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Abstract

Since its renaissance, deep learning has been widely used in various medical imaging tasks and 

has achieved remarkable success in many medical imaging applications, thereby propelling us 

into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly 

attributed to the availability of big data with annotations for a single task and the advances in high 

performance computing. However, medical imaging presents unique challenges that confront deep 
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learning approaches. In this survey paper, we first present traits of medical imaging, highlight both 

clinical needs and technical challenges in medical imaging, and describe how emerging trends in 

deep learning are addressing these issues. We cover the topics of network architecture, sparse and 

noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present 

several case studies that are commonly found in clinical practice, including digital pathology 

and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive 

literature survey, we instead describe some prominent research highlights related to these case 

study applications. We conclude with a discussion and presentation of promising future directions.
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Medical imaging; deep learning; survey

I. OVERVIEW

Medical imaging [1] exploits physical phenomena such as light, electromagnetic radiation, 

radioactivity, nuclear magnetic resonance, and sound to generate visual representations or 

images of external or internal tissues of the human body or a part of the human body in 

a non-invasive manner or via an invasive procedure. The most commonly used imaging 

modalities in clinical medicine include X-ray radiography, computed tomography (CT), 

magnetic resonance imaging (MRI), ultrasound, and digital pathology. Imaging data account 

for about 90% of all healthcare data1 and hence is one of the most important sources of 

evidence for clinical analysis and medical intervention.

A. Traits of medical imaging

As described below and illustrated in Figure 1, medical imaging has several traits that 

influence the suitability and nature of deep learning solutions. Note that these traits are not 

necessarily unique to medical imaging. For example, satellite imaging shares the first trait 

described below with medical imaging.

Medical images have multiple modalities and are dense in pixel resolution.—
There are many existing imaging modalities and new modalities such as spectral CT are 

being routinely invented. Even for commonly used imaging modalities, the pixel or voxel 

resolution has become higher and the information density has increased. For example, the 

spatial resolution of clinical CT and MRI has reached the sub-millimeter level and the 

spatial resolution of ultrasound is even better while its temporal resolution exceeds real-time.

Medical image data are isolated and acquired in non-standard settings.—
Although medical imaging data exist in large numbers in the clinic, due to a lack of 

standardized acquisition protocols there is a large variation in terms of equipment and 

scanning settings, leading to the so-called “distribution drift” phenomenon. Due to patient 

privacy and clinical data management requirements, images are scattered among different 

hospitals and imaging centers, and truly centralized open source medical big data are rare.

1“The Digital Universe Driving Data Growth in Healthcare,” published by EMC with research and analysis from IDC (12/13).
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The disease patterns in medical images are numerous and their incidence 
exhibits a long tail distribution.—Radiology Gamuts Ontology [2] defines 12,878 

“symptoms” (conditions that lead to results) and 4,662 “diseases” (imaging findings). The 

incidence of disease has a typical long-tailed distribution: while a small number of common 

diseases have sufficient observed cases for large-scale analysis, most diseases are infrequent 

in the clinic. In addition, novel contagious diseases that are not represented in the current 

ontology, such as the outbreak of COVID-19, occur with some frequency.

The labels associated with medical images are sparse and noisy.—Labeling or 

annotating a medical image is time-consuming and expensive. Also, different tasks require 

different forms of annotation which creates the phenomenon of label sparsity. Because 

of variable experience and different conditions, both inter-user and intra-user labeling 

inconsistency is high [3] and labels must therefore be considered to be noisy. In fact, the 

establishment of gold standards for image labeling remains an open issue.

Samples are heterogeneous and imbalanced.—In the already labeled images, the 

appearance varies from sample to sample, with its probability distribution being multi-

modal. The ratio between positive and negative samples is extremely uneven. For example, 

the number of pixels belonging to a tumor is usually one to many orders of magnitude less 

than that of normal tissue.

Medical image processing and analysis tasks are complex and diverse.—
Medical imaging has a rich body of tasks. At the technical level, there is an array of 

technologies including reconstruction, enhancement, restoration, classification, detection, 

segmentation, and registration. When these technologies are combined with multiple image 

modalities and numerous disease types, a very large number of highly-complex tasks 

associated with numerous applications are formed and should be addressed.

B. Clinical needs and applications

Medical imaging is often a key part of the medical diagnosis and treatment process. 

Typically, a radiologist reviews the acquired medical images and write a summarizing report 

of their findings. The referring physician defines a diagnosis and treatment plan based on 

the images and radiologist’s report. Often, medical imaging is ordered as part of a patient’s 

follow-up to verify successful treatment. In addition, images are becoming an important 

component of invasive procedures, being used both for surgical planning as well as for 

real-time imaging during the procedure itself.

As a specific example, we can look at what we term the “radiology challenge” [4], [5]. 

In the past decade, with the development of technologies related to the image acquisition 

process, imaging devices have improved in speed and resolution. For example, in 1990 a CT 

scanner might acquire 50–100 slices whereas today’s CT scanners might acquire 1000–2500 

slices per case. A single whole slide digital pathology image corresponding to a single 

prostate biopsy core can easily occupy 10GB of space at 40x magnification. Overall, there 

are billions of medical imaging studies conducted per year, worldwide, and this number is 

growing.
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Most interpretations of medical images are performed by physicians and, in particular, by 

radiologists. Image interpretation by humans, however, is limited due to human subjectivity, 

the large variations across interpreters, and fatigue. Radiologists that review cases have 

limited time to review an ever-increasing number of images, which leads to missed findings, 

long turn-around times, and a paucity of numerical results or quantification. This, in turn, 

drastically limits the medical community’s ability to advance towards more evidence-based 

personalized healthcare.

AI tools such as deep learning technology can provide support to physicians by 

automating image analysis, leading to what we can term “Computational Radiology” 

[6], [7]. Among the automated tools that can be developed are detection of pathological 

findings, quantification of disease extent, characterization of pathologies (e.g., into 

benign vs malignant), and assorted software tools that can be broadly characterized as 

decision support. This technology can also extend physicians’ capabilities to include the 

characterization of three-dimensional and time-varying events, which are often not included 

in today’s radiological reports because of both limited time and limited visualization and 

quantification tools.

C. Key technologies and deep learning

Several key technologies arise from the various medical imaging applications, including: [8], 

[9], [10], [11]

• Medical image reconstruction [12], which aims to form a visual representation 

(aka an image) from signals acquired by a medical imaging device such as a CT 

or MRI scanner. Reconstruction of high quality images from low doses and/or 

fast acquisitions has important clinical implications.

• Medical image enhancement, which aims to adjust the intensities of an image 

so that the resultant image is more suitable for display or further analysis. 

Enhancement methods include denoising, super-resolution, MR bias field 

correction [13], and image harmonization [14]. Recently, much research has 

focused on modality translation and synthesis, which can be considered as image 

enhancement steps.

• Medical image segmentation [15], which aims to assign labels to pixels so 

that the pixels with the same label form a segmented object. Segmentation has 

numerous applications in clinical quantification, therapy, and surgical planning.

• Medical image registration [16], which aims to align the spatial coordinates of 

one or more images into a common coordinate system. Registration finds wide 

use in population analysis, longitudinal analysis, and multimodal fusion, and is 

also commonly used for image segmentation via label transfer.

• Computer aided detection (CADe) and diagnosis (CADx) [17]. CADe aims to 

localize or find a bounding box that contains an object (typically a lesion) of 

interest. CADx aims to further classify the localized lesion as benign/malignant 

or one of multiple lesion types.
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• Others technologies include landmark detection [18], image or view recognition 

[19], automatic report generation [20], etc.

In mathematics, the above technologies can be regarded as function approximation methods, 

which approximate the true mapping F that takes an image (or multiple images if 

multimodality is accessible) as input and outputs a specific y = F(x). The definition of y 
varies depending on the technology, which itself depends on the application or task. In 

CADe, y denotes a bounding box. In image registration, y is a deformation field. In image 

segmentation, y is a label mask. In image enhancement, y is a quality-enhanced image 

typically of the same size2 of the input image x.

There are many ways to approximate F; however, deep learning (DL) [21], a branch of 

machine learning (ML), is one of the most powerful methods for function approximation. 

Since its renaissance, deep learning has been widely used in various medical imaging tasks 

and has achieved substantial success in many medical imaging applications. Because of its 

focus on learning rather than modeling, the use of DL in medical imaging represents a 

substantial departure from previous approaches in medical imaging. Take supervised deep 

learning as an example. Assume that a training dataset xn, yn ; n = 1, …, N  is available and 

that a deep neural network is parameterized by θ, which includes the number of layers, the 

number of nodes of each layer, the connecting weights, the choices of activation functions, 

etc. The neural network that is found to approximate F can be written as ϕθ(x) where θ  are 

the parameters that minimize the so-called loss function

L(θ) = 1
N ∑

n = 1

N
l ϕθ xn , yn + R1 ϕθ xn + R2(θ) . (1)

Here, l ϕθ(x), y  is the item-wise loss function that penalizes the prediction error, R1 ϕθ xn

reflects the prior belief about the output, and R2(θ) is a regularization term about the network 

parameters. Although the neural network ϕθ(x) does represent a type of model, it is generally 

thought of as a “black box” since it does not represent a designed model based on well-

understood physical or mathematical principles.

There are many survey papers on deep learning based key technologies for medical image 

analysis [22], [23], [24], [25], [26], [27], [28], [29], [30], [31]. To differentiate the present 

review paper from these works, we specifically omit any presentation of the technical details 

of DL itself, which is no longer considered new and is well-covered in numerous other 

works, and focus instead on the connections between the emerging DL approaches and the 

specific needs in medical imaging and on several case examples that illustrate the state of the 

art.

D. Historical perspective

Here, we briefly outline the development timeline of DL in medical imaging. Deep learning 

was termed one of the 10 breakthrough technologies of 2013 [32]. This followed the 

2Image super-resolution generates an output image that has a different size from the input image.

Zhou et al. Page 5

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2012 large-scale image categorization challenge that introduced the CNN superiority on the 

ImageNet dataset [33]. At that time, DL emerged as the leading machine-learning tool in the 

general imaging and computer vision domains and the medical imaging community began a 

debate about whether DL would be applicable in the medical imaging space. The concerns 

were due to the challenges we have outlined above, with the main challenge being the lack 

of sufficient labeled data, known as the data challenge.

Several steps can be pointed to as enablers of the DL technology within the medical imaging 

space: In 2015–2016, techniques were developed using “transfer learning” (TL) (or what 

was also called “learning from non-medical features” [34]) to apply the knowledge gained 

via solving a source problem to a different but related target problem. A key question was 

whether a network pre-trained on natural imagery would be applicable to medical images. 

Several groups showed this to be the case (e.g. [35], [36], [34]); using the deep network 

trained based on ImageNet and fine-tuning to a medical imaging task was helpful in order to 

speed up training convergence and improve accuracy.

In 2017–2018, synthetic data augmentation emerged as a second solution to process limited 

datasets. Classical augmentation is a key component of any network training. Still, key 

questions to address were whether it was possible to synthesize medical data using schemes 

such as generative modeling and whether the synthesized data would serve as viable medical 

examples and would in practice increase performance of the medical task at hand. Several 

works across varying domains demonstrated that this was in fact the case. In [37], for 

example, synthetic image augmentation based on generative adversarial network (GAN) 

was shown to generate lesion image samples that were not recognized as synthetic by the 

expert radiologists and also increased CNN performance in classifying liver lesions. GANs, 

variational encoders, and variations on these are still being explored and advanced in recent 

works, as will be described in the following Section.

For image segmentation, one of the key contributions that emerged from the medical 

imaging community was the U-Net architecture [38]. Originally designed for microscopic 

cell segmentation, the U-Net has proven to efficiently and robustly learn effective features 

for many medical image segmentation tasks.

E. Emerging deep learning approaches

Network architectures.—Deep neural networks have a larger model capacity and 

stronger generalization capability than shallow neural networks. Deep models trained on 

large scale annotated databases for a single task achieve outstanding performances, far 

beyond traditional algorithms or even human capability.

Making it deeper.: Starting from AlexNet [33], there was a research trend to make networks 

deeper, as represented by VGGNet [39], Inception Net [40], and ResNet [41]. The use of 

skip connections makes a deep network more trainable as in DenseNet [42] and U-Net [38]. 

U-net was first proposed to tackle segmentation while the other networks were developed for 

image classification. Deep supervision [43] further improves discriminative power.
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Adversarial and attention mechanisms.: In the generative adversarial network (GAN) 

[44], Goodfellow et al. propose to accompany a generative model with a discriminator 

that tells whether a sample is from the model distribution or the data distribution. Both 

the generator and discriminator are represented by deep networks and their training is 

done via a minimax optimization. Adversarial learning is widely used in medical imaging 

[27], including medical image reconstruction [12], image quality enhancement [14], and 

segmentation [45].

Attention mechanism [46] allows automatic discovery of “where” and “what” to focus on 

when describing image contents or making a holistic decision. Squeeze and excitation [47] 

can be regarded as a channel attention mechanism. Attention is combined with GAN in [48] 

and with U-Net in [49].

Neural architecture search (NAS) and light weight design.: NAS [50] aims to 

automatically design the architecture of a deep network for high performance geared 

toward a given task. Zhu et al. [51] successfully apply NAS to volumetric medical image 

segmentation. Light weight design [52], [53], on the other hand, aims to design the 

architecture for computational efficiency on resource-constrained devices such as mobile 

phones while maintaining accuracy.

Annotation efficient approaches.—To address sparse and noisy labels, we need DL 

approaches that are efficient with respect to annotations. So, a key idea is to leverage the 

power and robustness of feature representation capability derived from existing models and 

data even though the models or data are not necessarily from the same domain or for the 

same task and to adapt such representation to the task at hand. To do this, there are a handful 

of methods proposed in the literature [28], including transfer learning, domain adaptation, 

self-supervised learning, semi-supervised learning, weakly/partially supervised learning, etc.

Transfer learning (TL) aims to apply the knowledge gained via solving a source problem to 

a different but related target problem. One commonly used TL method is to use the deep 

network trained based on ImageNet and fine tune it to a medical imaging task in order 

to speed up training convergence and improve accuracy. With the availability of a large 

number of annotated datasets, such TL methods [36] achieve remarkable success. However, 

ImageNet consists of natural images and its pretrained models are for 2D images only 

and are not necessarily the best for medical images, especially for small-sample settings 

[54]. Liu et al. [55] propose a 3D anisotropic hybrid network that effectively transfers 

convolutional features learned from 2D images to 3D anisotropic volumes. In [56], Chen 

et al. combine multiple datasets from several medical challenges with diverse modalities, 

target organs, and pathologies and learn one 3D network that provides an effective pretrained 

model for 3D medical image analysis tasks.

Domain adaptation is a form of transfer learning in which the source and target domains 

have the same feature space but different distributions. In [57], domain-invariant features 

are learned via an adversarial mechanism that attempts to classify the domain of the input 

data. Zhang et al. [58] propose to synthesize and segment multimodal medical volumes 

using generative adversarial networks with cycle- and shape-consistency. In [59], a domain 
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adaptation module that maps the target input to features which are aligned with source 

domain feature space is proposed for cross-modality biomedical image segmentation, using 

a domain critic module for discriminating the feature space of both domains. Huang et al. 

