Bowtie2_end-to-end_un_conc 747.3 0.9904 0.9721 0.0457

 Bowtie2_local_un_conc 810.6 0.9919 0.8761 0.2243

 HISAT2 212.6 0.9990 0.9224 0.9901

 Kraken2 99.0 0.9973 0.7902 0.9960

 BBMap_default 2338.7 0.9985 0.8730 0.9993

 BBMap_fast 733.3 0.9989 0.9044 0.9956

 BWA_MEM2 2889.4 0.9128 0.1032 1.0000
 Kraken2Bowtie2 189.2 0.9973 0.7908 1.0000
 Kraken2HISAT2 236.2 0.9973 0.7908 1.0000
 Minimap2_illumina 136.5 0.9970 0.7698 1.0000
 Kraken2Minimap2_illumina 170.9 0.9967 0.7567 1.0000

Single-end Nanopore

 BioBloom 171.6 0.9900 1.0000 0.0013

 Minimap2_nanopore 179.7 0.9950 0.9965 0.5027

 Kraken2Minimap2_nanopore 256.3 0.9957 0.9632 0.5916
 Kraken2 162.4 0.9938 0.9491 0.3994
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Availability and requirements  Project name: HoCoRT. Project home page: https://​
github.​com/​ignas​rum/​hocort. Operating system(s): Linux and macOS (except for the 
BioBloom module). Programming language: Python. Other requirements: Samtools [14] 
and other packages. Please see GitHub repository for details. License: MIT license. Any 
restrictions to use by non-academics: None.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05492-w.

Additional file 1: Supplementary figure and tables.
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