[60] propose a universal U-Net comprising domain-general and domain-specific parameters 

to deal with multiple organ segmentation tasks on multiple domains. This integrated learning 
mechanism offers a new possibility of dealing with multiple domains and even multiple 

heterogeneous tasks.

Self-supervised learning, a form of unsupervised learning, learns a representation through 

a proxy task, in which the data provides supervisory signals. Once the representation is 

learned, it is fine tuned by using annotated data. The models genesis method [61] uses a 

proxy task of recovering the original image using a distorted image as input. The possible 

distortions include non-linear gray-value transformation, local pixel shuffling, and image 

out-painting and in-painting. In [62], Zhu et al. propose solving a Rubik’s Cube proxy task 

that involves three operations, namely cube ordering, cube rotating, and cube masking. This 

allows the network to learn features that are invariant to translation and rotation and robust 

to noise as well.

Semi-supervised learning often trains a model using a small set of annotated images, then 

generates pseudo-labels for a large set of images with annotations, and learns a final model 

by mixing up both sets of images. Bai et al. [63] implement such a method for cardiac MR 

segmentation. In [64], Nie et al. propose an attention based semi-supervised deep network 

for segmentation. It adversarially trains a segmentation network, from which a confidence 

map is computed as a region-attention based semi-supervised learning strategy to include the 

unlabeled data for training.

Weakly or partially supervised learning.: In [65], Wang et al. solve a weakly-supervised 

multi-label disease classification from a chest x-ray. To relax the stringent pixel-wise 

annotation for image segmentation, weakly supervised methods that use image-level 

annotations [66], or weak annotations like dots and scribbles [67] are proposed. For multi-

organ segmentation, Shi et al. [68] learn a single multiclass network from a union of 

multiple datasets, each with a low sample size and partial organ label, using newly proposed 

marginal loss and exclusion loss. Schleg et al. [69] build a deep model from only normal 

images to detect abnormal regions in a test image.

Unsupervised learning and disentanglement.: Unsupervised learning does not rely on 

the existence of annotated images. A disentangled network structure is designed with an 

adversarial learning strategy that promotes the statistical matching of deep features has been 

widely used. In medical imaging, unsupervised learning and disentanglement have been 

used in image registration [70], motion tracking [71], artifact reduction [72], improving 

classification [73], domain adaptation [74], and general modeling [75].

Embedding knowledge into learning.—Knowledge arises from various sources such 

as imaging physics, statistical constraints, and task specifics and ways of embedding into 

a DL approach vary too. For chest x-ray disease classification, Li et al. [76], [77] encode 

anatomy knowledge embedded in unpaired CT into a deep network that decomposes a 
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chest x-ray into lung, bone and the remaining structures (see Fig. 2). With augmented 

bone-suppressed images, classification performance is improved in predicting 11 out of 

14 common lung diseases. In [78] lung radiographs are enhanced by learning to extract 

lung structures from CT based simulated x-ray (DRRs) and fusing with the original x-ray 

image. The enhancement is shown to augment results of pathology characterization in real 

x-ray images. In [79], a dual-domain network is proposed to reduce metal artifacts on 

both the image and sinogram domains, which are seemingly integrated into one differential 

framework through a Radon inverse layer, rather than two separate modules.

Federated learning.—To combat issues related to data privacy, data security, and data 

access rights, it has become increasingly important to have the capability of learning a 

common, robust algorithmic model through distributed computing and model aggregation 

strategies so that no data are transferred outside a hospital or an imaging lab. This research 

direction is called federated learning (FL) [80], which is in contrast to conventional 

centralized learning with all the local datasets uploaded to one server. There are many 

ongoing research challenges related to federate learning such as reduced communication 

burden [81], data heterogeneity in various local sites [82], and vulnerability to attacks [83].

Despite its importance, work on FL in medical imaging has only been reported recently. 

Sheller et al. [84] present the first use of FL for multi-institutional DL model without sharing 

patient data and report similar brain lesion segmentation performances between the models 

trained in a federated or centralized way. In [85], Li et al. study several practical FL methods 

while protecting data privacy for brain tumour segmentation on the BraTS dataset and 

demonstrate a trade-off between model performance and privacy protection costs. Recently, 

FL is applied, together with domain adaptation, to train a model with boosted analysis 

performance and reliable discovery of disease-related biomarkers [86].

Interpretability.: Clinical decision-making relies heavily on evidence gathering and 

interpretation. Lacking evidence and interpretation makes it difficult for physicians to trust 

the ML model’s prediction, especially in disease diagnosis. In addition, interpretability 

is also the source of new knowledge. Murdoch et al. [87] define interpretable machine 

learning as leveraging machine-learning models to extract relevant knowledge about domain 

relationships contained in data, aiming to provide insights for a user into a chosen 

domain problem. Most interpretation methods are categorized as model-based and post-hoc 

interpretability. The former is about constraining the model so that it readily provides useful 

information (such as sparsity, modularity, etc.) about the uncovered relationships. The latter 

is about extracting information about what relationships the model has learned.

Model-based interpretability.: For cardiac MRI classification [88], diagnostically 

meaningful concepts in the latent space are encoded. In [89], when training the model 

for healthy and hypertrophic cardiomyopathy classification, it leverages interpretable task-

specific anatomic patterns learned from 3D segmentations.

Post-hoc interpretability.: In [90], the feature importance scores are calculated for graph 

neural network by comparing its interpretation ability with Random Forest. Li et al. [91] 

propose a brain biomarker interpretation method through a frequency-normalized sampling 
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strategy to corrupt an image. In [92], various interpretability methods are evaluated in the 

context of semantic segmentation of polyps from colonoscopy images. In [93], a hybrid 

RBM-Random Forest system on brain lesion segmentation is learned with the goal of 

enhancing interpretability of automatically extracted features.

Uncertainty quantification characterizes the model prediction with confidence measure [94], 

which can be regarded as a method of post-hoc interpretability, even though often the 

uncertainty measure is calculated along with the model prediction. Recently there are 

emerging works that quantify uncertainty in deep learning methods for medical image 

segmentation [95], [96], [97], lesion detection [98], chest x-ray disease classification [99], 

and diabetic retinopathy grading [100], [101]. One additional extension to uncertainty is its 

combination with the knowledge that the given labels are noisy. Works are now starting to 

emerge that take into account label uncertainty in the modeling of the network architecture 

and its training [102].

II. CASE STUDIES WITH PROGRESS HIGHLIGHTS

Given that DL has been used in a vast number of medical imaging applications, it is nearly 

infeasible to cover all possible related literature in a single paper. Therefore, we cover 

several selected cases that are commonly found in clinical practices, which include chest, 

neuro, cardiovascular, abdominal, and microscopy imaging. Further, rather than presenting 

an exhaustive literature survey for each studied case, we provide some prominent progress 

highlights in each case study.

A. Deep learning in thoracic imaging

Lung diseases have a high mortality and morbidity. In the top ten causes of death 

worldwide we find lung cancer, chronic obstructive pulmonary disease (COPD), pneumonia, 

and tuberculosis (TB). At the moment of writing this overview, COVID-19 has a death 

rate comparable to TB. Imaging is highly relevant to diagnose, plan treatment and learn 

more about the causes and mechanisms underlying these and other lung diseases. Next 

to that, pulmonary complications are common in hospitalized patients. As a result, chest 

radiography is by far the most common radiological examination, often comprising over a 

third of all studies in a radiology department.

Plain radiography and computed tomography are the two most common modalities to image 

the chest. The high contrast in density between air-filled lung parenchyma and tissue makes 

CT ideal for in vivo analysis of the lungs, obtaining high-quality and high-resolution images 

even at very low radiation dose. Nuclear imaging (PET or PET/CT) is used for diagnosing 

and staging of oncology patients. MRI is somewhat limited in the lungs, but can yield 

unique functional information. Ultrasound imaging is also difficult because sound waves 

reflect strongly at boundaries of air and tissue, but point-of-care ultrasound is used at the 

emergency department and is widely used to monitor COVID-19 patients for which the first 

decision support applications based on deep learning have already appeared [103].

Segmentation of anatomical structures.—For analysis and quantification from 

chest CT scans, automated segmentation of major anatomical structures is an important 

Zhou et al. Page 10

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prerequisite. Recent publications demonstrate convincingly that deep learning is now the 

state-of-the-art method to achieve this. This is evident from inspecting the results of 

LOLA113, a competition started in 2011 for lung and lobe segmentation in chest CT. The 

test dataset for this challenge include many challenging cases with lungs affected by severe 

abnormalities. For years, the best results were obtained by interactive methods. In 2019 

and 2020, seven fully automatic methods based on U-Nets or variants thereof made the top 

10 for lung segmentation, and for lobe segmentation, two recent methods obtained results 

outperforming the best interactive methods. Both these methods [104], [105] were trained 

on thousands of CT scans from the COPDGene study [106], illustrating the importance of 

large high quality datasets to obtain good results with deep learning. This data is publicly 

available on request. Both methods use a multi-resolution U-Net like architecture with 

several customizations. Gerard et al. integrate a previously developed method for finding the 

fissures [107]. Xie et al. [105] add a non-local module with self-attention and fine-tune their 

method on data of COVID-19 suspects to accurately segment the lobes in scans affected by 

ground-glass and consolidations.

Segmentation of the vasculature, separated into arteries and veins, and the airway tree, 

including labeling of the branches and segmentation of the bronchial wall, is another 

important area of research. Although methods that use convolutional networks in some of 

their steps have been proposed, developing an architecture entirely based on deep learning 

that can accurately track and segment intertwined tree structures and take advantage of the 

known geometry of these complex structures, is still an open challenge.

Detection and diagnosis in chest radiography.—Recently the number of 

publications on detecting abnormalities in the ubiquitous chest x-ray has increased 

enormously. This trend has been driven by the availability of large public datasets, such 

as ChestXRay14 [65], CheXpert [108], MIMIC [109], and PadChest [110], totaling 868K 

images. Labels for presence or absence of over 150 different abnormal signs were gathered 

by text-mining the accompanying radiology reports. This makes the labels noisy. Most 

publications use a standard approach of inputting the entire image in a popular convolutional 

network architecture. Methodological contributions include novel ways of preprocessing the 

images, handling the label uncertainty and the large number of classes, suppressing the 

bones [77], and exploiting self-supervised learning as a way of pretraining. So far, only few 

publications analyze multiple exams of the same patient to detect interval change or analyze 

the lateral views.

Decision support in lung cancer screening.—Following the positive outcome of 

the NLST trial, the United States has started a screening program for heavy smokers 

for early detection of lung cancer with annual low-dose CT scans. Many other countries 

worldwide are expected to follow suit. In the United States, screening centers have to use a 

reporting system called Lung-RADS [111]. Reading lung cancer screening CT scans is time 

consuming and therefore automating the various steps in Lung-RADS has received a lot of 

attention.

3 https://lola11.grand-challenge.org/ 

Zhou et al. Page 11

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://lola11.grand-challenge.org/


The most widely studied topic is nodule detection [112]. Nodules may represent lung cancer. 

Many DL systems were compared in the LUNA16 challenge4. Lung-RADS classifies scans 

in categories based on the most suspicious nodule, and this is determined by the nodule type 

and size. DL systems to determine nodule type have been proposed [113] and measuring 

the size can be done by traditional methods based on thresholding and mathematical 

morphology but also with DL networks. Finally, Lung-RADS contains the option to directly 

refer scans with a nodule that is highly suspicious for cancer. Many DL systems to estimate 

nodule malignancy have been proposed.

The advantage of automating the LUNG-RADS guidelines step-by-step is that this leads to 

an explainable AI solution that can directly support radiologists in their reading workflow. 

Alternatively, one could ask a computer to directly predict if a CT scan contains an 

actionable lung cancer. This was the topic of a Kaggle challenge organized in 20175 in 

which almost 2000 teams competed for a one million dollar prize. The top 10 solutions all 

used deep learning and are open source. Two years later, a team from Google published an 

implementation [114] following the approach of the winning team in the Kaggle challenge, 

employing modern architectures such as a 3D inflated Inception architecture (I3D) [115]. 

The I3D architecture builds upon the Inception v1 model for 2D image classification 

but inflates the filters and pooling kernels into 3D. This enables the use of an image 

classification model pre-trained with 2D data for a 3D image classification task. The paper 

showed that the model outperformed six radiologists that followed Lung-RADS. The model 

was also extended to handle follow-up scans where it obtained performance slightly below 

human experts.

COVID-19 case study.—As an illustration how DL with pretrained elements can be used 

to rapidly build applications, we briefly discuss the development of two tools for COVID-19 

detection, for chest radiographs and chest CT. In March 2020, many European hospitals 

were overwhelmed by patients presenting at the emergency care with respiratory complaints. 

There was a shortage of molecular testing capacity for COVID-19 and turnaround time for 

test results was often days. Hospitals therefore used chest x-ray or CT to obtain a working 

diagnosis and decide whether to hospitalize patients and how to treat them. In just six weeks, 

researchers from various Dutch and German hospitals, research institutes and a company 

managed to create a solution for COVID-19 detection from an x-ray and from a CT scan. 

Figure 3 shows the result of this CORADS-AI system for a COVID-19 positive case.

The x-ray solution started from a convolutional network using local and global labels, 

pretrained to detect tuberculosis [116], fine-tuned using public and private data of patients 

with and without pneumonia to detect pneumonia in general, and subsequently fine-tuned 

on x-ray data from patients of a Dutch hospital in a COVID-19 hotspot. The system was 

subsequently evaluated on 454 chest radiographs from another Dutch hospital and shown 

to perform comparably to six chest radiologists [117]. The system is currently being field 

tested in Africa.

4 https://luna16.grand-challenge.org/ 
5 https://www.kaggle.com/c/data-science-bowl-2017/ 
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The CT solution, called CO-RADS [118], aimed to automate a clinical reporting system for 

CT of COVID-19 suspects. This system assesses the likelihood of COVID-19 infection on a 

scale from CO-RADS 1 (highly unlikely) to CO-RADS 5 (highly likely) and quantifies the 

severity of disease using a score per lung lobe from 0 to 5 depending on percentage affected 

lung parenchyma for a maximum CT severity score of 25 points. The previously mentioned 

lobe segmentation [105] was employed. Abnormal areas in the lung were segmented using 

a 3D U-net built with the nnU-Net framework [119] in a cross-validated fashion with 

108 scans and corresponding reference delineations to segment ground-glass opacities and 

consolidation in the lungs. The CT severity score was derived from the segmentation 

results by computing the percentage of affected parenchymal tissue per lobe. nnU-Net was 

compared with several other approaches and performed best. For assessing the CO-RADS 

score, the previously mentioned I3D architecture [115] performed best.

B. Deep learning in neuroimaging

In recent years, deep learning has seen a dramatic rise in popularity within the neuroimaging 

community. Many neuroimaging tasks including segmentation, registration, and prediction 

now have deep learning based implementations. Additionally, through the use of deep 

generative models and adversarial training, deep learning has enabled new avenues of 

research in complex image synthesis tasks. With the increasing availability of large 

and diverse pooled neuroimaging studies, deep learning offers interesting prospects for 

improving accuracy and generalizability while reducing inference time and the need 

for complex preprocessing. CNNs, in particular, have allowed for efficient network 

parameterization and spatial invariance, both of which are critical when dealing with high-

dimensional neuroimaging data. The learnable feature reduction and selection capabilities 

of CNNs have proven effective in high level prediction and analysis tasks and has reduced 

the need for highly specific domain knowledge. Specialized networks such as U-Nets [38], 

V-Nets [120], and GANs [44] are also popular in neuroimaging, and have been leveraged for 

a variety of segmentation and synthesis tasks.

Neuroimage segmentation and tissue classification.—Accurate segmentation is 

an important preprocessing step that informs much of the downstream analytic and 

predictive tasks done in neuroimaging. Commonly used tools such as FreeSurfer [122] 

rely on atlas based methods, whereby an atlas is deformably registered to the scan, 

which requires time consuming optimization problems to be solved. Proposed deep 

learning based approaches, however, are relatively computationally inexpensive during 

inference. Recent research has focused on important tasks such as deep learning based 

brain extraction [123], cortical and subcortical segmentation [124], [125], [126], [127], 

and tumor and lesion segmentation [128], [129]. Some interesting research has looked at 

improving the generalization performance of deep learning based segmentation methods 

across neuroimaging datasets imaged at different scanners. In particular, Kamnitsas et 

al. [57] have proposed a training schema, which leverages adversarial training to learn 

scanner invariant feature representations. They use an adversarial network to classify the 

origin of the input data based on the downstream feature representation learned by the 

segmentation network. By penalizing the segmentation network for improved performance 

of the adversarial network, they show improved segmentation generalization across datasets. 
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Brain tumor segmentation has been another active area of research in the neuroimaging 

community where deep learning has shown promise. In the past, brain tumor datasets have 

remained relatively small, particularly ones with subjects imaged at a single institution. The 

Brain Tumor Segmentation Challenge (BraTS) [130] has provided the community with an 

accessible dataset as well as a way to benchmark various approaches against one another. 

While it has been seen that deep learning has difficulty in training on datasets with relatively 

few scans, new architectures and training methods are becoming increasingly effective at 

this. Havaei et al. [128] demonstrate the performance of their glioblastoma segmentation 

network on the BraTS dataset, achieving high accuracy while being substantially faster 

than previous methods. Another task where deep networks are finding increasing success is 

semantic segmentation in which anatomical labels are not necessarily well-defined by image 

intensity changes but can be identified by relative anatomical locations. A good example is 

that of cerebellum parcellation where deep networks performed best in a recent comparison 

of methods [131]. The even newer ACAPULCO method [121] uses two cascaded deep 

networks to produce cerebellar lobule labels, as shown in Figure 4.

Deformable image registration.—Image registration allows for imaging analysis in a 

single subject across imaging modalities and time points. Deep learning based deformable 

registration with neuroimaging data has proven to be a difficult problem, especially 

considering the lack of ground truth. Still, some unique and varied approaches have achieved 

state-of-the-art results with relatively fast run times [132], [133], [134], [135]. Li et al. [133] 

propose a fully convolutional “self-supervised” approach to learn the appropriate spatial 

transformations at multiple resolutions. Balakrishnan et al. [132] propose a method for 

unsupervised image registration which attempts to directly compute the deformation field.

Neuroimaging prediction.—With many architectures being borrowed from the computer 

vision community, deep learning based prediction in neuroimaging has quickly gained 

popularity. Traditionally, machine learning based prediction on neuroimaging data has 

relied on careful feature selection/engineering; often taking the form of regional summary 

measures which may not account for all the informative variation for a particular task. 

Whereas, in deep learning, it is common to work with raw imaging data, where the 

appropriate feature representations can be learned through optimization. This can be 

particularly useful for high-level prediction tasks in which we do not know what imaging 

features will be informative. Further, by working on the raw image, reliance on complex 

and time consuming preprocessing can be reduced. In recent years, a large amount of work 

has been published on deep learning based prediction tasks such as brain age prediction 

[136], [137], [138], Alzheimer’s disease classification and trajectory modeling [139], [140], 

[141], [142], and schizophrenia classification [143], [144]. Some work has considered the 

use of deep Siamese networks for longitudinal image analysis. Siamese networks have 

gained popularity for their success in facial recognition. They work by jointly optimizing 

a set of weights on two images with respect to some distance metric between them. This 

setup makes them effective at identifying longitudinal changes on some chosen dimension. 

Bhagwat et al. [145] consider the use of longitudinal Siamese network for the prediction 

of future Alzheimer’s disease onset, using two early time points. They show substantially 
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improved performance in identifying future Alzheimer’s cases, with the use of two time 

points versus only a baseline scan.

The use of GANs in neuroimaging.—GANs have enabled complex image synthesis 

tasks in neuroimaging, many of which have no comparable analogs in traditional machine 

learning. GANs and their variants have been used in neuroimaging for cross-modality 

synthesis [146], motion artifact reduction [147], resolution upscaling [148], [149], [150], 

estimating full-dosage PET images from low-dosage PET [151], [152], [153], image 

harmonization [14], [154], heterogeneity analysis [155], and more. To help facilitate such 

work, the popular MedGAN [156] proposes a series of modifications and new loss functions 

to traditional GANs, aimed at preserving anatomically relevant information and fine details. 

They use auxiliary classifiers on the translated image to ensure the resulting image feature 

representation is similar to the expected image representation for a given task. Additionally, 

they use style-transfer loss in combination with adversarial loss to ensure fine structures and 

textural details are matched in the translation. Some promising new work attempts to reduce 

the amount of radioactive tracer needed in PET imaging, potentially reducing associated 

costs and health risks. This problem can be framed as an image synthesis task, whereby 

the final image can be synthesized from the low dose image. In [157], the pixel location 

information is integrated into a deep network for image synthesis. Kaplan and Zhu [153] 

propose a deep generative based denoising method, that uses paired scans of subjects imaged 

with both low and full dose PET. They show that despite a ten-fold reduction in tracer 

material, they are able to preserve important edge, structural, and textural details. Consistent 

quantification in neuroimaging has been hampered for decades by the high variability in 

MR image intensities and resolutions between scans. Dewey et al. [14] use a U-Net style 

architecture and paired subjects who have been scanned with two different protocols, to 

learn a mapping between the two sites. Resolution differences are addressed by applying a 

super-resolution method to the images acquired at lower resolutions [158]. They are able to 

use the network to reduce site based variation, which improves consistency in segmentation 

between the two sites.

While deep learning in neuroimaging has certainly opened up many interesting avenues of 

investigation, certain areas still lack a rigorous understanding. Important lines of research 

such as learning from limited data, optimal hyperparameter selection, domain adaptation, 

semi-supervised designs, and improving robustness require further investigation.

C. Deep learning in cardiovascular imaging

The quantification and understanding of cardiac anatomy and function has been transformed 

by the recent progress in the field of data-driven deep learning. There has been 

significant recent work in a variety of sub-areas of cardiovascular imaging including image 

reconstruction [159], end-to-end learning of cardiac pathology from images [160] and 

incorporation of non-imaging information (e.g. genetics [161] and clinical information) for 

analysis. Here we briefly focus on three key aspects of deep learning in this field: cardiac 

chamber segmentation, cardiac motion/deformation analysis and analysis of cardiac vessels. 

Motion tracking and segmentation both play crucial roles in the detection and quantification 

of myocardial chamber dysfunction and can help in the diagnosis of cardiovascular disease 
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(CVD). Traditionally, these tasks are treated uniquely and solved as separate steps. Often 

times, motion tracking algorithms use segmentation results as an anatomical guide to sample 

points and regions of interest used to generate displacement fields [162]. In part due to this, 

there have also been efforts to combine motion tracking and segmentation.

Cardiac image segmentation is an important first step for many clinical applications. The 

aim is typically to segment the main chambers, e.g. the left ventricle (LV), right ventricle 

(RV), left atrium (LA), and right atrium (RA). This enables the quantification of parameters 

that describe cardiac morphology, e.g. LV volume or mass, or cardiac function, e.g. wall 

thickening and ejection fraction. There has been significant deep learning work on cardiac 

chamber segmentation, mostly characterized by the type of images (modalities) employed 

and whether the work is in 2D or 3D. One of the first efforts to apply a fully convolutional 

network (FCN) [163] to segment the left ventricle (LV), myocardium and right ventricle 

from 2D short-axis cardiac magnetic resonance (MR) images was done by Tran [164], 

significantly outperforming traditional methods in accuracy and speed. Since this time, 

a variety of other FCN-based strategies have been developed [165], especially focusing 

on the popular U-Net approach, often including both 2D and 3D constraints (e.g. [166]). 

The incorporation of spatial and temporal context has also been an important research 

direction, including efforts to simultaneously segment the heart in both the end-diastolic 

and end-systolic states [167]. Shape-based constraints had previously been found useful 

for LV chamber segmentation using other types of machine learning (e.g. [168]) and were 

nicely included in an anatomically-constrained deep learning strategy by [169]. This stacked 

convolutional autoencoder approach was successfully applied to LV segmentation from 3D 

echocardiography data as well. Other important work has been aimed at atrial segmentation 

from MRI [170], whole heart segmentation from CT [171] and LV segmentation from 3D 

ultrasound image sequences [172], the latter using a combination of atlas registration and 

adversarial learning. Progress in deep learning for cardiac segmentation is enabled by a 

number of ongoing challenges in the field [173], [174].

Cardiac motion tracking is key for deformation/strain analysis and is important for 

analyzing the mechanical performance of heart chambers. A variety of image registration, 

feature-based tracking and regularization methods using both biomechanical models and 

data-driven learning have been developed. One special type of dataset useful for tracking 

are MRI tagging acquisitions, and deep learning has recently played a role in tracking 

these tags and quantifying the displacement information for motion tracking and analysis 

[176] using a combination of recurrent neural networks (RNNs) and convolutional neural 

networks (CNNs) to estimate myocardial strain from short axis MRI tag image sequences. 

Estimating motion displacements and strain is also possible to do from both standard 

MR image sequences and 4D echocardiography, most often by integrating ideas of image 

segmentation and mapping between frames using some type of image registration. Recent 

efforts for cardiac motion tracking from magnetic resonance (MR) imaging have adopted 

approaches from the computer vision field, suggesting that the tasks of motion tracking 

and segmentation are closely related and information used to complete one task may 

complement and improve the overall performance of the other. In particular, an interesting 

deep learning approach proposed for joint learning of video object segmentation and optical 

flow (motion displacements) is termed SegFlow [177], an end-to-end unified network that 
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simultaneously trains both tasks and exploits the commonality of these two tasks through 

bi-directional feature sharing. Among the first to integrate this idea into cardiac analysis 

was Qin et al. [71], who successfully implemented the idea of combining motion and 

segmentation on 2D cardiac MR sequences by developing a dual Siamese style recurrent 

spatial transformer network and fully convolutional segmentation network to simultaneously 

estimate motion and generate segmentation masks. This work was mainly aimed at 2D 

MR images, which have higher SNR than echocardiographic images and, therefore, more 

clearly delineated LV walls. It remains challenging to directly apply this approach to 

echocardiography. Very recent efforts by Ta et al. [175] (see Fig. 5) propose a 4D (3D+t) 

semi-supervised joint network to simultaneously track LV motion while segmenting the LV 

wall. The network is trained in an iterative manner where results from one branch influence 

and regularize the other. Displacement fields are further regularized by a biomechanically-

inspired incompressibility constraint that enforces realistic cardiac motion behavior. The 

proposed model is different from other models in that it expands the network to 4D in order 

to capture out of plane motion. Finally, clinical interpretability of deep learning-derived 

motion information will be an important topic in the years ahead (e.g. [178]).

Cardiac vessel segmentation is another important task for cardiac image analysis and 

includes the segmentation of the vessels including the great vessels (e.g. aorta, pulmonary 

arteries and veins) as well as the coronary arteries. The segmentation of large vessels such 

as the aorta is important for accurate mechanical and hemodynamic characterization, e.g. 

for assessment of aortic compliance. Several deep learning approaches have been proposed 

for this segmentation task, including the use of recurrent neural networks in order to track 

the aorta in cardiac MR image sequences in the presence of noise and artefacts [179]. 

A similarly important task is the segmentation of the coronary arteries as a precursor 

to quantitative analysis for the assessment of stenosis or the simulation of blood flow 

simulation for the calculation of fractional flow reserve from CT angiography (CTA). The 

approaches for coronary artery segmentation can be divided into those approaches that 

extract the vessel centerline and those that segment the vessel lumen.

One end-to-end trainable approach for the extraction of the coronary centerline has been 

proposed in [180]. In this approach the centerline is extracted using a multi-task fully 

convolutional network which simultaneously computes centerline distance maps and detects 

branch endpoints. The method generates single-pixel-wide centerlines with no spurious 

branches. An interesting aspect of this technique is that it can handle an arbitrary vessel 

tree with no prior assumption regarding depth of the vessel tree or its bifurcation pattern. 

In contrast to this, Wolterink et al. [181] propose a CNN that is trained to predict the most 

likely direction and radius of the coronary artery within a local 3D image patch. Starting 

from a seed point, the coronary artery is tracked by following the vessel centerline using the 

predictions of the CNN.

Alternative approaches to centerline extraction are based on techniques that instead aim to 

segment the vessel lumen, e.g. using CNN segmentation methods that perform segmentation 

by predicting vessel probability maps. One elegant approach has been proposed by 

Moeskops et al. [182]: Here a single CNN is trained to perform three different segmentation 

tasks including coronary artery segmentation in cardiac CTA. Instead of performing 

Zhou et al. Page 17

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



voxelwise segmentation, Lee et al. [183] introduce a tubular shape prior for the vessel 

segments. This is implemented via a template transformer network, through which a 

shape template can be deformed via network-based registration to produce an accurate 

segmentation of the input image, as well as to guarantee topological constraints.

More recently, geometric deep learning approaches have also been applied for coronary 

artery segmentation. For example, Wolterink et al. [184] used graph convolutional networks 

for coronary artery segmentation. Here vertices on surface of the coronary artery are used as 

graph nodes and their locations are optimized in an end-to-end fashion.

D. Deep learning in abdominal imaging

Recently there has been an accelerating progress in automated detection, classification and 

segmentation of abdominal anatomy and disease using medical imaging. Large public data 

sets such as the MICCAI Data Decathlon and Deep Lesion data sets have facilitated progress 

[185], [186].

Organs and lesions.—Multi-organ approaches have been popular methods for anatomy 

localization and segmentation [187]. For individual organs, the liver, prostate and spine are 

arguably the most accurately segmented structures and the most actively investigated with 

deep learning. Other organs of interest to deep learning researchers include pancreas, lymph 

nodes and bowel.

A number of studies have used U-Net to segment the liver and liver lesions and assess 

for hepatic steatosis [188], [189], [190]. Dice coefficients for liver segmentation typically 

exceed 95%. In the prostate, gland segmentation and lesion detection have been the subject 

of an SPIE/AAPM challenge (competition) and numerous publications [191], [192]. Several 

groups have used data sets such as TCIA CT pancreas to improve pancreas segmentation 

with Dice coefficients reaching the mid 80 percentile [193], [194], [195], [196]. Automated 

detection of pancreatic cancer using deep learning has also been reported [196]. Deep 

learning has been used for determining pancreatic tumor growth rates in patients with 

neuroendocrine tumors of the pancreas [197]. The spleen has been segmented with a Dice 

score of 0.962 [198]. Recently marginal loss and exclusion loss [68] have been proposed to 

train a single multi-organ segmentation network from a union of partially labelled datasets.

Enlarged lymph nodes can indicate the presence of inflammation, infection, or metastatic 

cancer. Studies have assessed abdominal lymph nodes on CT in general and for specific 

diseases such as prostate cancer [199], [35], [200]. The TCIA CT lymph node dataset has 

enabled progress in this area [201].

In the bowel, CT colonography computer-aided polyp detection was a hot topic in 

abdominal CT image analysis over a decade ago. Recent progress with deep learning has 

been limited but studies have reported improved electronic bowel cleansing, and higher 

sensitivities and lower false-positive rates for precancerous colonic polyp detection [199], 

[202]. Deep learning using persistent homology has recently shown success for small bowel 

segmentation on CT [203]. Colonic inflammation can be detected on CT with deep learning 

[204]. Appendicitis can be detected on CT scans by pre-training with natural world videos 
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[205]. The Inception V3 convolutional neural network could detect small bowel obstruction 

on abdominal radiographs [206].

Kidney function can be predicted using deep learning of ultrasound images [207]. 

Potentially diffuse disorders such as ovarian cancer and abnormal blood collections were 

detectable using deep learning [208], [209]. Organs at risk for radiation therapy of the male 

pelvis, such as bladder and rectum, have been segmented on CT using U-Net [210].

Universal lesion detectors [186], [211] have been developed for body CT including 

abdominal CT (Figure 6). The universal lesion detector identifies, classifies and measures 

lymph nodes and a variety of tumors throughout the abdomen. This detector was trained 

using the publicly available Deep Lesion data set.

Opportunistic screening to quantify and detect under-reported chronic diseases has been an 

area of recent interest. Example deep learning methods for opportunistic screening in the 

abdomen include automated bone mineral densitometry, visceral fat assessment, muscle 

volume and quality assessment, and aortic atherosclerotic plaque quantification [212]. 

Studies indicate that these measurements can be done accurately and generalize well to 

new patient populations. These opportunistic screening assessments also enable prediction 

of survival and cardiovascular morbidity such as heart attack and stroke [212].

Deep learning for abdominal imaging is likely to continue to advance rapidly. For translation 

to the clinic, some of the most important advances sought will be in demonstrating 

generalizability across different patient populations and variations in image acquisition.

E. Deep learning in microscopy imaging

With the advent of whole slide scanning and the development of large digital datasets 

of tissue slide images, there has been a significant increase in application of deep 

learning approaches to digital pathology data [213]. While the initial application of these 

approaches in the area of digital pathology primarily focused on its utility for detection 

and segmentation of individual primitives like lymphocytes and cancer nuclei, they have 

now progressed to addressing higher level diagnostic and prognostic tasks and also the 

application of DL approaches to predict the underlying molecular underpinning and 

mutational status of the disease. Briefly below we describe the evolving applications of 

DL approaches to digital pathology.

Nuclei detection and segmentation.—One of the early applications of DL to whole 

slide pathology images was in the detection and segmentation of individual nuclei. Xu 

et al. [214] present an approach using stacked spare auto-encoder approach to identify 

the location of individual cancer nuclei on breast cancer pathology images. Subsequently 

work from Janowczyk et al. [215] demonstrate the utility of DL approaches for identifying 

and segmenting a number of different histologic primitives including lymphocytes, tubules, 

mitotic figures, cancer extent and also for classifying different disease categories pertaining 

to leukemia. The comprehensive tutorial also went into great detail with regard to best 

practices for annotation, network training and testing protocols. Subsequently Cruz-Roa 

et al. demonstrate that convolutional neural networks could be applied for accurately 
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identifying cancer presence and extent on whole slide breast cancer pathology images [216]. 

The approach is shown to have a 100% accuracy at identifying the presence or absence 

of cancer on a slide or patient level. Subsequently Cruz-Roa et al also demonstrate the 

use of a high-throughput adaptive sampling approach for improving the efficiency of the 

CNN presented previously in [217]. In [218] Veta and colleagues discuss the diagnostic 

assessment of DL algorithms for detection of lymph node metastases in women with breast 

cancer, as part of the CAMELYON16 challenge. The work find that at least five DL 

algorithms perform comparably to a pathologist interpreting the slides in the absence of 

time constraints and that some DL algorithms achieve better diagnostic performance than 

a panel of eleven pathologists participating in a simulation exercise designed to mimic a 

routine pathology workflow. In a related study of lung cancer pathology images, Coudray 

et al. [219] train a deep CNN (inception V3) on WSIs from The Cancer Genome Atlas 

(TCGA) to accurately and automatically classify them into lung adenocarcinoma, squamous 

cell carcinoma or normal lung tissue, yielding an area under the curve of 0.97.

One of the challenges with the CNN based approaches described in [216], [217], [218], 

[219] is the need for detailed annotations of the target of interest. This is a labor intensive 

task given that annotations of disease extent typically need to be provided by pathologists 

who have a minimal amount of time to begin with. In a comprehensive paper by Campanella 

et al. [220], the team employs a weakly supervised approach for training a deep learning 

algorithm for identifying the presence or absence of cancer on a slide level. They are able 

to demonstrate on a large scale study of over 44K WSIs from over 15K patients, that for 

prostate cancer, basal cell carcinoma and breast cancer metastases to axillary lymph nodes, 

the corresponding areas under the curve are all above 0.98. The authors suggest that the 

approach could be used by pathologists to exclude 65–75% of slides while retaining 100% 

cancer detection sensitivity.

Disease grading.—Pathologists can reliably identify disease type and extent on H&E 

slides and have made observations for decades that there are features of disease that 

correlate with its behavior. However they are unable to reproducibly identify or quantify 

these histologic hallmarks of disease behavior with enough rigor, to use these features 

routinely to dictate disease outcome and treatment response. One of the areas to which DL 

has been applied is mimicking pathologist’s identification of disease hallmarks, especially 

in the context of cancer. For instance in prostate cancer, pathologists typically aim to place 

the cancer into one of five different categories, referred to as the Gleason grade groups 

[221]. However this grading system, as with many other cancers and diseases, is subject to 

inter-reader variability and disagreement. Consequently, a number of recent DL approaches 

for prostate cancer grading have been presented. Bulten et al. [222] and Strom et al. [223] 

both recently publish large cohort studies involving 1,243 and 976 patients, respectively, and 

show that DL approaches could be used for achieving a performance of Gleason grading that 

is comparable to pathologists [224].

Mutation identification and pathway association.—Disease morphology reflects the 

sum of all temporal genetic and epigenetic changes and alterations within the disease. 

Recognizing this, some groups have begun to explore the role of DL approaches for 

Zhou et al. Page 20

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identifying disease specific mutations and associations with biological pathways. Oncotype 

DX is a 21-gene expression assay that is prognostic and predictive of benefit of adjuvant 

chemotherapy for early stage estrogen receptor positive breast cancers. In two related studies 

[225], [226], Romo-Bucheli show that DL could be used to identify tubule density and 

mitotic index from pathology images and demonstrate a strong association between these 

measurements with the Oncotype DX risk categories (low, intermediate, and high) for breast 

cancers. Interestingly, tubule density and mitotic index are an important component of breast 

cancer grading. Microsatellite instability (MSI) is a condition that results from impaired 

DNA mismatch repair. To assess whether a tumor is MSI, genetic or immunohistochemical 

tests are required. A study by Kather et al. [227] shows that DL could predict MSI from 

histology images in gastrointestinal cancers with an AUC=0.84. Coudray et al. [219] show 

that a DL network can be trained to recognize many of the commonly mutated genes in 

non-small cell lung adenocarcinoma. They show that six of these mutated genes—TK11, 

EGFR, FAT1, SETBP1, KRAS, and TP53—can be predicted from pathology images, with 

AUCs from 0.733 to 0.856.

Survival and disease outcome prediction.—More recently, there has been an interest 

in applying DL algorithms to pathology images to directly predict survival and disease 

outcome. In a recent paper, Skrede et al. [228] perform a large study of DL involving 

over 12M pathology image tiles from over 2,000 patients to predict cancer specific survival 

in early stage colorectal cancer patients. DL yields a hazard ratio for poor versus good 

prognosis of 3.84 (95% CI 2.72–5.43; p<0.0001) in a validation cohort of 1,122 patients 

and a hazard ratio of 3.04 (2.07–4.47; p<0.0001) after adjusting for established prognostic 

markers including T and N stages. Courtiol et al. [229] present an approach employing DL 

for predicting patient outcome in the case of mesothelioma. Saillard et al. [230] use DL to 

predict survival after hepatocellular carcinoma resection.

While the studies described above clearly reflect the growing influence and impact of DL 

on a variety of image analysis and classification problems in digital pathology, there are 

still concerns with regards to its interpretability, the need for large training sets, the need 

for annotated data, and generalizability. Attempts have been made to use approaches like 

visual attention mapping [231] to provide some degree of transparency with respect to 

where in the image the DL network appears to be focusing its attention. Another approach 

to imbue interpretability is via hybrid approaches, wherein DL is used to identify specific 

primitives of interest (e.g. lymphocytes) in the pathology images (in other words using it 

as a detection and segmentation tool) and then deriving handcrafted features from these 

primitives (e.g. spatial patterns of arrangement of lymphocytes) to perform prognosis and 

classification tasks [232], [233], [234]. However, as Bera et al. [213] note in a recent 

review article, while DL approaches might be feasible for diagnostic indications, clinical 

tasks relating to outcome prediction and treatment response might still involve approaches 

that provide greater interpretability. While it seems highly likely that research in DL and 

its application to digital pathology are likely to continue to grow, it remains to be seen 

how these approaches fare in a prospective and clinical trial setting, which in turn might 

ultimately determine their translation to the clinic.
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III. DISCUSSION

Technical challenges ahead.

In this overview paper, many technological challenges across several medical domains and 

tasks have been reviewed. In general, most challenges are met by continuous improvement 

of solutions to the well known data challenge. The community as a whole is continuously 

developing and improving transfer learning based solutions and data augmentation schemes. 

As systems are starting to be implemented across datasets, hospitals, and countries, a new 

spectrum of challenges is arising including system robustness and generalization across 

acquisition protocols, machines, and hospitals. Here, data pre-processing, continuous model 

learning, and fine-tuning across systems are a few of the new developments ahead. Detailed 

reviews of the topics presented herein, as well as additional topics, such as robustness to 

adversarial attacks [235], can be found in several recent DL review articles such as [236].

How do we get new tools into the clinic?

The question whether DL tools are used in the clinic is often raised [5]. This question 

is particularly relevant because results in many tasks and challenges show radiologist-

level performance. In several recent works conducted to estimate the utility of AI-based 

technology as an aid to the radiologist, it is consistently shown that human experts with 

AI perform better than those without AI [237]. The excitement in the field has led to 

the emergence of many AI medical imaging startup companies. Although there are some 

earlier studies [238], [239], [240] that present evidence that early CAD tools were not 

necessarily helpful in the tested scenarios and, to date, the translation of technologies from 

research to actual clinical use does not happen at a massive scale, there are a number of 

technologies that obtained the FDA approval6. In fact, a dedicated reimbursement code was 

recently awarded for an AI technology7. There are a variety of reasons for this delayed 

clinical translation including: users being cautious regarding the technology, specifically the 

prospect of being replaced by AI; the need to prove that the technology can address real user 

needs and bring quantifiable benefits; regulatory pathways that are long and costly; patient 

safety considerations; and economic factors such as who will pay for AI tools.

The forecast going forward is that this is an emerging field, with enormous promise 

going forward. How would we get there? An interesting possibility is that the worldwide 

experience with the COVID-19 pandemic will actually serve to bridge the gap between 

the need and AI—with users eager to receive support, and even the regulatory steps 

more adaptive to facilitate a transition of general computational tools, with COVID-AI 

related tools in particular. Within the last several months, we witnessed several interesting 

advances: the ability of AI to rapidly adapt from existing pretrained models to new 

disease manifestations of COVID-19, using the many tools described in this article and 

in [241], [117]. Strong and robust DL based solutions for COVID-19 detection, localization, 

quantification, and characterization start to support the initial diagnosis and more so the 

followup of hospitalized patients. AI-based tools are developed to support the assessment 

of disease severity and, recently, they start to provide tools for assessing treatment and 

7Federal Register / Vol. 85, No. 182 / Friday, September 18, 2020 / Rules and Regulations
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predicting treatment success [242], [243]. Finally, numerous studies [244], [245], [246], 

[247] in fields like clinical neuroscience have shown that AI-based image evaluation can 

identify complex imaging patterns that are not perceptible with visual radiologic evaluation. 

For example anatomical, functional, and connectomic signatures of many neusopsychiatic 

and neurologic diseases not only promise to redefine many of these diseases on a 

neurobiological basis and in a more precise manner, but also to offer early detection and 

personalized risk estimates. Such capabilities can potentially significantly expand current 

clinical protocols and contribute to precision medicine.

Future promise.

As we envision future possibilities, one immediate step forward is to combine the image 

with additional clinical context, from patient record to additional clinical descriptors (such 

as blood tests, genomics, medications, vital signs, and non-imaging data such as ECG). 

This step will provide a transition from image space to patient-level information. Collecting 

cohorts will enable population-level statistical analysis to learn about disease manifestations, 

treatment responses, adverse reactions from and interactions between medications, and 

more. This step requires building complex infrastructure, along with the generation of new 

privacy and security regulations—between hospitals and academic research institutes, across 

hospitals, and in multi-national consortia. As more and more data become available, DL and 

AI will enable unsupervised explorations within the data, thus providing for new discoveries 

of drugs and treatments towards advancement and augmentation of healthcare as we know it.

ACKNOWLEDGEMENT

Ronald M. Summers was supported in part by the National Institutes of Health Clinical Center. Anant 
Madabhushi thanks research support by the National Institutes of Health under award numbers 1U24CA199374-01, 
R01CA202752-01A1, R01CA208236-01A1, R01CA216579-01A1, R01CA220581-01A1, 1U01CA239055-01, 
1U54CA254566-01, 1U01CA248226-01, 1R43EB028736-01 and the VA Merit Review Award IBX004121A from 
the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service. We 
extend our special acknowledgement to Vishnu Bashyam for his help. The mentioning of commercial products does 
not imply endorsement.

REFERENCES

[1]. Beutel J, Kundel HL, and Van Metter RL, Handbook of Medical Imaging. SPEI Press, 2000, vol. 
1.

[2]. Budovec JJ, Lam CA, and Kahn CE Jr, “Informatics in radiology: radiology gamuts ontology: 
differential diagnosis for the semantic web,” RadioGraphics, vol. 34, no. 1, pp. 254–264, 2014. 
[PubMed: 24428295] 

[3]. Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, Wells III WM, Jolesz FA, 
and Kikinis R, “Statistical validation of image segmentation quality based on a spatial overlap 
index1: scientific reports,” Academic Radiology, vol. 11, no. 2, pp. 178–189, 2004. [PubMed: 
14974593] 

[4]. Rubin DL, “Informatics in radiology: measuring and improving quality in radiology: meeting 
the challenge with informatics,” Radiographics, vol. 31, no. 6, pp. 1511–1527, 2011. [PubMed: 
21997979] 

[5]. Recht MP, Dewey M, Dreyer K, Langlotz C, Niessen W, Prainsack B, and Smith JJ, “Integrating 
artificial intelligence into the clinical practice of radiology: challenges and recommendations,” 
European Radiology, pp. 1–9, 2020.

[6]. Börgers C. and Natterer F, Computational radiology and imaging: therapy and diagnostics. 
Springer Science & Business Media, 2012, vol. 110.

Zhou et al. Page 23

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[7]. Tran WT, Sadeghi-Naini A, Lu F-I, Gandhi S, Meti N, Brackstone M, Rakovitch E, and Curpen B, 
“Computational radiology in breast cancer screening and diagnosis using artificial intelligence,” 
Canadian Association of Radiologists Journal, p. 0846537120949974, 2020.

[8]. Beutel J, Sonka M, Kundel HL, Van Metter RL, and Fitzpatrick JM, Handbook of Medical 
Imaging: Medical image processing and analysis. SPIE press, 2000, vol. 2.

[9]. Prince JL and Links JM, Medical Imaging Signals and Systems. Pearson Prentice Hall Upper 
Saddle River, 2006.

[10]. Bankman I, Handbook of Medical Image Processing and Analysis. Elsevier, 2008.

[11]. Zhou SK, Rueckert D, and Fichtinger G, Handbook of Medical Image Computing and Computer 
Assisted Intervention. Academic Press, 2019.

[12]. Wang G, Zhang Y, Ye X, and Mou X, Machine learning for tomographic imaging. IOP 
Publishing, 2019.

[13]. Gaillochet M, Tezcan KC, and Konukoglu E, “Joint reconstruction and bias field correction 
for undersampled mr imaging,” in International Conference on Medical Image Computing and 
Computer-Assisted Intervention. Springer, 2020, pp. 44–52.

[14]. Dewey BE, Zhao C, Reinhold JC, Carass A, Fitzgerald KC, Sotirchos ES, Saidha S, Oh J, Pham 
DL, Calabresi PA et al. , “DeepHarmony: a deep learning approach to contrast harmonization 
across scanner changes,” Magnetic Resonance Imaging, vol. 64, pp. 160–170, 2019. [PubMed: 
31301354] 

[15]. Tajbakhsh N, Jeyaseelan L, Li Q, Chiang JN, Wu Z, and Ding X, “Embracing imperfect datasets: 
A review of deep learning solutions for medical image segmentation,” Medical Image Analysis, 
p. 101693, 2020. [PubMed: 32289663] 

[16]. Fu Y, Lei Y, Wang T, Curran WJ, Liu T, and Yang X, “Deep learning in medical image 
registration: a review,” Physics in Medicine & Biology, 2020.

[17]. Chan H-P, Hadjiiski LM, and Samala RK, “Computer-aided diagnosis in the era of deep 
learning,” Medical Physics, vol. 47, no. 5, pp. e218–e227, 2020. [PubMed: 32418340] 

[18]. Liu D, Zhou KS, Bernhardt D, and Comaniciu D, “Search strategies for multiple landmark 
detection by submodular maximization,” in 2010 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition. IEEE, 2010, pp. 2831–2838.

[19]. Xu Z, Huo Y, Park J, Landman B, Milkowski A, Grbic S, and Zhou S, “Less is more: 
Simultaneous view classification and landmark detection for abdominal ultrasound images,” 
in International Conference on Medical Image Computing and Computer Assisted Intervention. 
Springer, 2018, pp. 711–719.

[20]. Jing B, Xie P, and Xing E, “On the automatic generation of medical imaging reports,” in 
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics 
(Volume 1: Long Papers), 2018, pp. 2577–2586.

[21]. LeCun Y, Bengio Y, and Hinton G, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 
2015. [PubMed: 26017442] 

[22]. Greenspan H, Van Ginneken B, and Summers RM, “Guest editorial deep learning in medical 
imaging: Overview and future promise of an exciting new technique,” IEEE Transactions on 
Medical Imaging, vol. 35, no. 5, pp. 1153–1159, 2016.

[23]. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van 
Ginneken B, and Sánchez CI, “A survey on deep learning in medical image analysis,” Medical 
Image Analysis, vol. 42, pp. 60–88, 2017. [PubMed: 28778026] 

[24]. Zhou SK, Greenspan H, and Shen D, Deep learning for medical image analysis. Academic Press, 
2017.

[25]. Shen D, Wu G, and Suk H-I, “Deep learning in medical image analysis,” Annual Review of 
Biomedical Engineering, vol. 19, pp. 221–248, 2017.

[26]. Ker J, Wang L, Rao J, and Lim T, “Deep learning applications in medical image analysis,” IEEE 
Access, vol. 6, pp. 9375–9389, 2017.

[27]. Yi X, Walia E, and Babyn P, “Generative adversarial network in medical imaging: A review,” 
Medical Image Analysis, vol. 58, p. 101552–2019.

Zhou et al. Page 24

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[28]. Cheplygina V, de Bruijne M, and Pluim JP, “Not-so-supervised: a survey of semi-supervised, 
multi-instance, and transfer learning in medical image analysis,” Medical Image Analysis, vol. 
54, pp. 280–296, 2019. [PubMed: 30959445] 

[29]. Hesamian MH, Jia W, He X, and Kennedy P, “Deep learning techniques for medical image 
segmentation: Achievements and challenges,” Journal of Digital Imaging, vol. 32, no. 4, pp. 
582–596, 2019. [PubMed: 31144149] 

[30]. Duncan JS, Insana MF, and Ayache N, “Biomedical imaging and analysis in the age of big data 
and deep learning,” Proceedings of the IEEE, vol. 108, no. 1, pp. 3–10, 2019.

[31]. Haskins G, Kruger U, and Yan P, “Deep learning in medical image registration: a survey,” 
Machine Vision and Applications, vol. 31, no. 1, p. 8, 2020.

[32]. “MIT Technology Review, 2013,” in https://www.technologyreview.com/s/513696/deep-learning, 
2013.

[33]. Krizhevsky A, Sutskever I, and Hinton GE, “ImageNet classification with deep convolutional 
neural networks,” in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.

[34]. Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, and Greenspan H, “Chest pathology detection 
using deep learning with non-medical training,” in International Symposium on Biomedical 
Imaging (ISBI), 2015, pp. 294–297.

[35]. Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, and Summers RM, 
“Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset 
characteristics and transfer learning,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 
1285–1298, 2016. [PubMed: 26886976] 

[36]. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner 
K, Madams T, Cuadros J. et al. , “Development and validation of a deep learning algorithm 
for detection of diabetic retinopathy in retinal fundus photographs,” Journal of the American 
Medical Association, vol. 316, no. 22, pp. 2402–2410, 2016. [PubMed: 27898976] 

[37]. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, and Greenspan H, “GAN-
based synthetic medical image augmentation for increased CNN performance in liver lesion 
classification,” Neurocomputing, vol. 321, pp. 321–331, 2018.

[38]. Ronneberger O, Fischer P, and Brox T, “U-net: Convolutional networks for biomedical 
image segmentation,” in International Conference on Medical Image Computing and Computer 
Assisted Intervention (MICCAI). Springer, 2015, pp. 234–241.

[39]. Simonyan K. and Zisserman A, “Very deep convolutional networks for large-scale image 
recognition,” arXiv:1409.1556, 2014.

[40]. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, and 
Rabinovich A, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[41]. He K, Zhang X, Ren S, and Sun J, “Deep residual learning for image recognition,” in 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 
770–778.

[42]. Huang G, Liu Z, Van Der Maaten L, and Weinberger KQ, “Densely connected convolutional 
networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
2017, pp. 4700–4708.

[43]. Lee C-Y, Xie S, Gallagher P, Zhang Z, and Tu Z, “Deeply-supervised nets,” in Artificial 
Intelligence and Statistics, 2015, pp. 562–570.

[44]. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, and 
Bengio Y, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, 
2014, pp. 2672–2680.

[45]. Yang D, Xu D, Zhou SK, Georgescu B, Chen M, Grbic S, Metaxas D, and Comaniciu D, 
“Automatic liver segmentation using an adversarial image-to-image network,” in International 
Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). 
Springer, 2017, pp. 507–515.

[46]. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, and Bengio Y, 
“Show, attend and tell: Neural image caption generation with visual attention,” in International 
Conference on Machine Learning, 2015, pp. 2048–2057.

Zhou et al. Page 25

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.technologyreview.com/s/513696/deep-learning


[47]. Hu J, Shen L, and Sun G, “Squeeze-and-excitation networks,” in Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.

[48]. Zhang H, Goodfellow I, Metaxas D, and Odena A, “Self-attention generative adversarial 
networks,” in International Conference on Machine Learning, 2019, pp. 7354–7363.

[49]. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, 
Hammerla NY, Kainz B. et al. , “Attention u-net: Learning where to look for the pancreas,” 
arXiv:1804.03999, 2018.

[50]. Elsken T, Metzen JH, and Hutter F, “Neural architecture search: A survey,” arXiv:1808.05377, 
2018.

[51]. Zhu Z, Liu C, Yang D, Yuille A, and Xu D, “V-nas: Neural architecture search for volumetric 
medical image segmentation,” in International Conference on 3D Vision (3DV). IEEE, 2019, pp. 
240–248.

[52]. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, and 
Adam H, “MobileNets: Efficient convolutional neural networks for mobile vision applications,” 
arXiv:1704.04861, 2017.

[53]. Zhang X, Zhou X, Lin M, and Sun J, “ShuffleNet: An extremely efficient convolutional neural 
network for mobile devices,” in Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, 2018, pp. 6848–6856.

[54]. Raghu M, Zhang C, Kleinberg J, and Bengio S, “Transfusion: Understanding transfer learning for 
medical imaging,” in Advances in neural information processing systems, 2019, pp. 3347–3357.

[55]. Liu S, Xu D, Zhou SK, Pauly O, Grbic S, Mertelmeier T, Wicklein J, Jerebko A, Cai W, and 
Comaniciu D, “3D anisotropic hybrid network: Transferring convolutional features from 2D 
images to 3D anisotropic volumes,” in International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI). Springer, 2018, pp. 851–858.

[56]. Chen S, Ma K, and Zheng Y, “Med3D: Transfer learning for 3D medical image analysis,” 
arXiv:1904.00625, 2019.

[57]. Kamnitsas K, Baumgartner C, Ledig C, Newcombe V, Simpson J, Kane A, Menon D, Nori A, 
Criminisi A, Rueckert D. et al., “Unsupervised domain adaptation in brain lesion segmentation 
with adversarial networks,” in International conference on information processing in medical 
imaging. Springer, 2017, pp. 597–609.

[58]. Zhang Z, Yang L, and Zheng Y, “Translating and segmenting multimodal medical volumes 
with cycle-and shape-consistency generative adversarial network,” in Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 2018, pp. 9242–9251.

[59]. Dou Q, Ouyang C, Chen C, Chen H, and Heng P-A, “Unsupervised cross-modality 
domain adaptation of convnets for biomedical image segmentations with adversarial loss,” 
arXiv:1804.10916, 2018.

[60]. Huang C, Han H, Yao Q, Zhu S, and Zhou SK, “3D U2-net: A 3D universal u-net for multi-
domain medical image segmentation,” in International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCIAI). Springer, 2019, pp. 291–299.

[61]. Zhou Z, Sodha V, Siddiquee MMR, Feng R, Tajbakhsh N, Gotway MB, and Liang J, “Models 
genesis: Generic autodidactic models for 3d medical image analysis,” in International Conference 
on Medical Image Computing and Computer Assisted Intervention (MICCAI). Springer, 2019, 
pp. 384–393.

[62]. Zhu J, Li Y, Hu Y, Ma K, Zhou SK, and Zheng Y, “Rubik’s cube+: A self-supervised feature 
learning framework for 3D medical image analysis,” Medical Image Analysis, p. 101746, 2020. 
[PubMed: 32544840] 

[63]. Bai W, Oktay O, Sinclair M, Suzuki H, Rajchl M, Tarroni G, Glocker B, King A, Matthews PM, 
and Rueckert D, “Semi-supervised learning for network-based cardiac MR image segmentation,” 
in International Conference on Medical Image Computing and Computer Assisted Intervention 
(MICCAI). Springer, 2017, pp. 253–260.

[64]. Nie D, Gao Y, Wang L, and Shen D, “ASDNet: Attention based semi-supervised deep networks 
for medical image segmentation,” in International Conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI). Springer, 2018, pp. 370–378.

Zhou et al. Page 26

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[65]. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, and Summers RM, “Chestx-ray8: Hospital-scale 
chest x-ray database and benchmarks on weakly-supervised classification and localization of 
common thorax diseases,” in Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, 2017, pp. 2097–2106.

[66]. Xu Y, Zhu J-Y, Eric I, Chang C, Lai M, and Tu Z, “Weakly supervised histopathology cancer 
image segmentation and classification,” Medical Image Analysis, vol. 18, no. 3, pp. 591–604, 
2014. [PubMed: 24637156] 

[67]. Kervadec H, Dolz J, Tang M, Granger E, Boykov Y, and Ayed IB, “Constrained-CNN losses for 
weakly supervised segmentation,” Medical Image Analysis, vol. 54, pp. 88–99, 2019. [PubMed: 
30851541] 

[68]. Shi G, Xiao L, Chen Y, and Zhou SK, “Marginal loss and exclusion loss for partially supervised 
multi-organ segmentation,” arXiv:2007.03868, 2020.

[69]. Schlegl T, Seeböck P, Waldstein SM, Langs G, and Schmidt-Erfurth U, “f-AnoGan: Fast 
unsupervised anomaly detection with generative adversarial networks,” Medical image analysis, 
vol. 54, pp. 30–44, 2019. [PubMed: 30831356] 

[70]. Qin C, Shi B, Liao R, Mansi T, Rueckert D, and Kamen A, “Unsupervised deformable 
registration for multi-modal images via disentangled representations,” in Information Processing 
in Medical Imaging (IPMI). Springer, 2019, pp. 249–261.

[71]. Qin C, Bai W, Schlemper J, Petersen SE, Piechnik SK, Neubauer S, and Rueckert D, 
“Joint learning of motion estimation and segmentation for cardiac MR image sequences,” in 
International Conference on Medical Image Computing and Computer Assisted Intervention 
(MICCAI). Springer, 2018, pp. 472–480.

[72]. Liao H, Lin W-A, Zhou SK, and Luo J, “ADN: Artifact disentanglement network for 
unsupervised metal artifact reduction,” IEEE Transactions on Medical Imaging, vol. 39, no. 3, 
pp. 634–643, 2019. [PubMed: 31395543] 

[73]. Ben-Cohen A, Mechrez R, Yedidia N, and Greenspan H, “Improving CNN training using 
disentanglement for liver lesion classification in CT,” in International Conference of the IEEE 
Engineering in Medicine and Biology Society (IEEE-EMBS 2019), 2019, pp. 886–889.

[74]. Yang J, Dvornek NC, Zhang F, Chapiro J, Lin M, and Duncan JS, “Unsupervised domain 
adaptation via disentangled representations: Application to cross-modality liver segmentation,” 
in Medical Image Computing and Computer Assisted Intervention (MICCAI). Springer 
International Publishing, 2019, p. 255–263.

[75]. Chartsias A, Joyce T, Papanastasiou G, Semple S, Williams M, Newby DE, Dharmakumar R, and 
Tsaftaris SA, “Disentangled representation learning in cardiac image analysis,” Medical Image 
Analysis, vol. 58, p. 101535, Dec 2019. [PubMed: 31351230] 

[76]. Li Z, Li H, Han H, Shi G, Wang J, and Zhou SK, “Encoding CT anatomy knowledge for unpaired 
chest X-Ray image decomposition,” in International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI). Springer, 2019, pp. 275–283.

[77]. Li H, Han H, Li Z, Wang L, Wu Z, Lu J, and Zhou SK, “High-resolution chest x-ray bone 
suppression using unpaired ct structural priors,” IEEE Transactions on Medical Imaging, vol. 39, 
no. 10, pp. 3053–3063, 2020. [PubMed: 32275586] 

[78]. Gozes O. and Greenspan H, “Lung structures enhancement in chest radiographs via ct based fcnn 
training,” Lecture Notes in Computer Science, p. 147–158, 2018.

[79]. Lin W-A, Liao H, Peng C, Sun X, Zhang J, Luo J, Chellappa R, and Zhou SK, “DudoNet: Dual 
domain network for CT metal artifact reduction,” in Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2019, pp. 10 512–10 521.

[80]. Yang Q, Liu Y, Chen T, and Tong Y, “Federated machine learning: Concept and applications,” 
ACM Transactions on Intelligent Systems and Technology, vol. 10, no. 2, pp. 1–19, 2019.

[81]. Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, and Bacon D, “Federated learning: 
Strategies for improving communication efficiency,” arXiv:1610.05492, 2016.

[82]. Zhao Y, Li M, Lai L, Suda N, Civin D, and Chandra V, “Federated learning with non-IID data,” 
arXiv preprint arXiv:1806.00582, 2018.

Zhou et al. Page 27

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[83]. Bagdasaryan E, Veit A, Hua Y, Estrin D, and Shmatikov V, “How to backdoor federated 
learning,” in International Conference on Artificial Intelligence and Statistics, 2020, pp. 2938–
2948.

[84]. Sheller MJ, Reina GA, Edwards B, Martin J, and Bakas S, “Multi-institutional deep learning 
modeling without sharing patient data: A feasibility study on brain tumor segmentation,” in 
International MICCAI BrainLesion Workshop. Springer, 2018, pp. 92–104.

[85]. Li W, Milletar`ı F, Xu D, Rieke N, Hancox J, Zhu W, Baust M, Cheng Y, s S, Cardoso MJet 
al., “Privacy-preserving federated brain tumour segmentation,” in International Workshop on 
Machine Learning in Medical Imaging. Springer, 2019, pp. 133–141.

[86]. Li X, Gu Y, Dvornek N, Staib L, Ventola P, and Duncan JS, “Multi-site fMRI analysis using 
privacy-preserving federated learning and domain adaptation: Abide results,” arXiv:2001.05647, 
2020.

[87]. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, and Yu B, “Interpretable machine learning: 
definitions, methods, and applications,” arXiv:1901.04592, 2019.

[88]. Clough JR, Oksuz I, Puyol-Antón E, Ruijsink B, King AP, and Schnabel JA, “Global and local 
interpretability for cardiac MRI classification,” in International Conference on Medical Image 
Computing and Computer Assisted Intervention (MICCAI). Springer, 2019, pp. 656–664.

[89]. Biffi C, Oktay O, Tarroni G, Bai W, De Marvao A, Doumou G, Rajchl M, Bedair R, Prasad 
S, Cook S. et al., “Learning interpretable anatomical features through deep generative models: 
Application to cardiac remodeling,” in International Conference on Medical Image Computing 
and Computer Assisted Intervention. Springer, 2018, pp. 464–471.

[90]. Li X, Dvornek NC, Zhou Y, Zhuang J, Ventola P, and Duncan JS, “Graph neural network for 
interpreting task-fMRI biomarkers,” in International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI). Springer, 2019, pp. 485–493.

[91]. Li X, Dvornek NC, Zhuang J, Ventola P, and Duncan JS, “Brain biomarker interpretation in ASD 
using deep learning and fMRI,” in International Conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI). Springer, 2018, pp. 206–214.

[92]. Wickstrøm K, Kampffmeyer M, and Jenssen R, “Uncertainty and interpretability in convolutional 
neural networks for semantic segmentation of colorectal polyps,” Medical Image Analysis, vol. 
60, p. 101619–2020.

[93]. Pereira S, Meier R, McKinley R, Wiest R, Alves V, Silva CA, and Reyes M, “Enhancing 
interpretability of automatically extracted machine learning features: application to a RBM-
random forest system on brain lesion segmentation,” Medical Image Analysis, vol. 44, pp. 228–
244, 2018. [PubMed: 29289703] 

[94]. Gal Y. and Ghahramani Z, “Dropout as a bayesian approximation: Representing model 
uncertainty in deep learning,” in International Conference on Machine Learning, 2016, pp. 1050–
1059.

[95]. Baumgartner CF, Tezcan KC, Chaitanya K, Hötker AM, Muehlematter UJ, Schawkat K, 
Becker AS, Donati O, and Konukoglu E, “Phiseg: Capturing uncertainty in medical image 
segmentation,” in International Conference on Medical Image Computing and Computer 
Assisted Intervention (MICCAI). Springer, 2019, pp. 119–127.

[96]. Awate SP, Garg S, and Jena R, “Estimating uncertainty in MRF-based image segmentation: 
A perfect-MCMC approach,” Medical Image Analysis, vol. 55, pp. 181–196, 2019. [PubMed: 
31085445] 

[97]. Jungo A. and Reyes M, “Assessing reliability and challenges of uncertainty estimations for 
medical image segmentation,” in International Conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI). Springer, 2019, pp. 48–56.

[98]. Nair T, Precup D, Arnold DL, and Arbel T, “Exploring uncertainty measures in deep networks 
for multiple sclerosis lesion detection and segmentation,” Medical Image Analysis, vol. 59, p. 
101557–2020.

[99]. Ghesu FC, Georgescu B, Gibson E, Guendel S, Kalra MK, Singh R, Digumarthy SR, Grbic S, 
and Comaniciu D, “Quantifying and leveraging classification uncertainty for chest radiograph 
assessment,” in International Conference on Medical Image Computing and Computer Assisted 
Intervention (MICCAI). Springer, 2019, pp. 676–684.

Zhou et al. Page 28

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[100]. Ayhan MS, Kuehlewein L, Aliyeva G, Inhoffen W, Ziemssen F, and Berens P, “Expert-validated 
estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection,” 
Medical Image Analysis, p. 101724, 2020. [PubMed: 32497870] 

[101]. Arauújo T, Aresta G, Mendonça L, Penas S, Maia C, Carneiro Â, Mendonc AM, and Campilho 
A, “DR|GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye 
fundus images,” Medical Image Analysis, p. 101715, 2020. [PubMed: 32434128] 

[102]. Dgani Y, Greenspan H, and Goldberger J, “Training a neural network based on unreliable 
human annotation of medical images,” in International Symposium on Biomedical Imaging 
(ISBI). IEEE, 2018, pp. 39–42.

[103]. Roy S, Menapace W, Oei S, Luijten B, Fini E, Saltori C, Huijben I, Chennakeshava N, Mento F, 
Sentelli A, Peschiera E, Trevisan R, Maschietto G, Torri E, Inchingolo R, Smargiassi A, Soldati 
G, Rota P, Passerini A, Van Sloun RJG, Ricci E, and Demi L, “Deep learning for classification 
and localization of covid-19 markers in point-of-care lung ultrasound,” IEEE Transactions on 
Medical Imaging, 2020.

[104]. Gerard S. and Reinhardt J, “Pulmonary lobe segmentation using a sequence of convolutional 
neural networks for marginal learning,” in ISBI, 2019, p. 1207–1211.

[105]. Xie W, Jacobs C, Charbonnier J, and van Ginneken B, “Relational modeling for robust and 
efficient pulmonary lobe segmentation in CT scans,” IEEE Transactions on Medical Imaging, 
2020.

[106]. Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-Everett D, 
Silverman EK, and Crapo JD, “Genetic epidemiology of COPD (COPDGene) study design,” 
COPD, vol. 7, pp. 32–43, 2010. [PubMed: 20214461] 

[107]. Gerard SE, Patton TJ, Christensen GE, Bayouth JE, and Reinhardt JM, “FissureNet: A deep 
learning approach for pulmonary fissure detection in ct images.” IEEE Transactions on Medical 
Imaging, vol. 38, pp. 156–166, 2019. [PubMed: 30106711] 

[108]. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, Ball R, 
Shpanskaya K, Seekins J, Mong DA, Halabi SS, Sandberg JK, Jones R, Larson DB, Langlotz CP, 
Patel BN, Lungren MP, and Ng AY, “CheXpert: A large chest radiograph dataset with uncertainty 
labels and expert comparison,” arXiv:1901.07031, 2019.

[109]. Johnson AEW, Pollard TJ, Greenbaum NR, Lungren MP, ying Deng C, Peng Y, Lu Z, Mark RG, 
Berkowitz SJ, and Horng S, “MIMIC-CXR-JPG, a large publicly available database of labeled 
chest radiographs,” arXiv:1901.07042, 2019.

[110]. Bustos A, Pertusa A, Salinas J-M, and de la Iglesia-Vayá M, “PadChest: A large chest x-ray 
image dataset with multi-label annotated reports,” arXiv:1901.07441, 2019.

[111]. American College of Radiology, “Lung CT Screening Reporting & Data System v1.1,” 
2019. [Online]. Available: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/
Lung-Rads

[112]. Liu B, Chi W, Li X, Li P, Liang W, Liu H, Wang W, and He J, “Evolving the pulmonary nodules 
diagnosis from classical approaches to deep learning-aided decision support: three decades’ 
development course and future prospect.” Journal of Cancer Research and Clinical Oncology, 
vol. 146, pp. 153–185, 2020. [PubMed: 31786740] 

[113]. Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C, Scholten ET, Schaefer-
Prokop C, Wille MMW, Marchianò A, Pastorino U, Prokop M, and van Ginneken B, “Towards 
automatic pulmonary nodule management in lung cancer screening with deep learning.” 
Scientific Reports, vol. 7, p. 46479, Apr. 2017. [PubMed: 28422152] 

[114]. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, 
Corrado G, Naidich DP, and Shetty S, “End-to-end lung cancer screening with three-dimensional 
deep learning on low-dose chest computed tomography,” Nature Medicine, vol. 25, pp. 954–961, 
Jun. 2019.

[115]. Carreira J. and Zisserman A, “Quo Vadis, Action Recognition? A New Model and the Kinetics 
Dataset,” in Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 
4724–4733.

[116]. Murphy K, Habib SS, Zaidi SMA, Khowaja S, Khan A, Melendez J, Scholten ET, Amad F, 
Schalekamp S, Verhagen M, Philipsen RHHM, Meijers A, and van Ginneken B, “Computer 

Zhou et al. Page 29

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads


aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system,” 
Scientific Reports, vol. 10, no. 1, pp. 1–11, 2020. [Online]. Available: https://arxiv.org/abs/
1903.03349 [PubMed: 31913322] 

[117]. Murphy K, Smits H, Knoops AJG, Korst MBJM, Samson T, Scholten ET, Schalekamp S, 
Schaefer-Prokop CM, Philipsen RHHM, Meijers A, Melendez J, van Ginneken B, and Rutten M, 
“COVID-19 on the chest radiograph: A multi-reader evaluation of an AI system,” Radiology, p. 
201874, 2020.

[118]. Prokop M, van Everdingen W, van Rees Vellinga T, Quarles van Ufford J, Stöger L, Beenen 
L, Geurts B, Gietema H, Krdzalic J, Schaefer-Prokop C, van Ginneken B, Brink M, and the 
COVID-19 Standardized Reporting Working Group of the Dutch Radiological Society, “CO-
RADS - a categorical CT assessment scheme for patients with suspected COVID-19: definition 
and evaluation,” Radiology, p. 201473, 2020. [PubMed: 32339082] 

[119]. Isensee F, Jäger PF, Kohl SAA, Petersen J, and Maier-Hein KH, “Automated design of deep 
learning methods for biomedical image segmentation,” arXiv:1904.08128, 2019.

[120]. Milletari F, Navab N, and Ahmadi S-A, “V-net: Fully convolutional neural networks for 
volumetric medical image segmentation,” in The Fourth International Conference on 3D Vision 
(3DV). IEEE, 2016, pp. 565–571.

[121]. Han S, Carass A, He Y, and Prince JL, “Automatic cerebellum anatomical parcellation using u-
net with locally constrained optimization,” NeuroImage, p. 116819, 2020. [PubMed: 32438049] 

[122]. Fischl B, “FreeSurfer,” NeuroImage, vol. 62, no. 2, pp. 774–781, 2012. [PubMed: 22248573] 

[123]. Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, and Biller A, “Deep 
MRI brain extraction: A 3D convolutional neural network for skull stripping,” NeuroImage, vol. 
129, pp. 460–469, 2016. [PubMed: 26808333] 

[124]. Dolz J, Desrosiers C, and Ayed IB, “3D fully convolutional networks for subcortical 
segmentation in MRI: A large-scale study,” NeuroImage, vol. 170, pp. 456–470, 2018. [PubMed: 
28450139] 

[125]. Chen H, Dou Q, Yu L, Qin J, and Heng P-A, “VoxResNet: Deep voxelwise residual networks 
for brain segmentation from 3D MR images,” NeuroImage, vol. 170, pp. 446–455, 2018. 
[PubMed: 28445774] 

[126]. Wachinger C, Reuter M, and Klein T, “DeepNAT: Deep convolutional neural network for 
segmenting neuroanatomy,” NeuroImage, vol. 170, pp. 434–445, 2018. [PubMed: 28223187] 

[127]. Huo Y, Xu Z, Xiong Y, Aboud K, Parvathaneni P, Bao S, Bermudez C, Resnick SM, Cutting LE, 
and Landman BA, “3d whole brain segmentation using spatially localized atlas network tiles,” 
NeuroImage, vol. 194, pp. 105–119, 2019. [PubMed: 30910724] 

[128]. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, and 
Larochelle H, “Brain tumor segmentation with deep neural networks,” Medical Image Analysis, 
vol. 35, pp. 18–31, 2017. [PubMed: 27310171] 

[129]. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, and 
Glocker B, “Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion 
segmentation,” Medical Image Analysis, vol. 36, pp. 61–78, 2017. [PubMed: 27865153] 

[130]. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha 
SM, Rozycki M. et al. , “Identifying the best machine learning algorithms for brain tumor 
segmentation, progression assessment, and overall survival prediction in the BRATS challenge,” 
arXiv:1811.02629, 2018.

[131]. Carass A, Cuzzocreo JL, Han S, Hernandez-Castillo CR, Rasser PE, Ganz M, Beliveau V, Dolz 
J, Ayed IB, Desrosiers C, Thyreau B, Romero JE, Coupe P, Manjon JV, Fonov VS, Collins DL, 
Ying SH, Onyike CU, Crocetti D, Landman BA, Mostofsky SH, Thompson PM, and Prince JL, 
“Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance 
images,” NeuroImage, vol. 183, pp. 150–172, 2018. [PubMed: 30099076] 

[132]. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, and Dalca AV, “VoxelMorph: a learning 
framework for deformable medical image registration,” IEEE Transactions on Medical Imaging, 
vol. 38, no. 8, pp. 1788–1800, 2019.

[133]. Li H. and Fan Y, “Non-rigid image registration using fully convolutional networks with deep 
self-supervision,” arXiv:1709.00799, 2017.

Zhou et al. Page 30

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1903.03349
https://arxiv.org/abs/1903.03349


[134]. Miao S, Wang ZJ, and Liao R, “A CNN regression approach for real-time 2D/3D registration,” 
IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1352–1363, 2016. [PubMed: 
26829785] 

[135]. Yang X, Kwitt R, Styner M, and Niethammer M, “QuickSilver: Fast predictive image 
registration-a deep learning approach,” NeuroImage, vol. 158, pp. 378–396, 2017. [PubMed: 
28705497] 

[136]. Bashyam VM, Erus G, Doshi J, Habes M, Nasralah I, Truelove-Hill M, Srinivasan D, 
Mamourian L, Pomponio R, Fan Y. et al. , “MRI signatures of brain age and disease over the 
lifespan based on a deep brain network and 14,468 individuals worldwide,” Brain, 2020.

[137]. Cole JH, Poudel RP, Tsagkrasoulis D, Caan MW, Steves C, Spector TD, and Montana G, 
“Predicting brain age with deep learning from raw imaging data results in a reliable and heritable 
biomarker,” NeuroImage, vol. 163, pp. 115–124, 2017. [PubMed: 28765056] 

[138]. Jonsson BA, Bjornsdottir G, Thorgeirsson T, Ellingsen LM, Walters GB, Gudbjartsson D, 
Stefansson H, Stefansson K, and Ulfarsson M, “Brain age prediction using deep learning 
uncovers associated sequence variants,” Nature Communications, vol. 10, no. 1, pp. 1–10, 2019.

[139]. Liu S, Liu S, Cai W, Pujol S, Kikinis R, and Feng D, “Early diagnosis of Alzheimer’s disease 
with deep learning,” in International Symposium on Biomedical Imaging (ISBI), 2014, pp. 1015–
1018.

[140]. Lu D, Popuri K, Ding GW, Balachandar R, and Beg MF, “Multimodal and multiscale deep 
neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-
PET images,” Scientific Reports, vol. 8, no. 1, pp. 1–13, 2018. [PubMed: 29311619] 

[141]. Islam J. and Zhang Y, “Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble 
system of deep convolutional neural networks,” Brain Informatics, vol. 5, no. 2, p. 2, 2018. 
[PubMed: 29881892] 

[142]. Liu M, Zhang J, Adeli E, and Shen D, “Landmark-based deep multi-instance learning for brain 
disease diagnosis,” Medical Image Analysis, vol. 43, pp. 157–168, 2018. [PubMed: 29107865] 

[143]. Yan W, Calhoun V, Song M, Cui Y, Yan H, Liu S, Fan L, Zuo N, Yang Z, Xu K. et al. , 
“Discriminating schizophrenia using recurrent neural network applied on time courses of multi-
site FMRI data,” EBioMedicine, vol. 47, pp. 543–552, 2019. [PubMed: 31420302] 

[144]. Zeng L-L, Wang H, Hu P, Yang B, Pu W, Shen H, Chen X, Liu Z, Yin H, Tan Q. et al. , “Multi-
site diagnostic classification of schizophrenia using discriminant deep learning with functional 
connectivity MRI,” EBioMedicine, vol. 30, pp. 74–85, 2018. [PubMed: 29622496] 

[145]. Bhagwat N, Viviano JD, Voineskos AN, Chakravarty MM, Initiative ADN et al. , “Modeling 
and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data,” 
PLoS Computational Biology, vol. 14, no. 9, p. e1006376, 2018. [PubMed: 30216352] 

[146]. Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg BA, and Isgum I, 
“Deep MR to CT synthesis using unpaired data,” in International Workshop on Simulation and 
Synthesis in Medical Imaging. Springer, 2017, pp. 14–23.

[147]. Tamada D, Onishi H, and Motosugi U, “Motion artifact reduction in abdominal MR imaging 
using the U-NET network,” in Proceedings of the ICMRM and Scientific Meeting of KSMRM, 
Seoul, Korea, 2018.

[148]. Chen Y, Xie Y, Zhou Z, Shi F, Christodoulou AG, and Li D, “Brain MRI super resolution 
using 3D deep densely connected neural networks,” in International Symposium on Biomedical 
Imaging (ISBI), 2018, pp. 739–742.

[149]. Pham C-H, Ducournau A, Fablet R, and Rousseau F, “Brain MRI super-resolution using deep 
3D convolutional networks,” in International Symposium on Biomedical Imaging (ISBI), 2017, 
pp. 197–200.

[150]. Song T-A, Chowdhury SR, Yang F, and Dutta J, “Super-resolution PET imaging using 
convolutional neural networks,” IEEE Transactions on Computational Imaging, vol. 6, pp. 518–
528, 2020. [PubMed: 32055649] 

[151]. Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, Poston KL, Sha SJ, 
Greicius MD, Mormino E. et al. , “Ultra-low-dose 18F-florbetaben amyloid PET imaging using 
deep learning with multi-contrast MRI inputs,” Radiology, vol. 290, no. 3, pp. 649–656, 2019. 
[PubMed: 30526350] 

Zhou et al. Page 31

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[152]. Xu J, Gong E, Pauly J, and Zaharchuk G, “200x low-dose PET reconstruction using deep 
learning,” arXiv:1712.04119, 2017.

[153]. Kaplan S. and Zhu Y-M, “Full-dose PET image estimation from low-dose PET image using 
deep learning: a pilot study,” Journal of Digital Imaging, vol. 32, no. 5, pp. 773–778, 2019. 
[PubMed: 30402670] 

[154]. Nath V, Parvathaneni P, Hansen CB, Hainline AE, Bermudez C, Remedios S, Blaber JA, 
Schilling KG, Lyu I, Janve V. et al., “Inter-scanner harmonization of high angular resolution DW-
MRI using null space deep learning,” in International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI). Springer, 2018, pp. 193–201.

[155]. Yang Z, Wen J, and Davatzikos C, “Smile-GANs: Semi-supervised clustering via GANs for 
dissecting brain disease heterogeneity from medical images,” arXiv:2006.15255, 2020.

[156]. Armanious K, Jiang C, Fischer M, Kiistner T, Hepp T, Nikolaou K, Gatidis S, and Yang 
B, “MedGAN: Medical image translation using GANs,” Computerized Medical Imaging and 
Graphics, vol. 79, p. 101684–2020.

[157]. Van Nguyen H, Zhou K, and Vemulapalli R, “Cross-domain synthesis of medical images 
using efficient location-sensitive deep network,” in International Conference on Medical Image 
Computing and Computer-Assisted Intervention. Springer, 2015, pp. 677–684.

[158]. Zhao C, Carass A, Dewey BE, Woo J, Oh J, Calabresi PA, Reich DS, Sati P, Pham DL, 
and Prince JL, “A deep learning based anti-aliasing self super-resolution algorithm for MRI,” 
in International Conference on Medical Image Computing and Computer-Assisted Intervention. 
Springer, 2018, pp. 100–108.

[159]. Bustin A, Fuin N, Botnar RM, and Prieto C, “From compressed-sensing to artificial 
intelligence-based cardiac mri reconstruction,” Frontiers in Cardiovascular Medicine, vol. 7, p. 
17–2020. [Online]. Available: 10.3389/fcvm.2020.00017 [PubMed: 32158767] 

[160]. Zheng Q, Delingette H, and Ayache N, “Explainable cardiac pathology classification on cine 
MRI with motion characterization by semi-supervised learning of apparent flow,” Medical Image 
Analysis, vol. 56, pp. 80–95, August 2019. [PubMed: 31200290] 

[161]. de Marvao A, Dawes T, and O’Regan D, “Artificial intelligence for cardiac imaging-genetics 
research,” Frontiers in Cardiovascular Medicine, vol. 6, p. 195, 2020. [Online]. Available: 
10.3389/fcvm.2019.00195 [PubMed: 32039240] 

[162]. Parajuli N, Lu ATK, Stendahl J, Boutagy N, Alkhalil I, Eberle M, Jeng G, Zontak M, O’Donnell 
M, Sinusas A, and Duncan J, “Flow network tracking for spatiotemporal and periodic point 
matching: Applied to cardiac motion analysis,” Medical Image Analysis, vol. 55, pp. 116–135, 
2019. [PubMed: 31055125] 

[163]. Shelhamer E, Long J, and D. T., “Fully convolutional networks for semantic segmentation,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 640–651, 2017. 
[PubMed: 27244717] 

[164]. Tran CV, “A fully convolutional neural network for cardiac segmentation in short-axis MRI,” 
arXiv:1604.00494, 2016.

[165]. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, Lee AM, Aung N, Lukaschuk E, 
Sanghvi MM et al. , “Automated cardio-vascular magnetic resonance image analysis with fully 
convolutional networks,” Journal of Cardiovascular Magnetic Resonance, vol. 20, no. 1, p. 65, 
2018. [PubMed: 30217194] 

[166]. Isensee F, Jaeger P, Full P, Wolf I, Engelhardt S, and MeierKlein K, “Automatic cardiac 
disease assessment on cine-MRI via time-series segmentation and domain specific features,” in 
STACOM 2017: Statistical Atlases and Computational Models of the Heart, MICCAI. Springer 
LNCS, 2017, pp. 120–129.

[167]. Wolterink J, Leiner T, Viergever M, and Isgum I, “Automatic segmentation and disease 
classification using cardiac cine mr images,” in STACOM 2017: Statistical Atlases and 
Computational Models of the Heart, MICCAI. Springer LNCS, 2017, pp. 101–110.

[168]. Huang X, Dione D, Compas C, Papademetris X, Lin B, Bregasi A, Sinusas A, Staib L, 
and Duncan J, “Contour tracking in echocardiographic sequences via sparse representation and 
dictionary learning,” Medical Image Analysis, vol. 18, no. 2, pp. 253–271, 2014. [PubMed: 
24292554] 

Zhou et al. Page 32

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[169]. Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, Cook S, de Marvao A, 
Dawes T, O’Regan D, Kainz B, Glocker B, and Rueckert D, “Anatomically Constrained Neural 
Networks (AC-NNs): Application to Cardiac Image Enhancement and Segmentation,” IEEE 
Transactions on Medical Imaging, vol. 37, no. 2, pp. 384–395, 2018. [PubMed: 28961105] 

[170]. Xiong Z, Fedorov V, Fu X, Cheng E, Macleod R, and Z. J., “Fully automatic left atrium 
segmentation from late gadolinium enhanced magnetic resonance imaging using a dual fully 
convolutional neural network,” IEEE Transactions on Medical Imaging, vol. 38, pp. 515–524, 
2019. [PubMed: 30716023] 

[171]. Ye C, Wang W, Zhang S, and Wang K, “Multi-depth fusion network for whole-heart CT image 
segmentation,” IEEE Access, vol. 7, pp. 23 421–23 429, 2019.

[172]. Dong S, Luo G, Wang K, Cao S, Mercado A, Shmuilovich O, Zhang H, and Li S, “3D left 
ventricle segmentation on echocardiography with atlas guided generation and voxel-to-voxel 
discrimination,” in International Conference on Medical Image Computing and Computer 
Assisted Intervention (MICCAI), MICCAI. Springer LNCS, 2018, pp. 622–629.

[173]. “Left ventricle full quantification challenge (miccai 2019),” in STACOM 2019: Statistical 
Atlases and Computational Models of the Heart, MICCAI. Springer LNCS, 2019.

[174]. Campello V. and et al., “Multi-centre, multi-vendor & multi-disease cardiac image segmentation 
challenge (m&ms)),” in Medical Image Computing and Computer Assisted Intervention 
(MICCAI). MICCAI, 2020.

[175]. Ta K, Ahn S, Stendahl J, Sinusas A, and Duncan J, “A semi-supervised joint network for 
simultaneous left ventricular motion tracking and segmentation in 4d echocardiography,” in 
International Conference on Medical Image Computing and Computer Assisted Intervention 
(MICCAI), MICCAI. Springer LNCS, 2020, pp. 1–10.

[176]. Ferdian E, Suinesiaputra A, Fung K, Aung N, Lukaschuk E, Barutcu A, Maclean E, Paiva 
J, Piechnik S, Neubauer S, Petersen S, and Young A, “Fully Automated Myocardial Strain 
Estimation from Cardiovascular MRI-tagged Images Using a Deep Learning Framework in the 
UK Biobank,” Radiology: Cardiothoracic Imaging, vol. 2, no. 1, p. e190032, 2020. [Online]. 
Available: 10.1148/ryct.2020190032 [PubMed: 32715298] 

[177]. Cheng J, Tsai Y, Wang S, and Yang M-H, “SegFlow: Joint learning for video object 
segmentation and optical flow,” in IEEE International Conference on Computer Vision (ICCV). 
Ieee, 2017.

[178]. Bello G, Dawes T, Duan J, Biffi C, de Marvao A, Howard L, Gibbs S, Wilkins M, Cook 
S, Rueckert D, and O’Regan D, “Deep-learning cardiac motion analysis for human survival 
prediction,” Nature Machine Intelligence, vol. 1, pp. 95–104, 2019.

[179]. Bai W, Suzuki H, Qin C, Tarroni G, Oktay O, Matthews PM, and Rueckert 
D, “Recurrent neural networks for aortic image sequence segmentation with sparse 
annotations,” in International Conference on Medical Image Computing and Computer Assisted 
Intervention (MICCAI), Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, and 
Fichtinger G, Eds. Springer International Publishing, 2018, pp. 586–594. [Online]. Available: 
10.1007/978-3-030-00937-3_67

[180]. Guo Z, Bai J, Lu Y, Wang X, Cao K, Song Q, Sonka M, and Yin Y, “DeepCenterline: A 
multi-task fully convolutional network for centerline extraction,” in Information Processing in 
Medical Imaging (IPMI), Chung ACS, Gee JC, Yushkevich PA, and Bao S, Eds. Springer, 2019, 
pp. 441–453.

[181]. Wolterink JM, van Hamersvelt RW, Viergever MA, Leiner T, and Isgum I, “Coronary artery 
centerline extraction in cardiac CT angiography using a CNN-based orientation classifier,” 
Medical Image Analysis, vol. 51, pp. 46–60, 2019. [PubMed: 30388501] 

[182]. Moeskops P, Wolterink JM, van der Velden BH, Gilhuijs KG, Leiner T, Viergever MA, and 
Isgum I, “Deep learning for multi-task medical image segmentation in multiple modalities,” 
in International Conference on Medical Image Computing and Computer Assisted Intervention 
(MICCAI), Ourselin S, Joskowicz L, Sabuncu MR, Unal GB, and Wells W, Eds. Springer, 2016, 
pp. 478–486.

[183]. Lee MCH, Petersen K, Pawlowski N, Glocker B, and Schaap M, “TETRIS: Template 
transformer networks for image segmentation with shape priors,” IEEE Transactions on Medical 
Imaging, vol. 38, no. 11, pp. 2596–2606, 2019. [PubMed: 30908196] 

Zhou et al. Page 33

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[184]. Wolterink J, Leiner T, and Isgum I, “Graph convolutional networks for coronary artery 
segmentation in cardiac CT angiography,” in Workshop on Graph Learning in Medical Imaging, 
Zhang D, Zhou L, Jie B, and Liu M, Eds. Springer, 2019, pp. 62–69.

[185]. Simpson AL, Antonelli M, Bakas S, Bilello M, Farahani K, Van Ginneken B, Kopp-Schneider 
A, Landman BA, Litjens G, Menze B. et al. , “A large annotated medical image dataset for the 
development and evaluation of segmentation algorithms,” arXiv:1902.09063, 2019.

[186]. Yan K, Wang X, Lu L, and Summers RM, “DeepLesion: automated mining of large-scale lesion 
annotations and universal lesion detection with deep learning,” Journal of Medical Imaging, vol. 
5, no. 3, p. 036501, 2018. [PubMed: 30035154] 

[187]. Cerrolaza JJ, Picazo ML, Humbert L, Sato Y, Rueckert D, Ballester MAG, and Linguraru MG, 
“Computational anatomy for multi-organ analysis in medical imaging: A review,” Medical Image 
Analysis, vol. 56, pp. 44–67, 2019. [PubMed: 31181343] 

[188]. Seo H, Huang C, Bassenne M, Xiao R, and Xing L, “Modified U-Net (mU-Net) with 
incorporation of object-dependent high level features for improved liver and liver-tumor 
segmentation in CT images,” IEEE Transactions on Medical Imaging, vol. 39, no. 5, pp. 1316–
1325, 2019. [PubMed: 31634827] 

[189]. Graffy PM, Sandfort V, Summers RM, and Pickhardt PJ, “Automated liver fat quantification at 
nonenhanced abdominal CT for population-based steatosis assessment,” Radiology, vol. 293, no. 
2, pp. 334–342, 2019. [PubMed: 31526254] 

[190]. Tang Y-B, Tang Y-X, Zhu Y, Xiao J, and Summers RM, “E2Net: An edge enhanced network 
for accurate liver and tumor segmentation on CT scans,” in International Conference on Medical 
Image Computing and Computer Assisted Intervention (MICCAI), 2020.

[191]. Armato SG, Huisman H, Drukker K, Hadjiiski L, Kirby JS, Petrick N, Redmond G, Giger ML, 
Cha K, Mamonov A. et al. , “PROSTATEx challenges for computerized classification of prostate 
lesions from multiparametric magnetic resonance images,” Journal of Medical Imaging, vol. 5, 
no. 4, p. 044501, 2018. [PubMed: 30840739] 

[192]. Cheng R, Lay NS, Roth HR, Turkbey B, Jin D, Gandler W, McCreedy ES, Pohida TJ, Pinto PA, 
Choyke PL et al. , “Fully automated prostate whole gland and central gland segmentation on MRI 
using holistically nested networks with short connections,” Journal of Medical Imaging, vol. 6, 
no. 2, p. 024007, 2019. [PubMed: 31205977] 

[193]. Roth HR, Lu L, Lay N, Harrison AP, Farag A, Sohn A, and Summers RM, “Spatial aggregation 
of holistically-nested convolutional neural networks for automated pancreas localization and 
segmentation,” Medical Image Analysis, vol. 45, pp. 94–107, 2018. [PubMed: 29427897] 

[194]. Roth HR, Farag A, Turkbey EB, Lu L, Liu J, and Summers RM, “Data from Pancreas-CT,” in 
Cancer Imaging Archive, 2015.

[195]. Roth HR, Oda H, Zhou X, Shimizu N, Yang Y, Hayashi Y, Oda M, Fujiwara M, Misawa 
K, and Mori K, “An application of cascaded 3D fully convolutional networks for medical 
image segmentation,” Computerized Medical Imaging and Graphics, vol. 66, pp. 90–99, 2018. 
[PubMed: 29573583] 

[196]. Chu LC, Park S, Kawamoto S, Wang Y, Zhou Y, Shen W, Zhu Z, Xia Y, Xie L, Liu F. et al. , 
“Application of deep learning to pancreatic cancer detection: Lessons learned from our initial 
experience,” Journal of the American College of Radiology, vol. 16, no. 9, pp. 1338–1342, 2019. 
[PubMed: 31492412] 

[197]. Zhang L, Lu L, Wang X, Zhu RM, Bagheri M, Summers RM, and Yao J, “Spatio-temporal 
convolutional LSTMs for tumor growth prediction by learning 4d longitudinal patient data,” 
IEEE Transactions on Medical Imaging, vol. 39, no. 4, pp. 1114–1126, 2019. [PubMed: 
31562074] 

[198]. Humpire-Mamani GE, Bukala J, Scholten ET, Prokop M, van Ginneken B, and Jacobs C, “Fully 
automatic volume measurement of the spleen at ct using deep learning,” Radiology: Artificial 
Intelligence, vol. 2, no. 4, p. e190102, 2020. [PubMed: 33937830] 

[199]. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, and Summers RM, “Improving 
computer-aided detection using convolutional neural networks and random view aggregation,” 
IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1170–1181, 2016. [PubMed: 
26441412] 

Zhou et al. Page 34

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[200]. Tang Y-B, Ke Y, Xiao J, and Summers RM, “One click lesion RECIST measurement and 
segmentation on CT scans,” in International Conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI), 2020.

[201]. Roth HR, Lu L, Seff A, Cherry KM, Wang S, Liu J, Turkbey E, and Summers RM, “CT lymph 
nodes,” in Cancer Imaging Archive, 2015.

[202]. Tachibana R, Nappi JJ, Ota J, Kohlhase N, Hironaka T, Kim SH, Regge D, and 
Yoshida H, “Deep learning electronic cleansing for single-and dual-energy CT colonography,” 
RadioGraphics, vol. 38, no. 7, pp. 2034–2050, 2018. [PubMed: 30422761] 

[203]. Shin S, Lee S, Elton D, Gullery J, and Summers RM, “Deep small bowel segmentation with 
cylindrical topological constraints,” in International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI), 2020.

[204]. Liu J, Wang D, Lu L, Wei Z, Kim L, Turkbey EB, Sahiner B, Petrick NA, and Summers RM, 
“Detection and diagnosis of colitis on computed tomography using deep convolutional neural 
networks,” Medical Physics, vol. 44, no. 9, pp. 4630–4642, 2017. [PubMed: 28594460] 

[205]. Rajpurkar P, Park A, Irvin J, Chute C, Bereket M, Mastrodicasa D, Langlotz CP, Lungren MP, 
Ng AY, and Patel BN, “AppendiXNet: Deep learning for diagnosis of appendicitis from a small 
dataset of CT exams using video pretraining,” Scientific Reports, vol. 10, no. 1, pp. 1–7, 2020. 
[PubMed: 31913322] 

[206]. Cheng PM, Tejura TK, Tran KN, and Whang G, “Detection of high-grade small bowel 
obstruction on conventional radiography with convolutional neural networks,” Abdominal 
Radiology, vol. 43, no. 5, pp. 1120–1127, 2018. [PubMed: 28828625] 

[207]. Kuo C-C, Chang C-M, Liu K-T, Lin W-K, Chiang H-Y, Chung C-W, Ho M-R, Sun P-R, Yang 
R-L, and Chen K-T, “Automation of the kidney function prediction and classification through 
ultrasound-based kidney imaging using deep learning,” NPJ Digital Medicine, vol. 2, no. 1, pp. 
1–9, 2019. [PubMed: 31304351] 

[208]. Wang S, Liu Z, Rong Y, Zhou B, Bai Y, Wei W, Wang M, Guo Y, and Tian J, “Deep learning 
provides a new computed tomography-based prognostic biomarker for recurrence prediction in 
high-grade serous ovarian cancer,” Radiotherapy and Oncology, vol. 132, pp. 171–177, 2019. 
[PubMed: 30392780] 

[209]. Dreizin D, Zhou Y, Zhang Y, Tirada N, and Yuille AL, “Performance of a deep learning 
algorithm for automated segmentation and quantification of traumatic pelvic hematomas on CT,” 
Journal of Digital Imaging, vol. 33, no. 1, pp. 243–251, 2020. [PubMed: 31172331] 

[210]. Kazemifar S, Balagopal A, Nguyen D, McGuire S, Hannan R, Jiang S, and Owrangi A, 
“Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning,” 
Biomedical Physics & Engineering Express, vol. 4, no. 5, p. 055003, 2018.

[211]. Li H, Han H, and Zhou SK, “Bounding maps for universal lesion detection,” arXiv:2007.09383, 
2020.

[212]. Pickhardt PJ, Graffy PM, Zea R, Lee SJ, Liu J, Sandfort V, and Summers RM, “Automated 
CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an 
asymptomatic screening population: a retrospective cohort study,” The Lancet Digital Health, 
2020.

[213]. Bera K, Schalper KA, Rimm DL, Velcheti V, and Madabhushi A, “Artificial intelligence in 
digital pathology—new tools for diagnosis and precision oncology,” Nature Reviews Clinical 
Oncology, vol. 16, no. 11, pp. 703–715, 2019.

[214]. Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, and Madabhushi A, “Stacked sparse 
autoencoder (SSAE) for nuclei detection on breast cancer histopathology images,” IEEE 
Transactions on Medical Imaging, vol. 35, no. 1, pp. 119–130, 2015. [PubMed: 26208307] 

[215]. Janowczyk A. and Madabhushi A, “Deep learning for digital pathology image analysis: A 
comprehensive tutorial with selected use cases,” Journal of Pathology Informatics, vol. 7, 2016.

[216]. Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NN, Tomaszewski J, 
Gonzalez FA, and Madabhushi A, “Accurate and reproducible invasive breast cancer detection in 
whole-slide images: A deep learning approach for quantifying tumor extent,” Scientific Reports, 
vol. 7, p. 46450–2017. [PubMed: 28418027] 

Zhou et al. Page 35

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[217]. Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih N, Tomaszewski 
J, Madabhushi A, and Gonzalez F, “High-throughput adaptive sampling for whole-slide 
histopathology image analysis (HASHI) via convolutional neural networks: Application to 
invasive breast cancer detection,” PloS One, vol. 13, no. 5, p. e0196828, 2018. [PubMed: 
29795581] 

[218]. Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van Der 
Laak JA, Hermsen M, Manson QF, Balkenhol M. et al. , “Diagnostic assessment of deep learning 
algorithms for detection of lymph node metastases in women with breast cancer,” Journal of the 
American Medical Association, vol. 318, no. 22, pp. 2199–2210, 2017. [PubMed: 29234806] 

[219]. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, 
Razavian N, and Tsirigos A, “Classification and mutation prediction from non-small cell lung 
cancer histopathology images using deep learning,” Nature Medicine, vol. 24, no. 10, pp. 1559–
1567, 2018.

[220]. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Silva VWK, Busam KJ, Brogi E, 
Reuter VE, Klimstra DS, and Fuchs TJ, “Clinical-grade computational pathology using weakly 
supervised deep learning on whole slide images,” Nature Medicine, vol. 25, no. 8, pp. 1301–
1309, 2019.

[221]. Babaian RJ and Grunow WA, “Reliability of gleason grading system in comparing prostate 
biopsies with total prostatectomy specimens,” Urology, vol. 25, no. 6, pp. 564–567, 1985. 
[PubMed: 4012946] 

[222]. Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, van der Laak J, 
Hulsbergen-van de Kaa C, and Litjens G, “Automated deep-learning system for gleason grading 
of prostate cancer using biopsies: a diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 
233–241, 2020. [PubMed: 31926805] 

[223]. Strom P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, Bostwick DG, Evans 
AJ, Grignon DJ, Humphrey PA et al. , “Artificial intelligence for diagnosis and grading of 
prostate cancer in biopsies: a population-based, diagnostic study,” The Lancet Oncology, vol. 21, 
no. 2, pp. 222–232, 2020. [PubMed: 31926806] 

[224]. Madabhushi A, Feldman MD, and Leo P, “Deep-learning approaches for gleason grading 
of prostate biopsies,” The Lancet Oncology, vol. 21, no. 2, pp. 187–189, 2020. [PubMed: 
31926804] 

[225]. Romo-Bucheli D, Janowczyk A, Gilmore H, Romero E, and Madabhushi A, “Automated tubule 
nuclei quantification and correlation with oncotype DX risk categories in ER+ breast cancer 
whole slide images,” Scientific Reports, vol. 6, p. 32706–2016.

[226]. Romo-Bucheli D, “A deep learning based strategy for identifying and associating mitotic 
activity with gene expression derived risk categories in estrogen receptor positive breast cancers,” 
Cytometry Part A, vol. 91, no. 6, pp. 566–573, 2017.

[227]. Kather JN, Pearson AT, Halama N, Jager D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, 
Neumann UP et al. , “Deep learning can predict microsatellite instability directly from histology 
in gastrointestinal cancer,” Nature Medicine, vol. 25, no. 7, pp. 1054–1056, 2019.

[228]. Skrede O-J, De Raedt S, Kleppe A, Hveem TS, Liest0l K, Maddison J, Askautrud HA, Pradhan 
M, Nesheim JA, Albregtsen F. et al. , “Deep learning for prediction of colorectal cancer outcome: 
a discovery and validation study,” The Lancet, vol. 395, no. 10221, pp. 350–360, 2020.

[229]. Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, Manceron P, Toldo S, 
Zaslavskiy M, Le Stang N. et al. , “Deep learning-based classification of mesothelioma improves 
prediction of patient outcome,” Nature Medicine, vol. 25, no. 10, pp. 1519–1525, 2019.

[230]. Saillard C, Schmauch B, Laifa O, Moarii M, Toldo S, Zaslavskiy M, Pronier E, Laurent A, 
Amaddeo G, Regnault H. et al. , “Predicting survival after hepatocellular carcinoma resection 
using deep-learning on histological slides,” Hepatology, 2020.

[231]. Tomita N, Abdollahi B, Wei J, Ren B, Suriawinata A, and Hassanpour S, “Attention-based 
deep neural networks for detection of cancerous and precancerous esophagus tissue on 
histopathological slides,” JAMA network open, vol. 2, no. 11, pp. e1 914645-e1 914 645, 2019.

[232]. Heindl A, Sestak I, Naidoo K, Cuzick J, Dowsett M, and Yuan Y, “Relevance of spatial 
heterogeneity of immune infiltration for predicting risk of recurrence after endocrine therapy of 
ER+ breast cancer,” Journal of the National Cancer Institute, vol. 110, no. 2, pp. 166–175, 2018.

Zhou et al. Page 36

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[233]. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, Samaras D, Shroyer KR, Zhao T, Batiste 
R. et al. , “Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using 
deep learning on pathology images,” Cell Reports, vol. 23, no. 1, pp. 181–193, 2018. [PubMed: 
29617659] 

[234]. Corredor G, Wang X, Zhou Y, Lu C, Fu P, Syrigos K, Rimm DL, Yang M, Romero E, Schalper 
KA et al. , “Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting 
likelihood of recurrence in early-stage non-small cell lung cancer,” Clinical Cancer Research, 
vol. 25, no. 5, pp. 1526–1534, 2019. [PubMed: 30201760] 

[235]. Yao Q, He Z, Lin Y, Ma K, Zheng Y, and Zhou SK, “A hierarchical feature constraint to 
camouflage medical adversarial attacks,” arXiv preprint arXiv:2012.09501, 2020.

[236]. Rueckert D. and Schnabel J, “Model-based and data-driven strategies in medical image 
computing,” Proceedings of the IEEE, vol. 108, no. 1, pp. 110–124, 2020.

[237]. Brown MS, Browning P, Wahi-Anwar MW, Murphy M, Delgado J, Greenspan H, Abtin F, 
Ghahremani S, Yaghmai N, da Costa I, Becker M, and Goldin JG, “Integration of chest CT CAD 
into the clinical workflow and impact on radiologist efficiency.” Academic Radiology, vol. 26 5, 
pp. 626–631, 2019. [PubMed: 30097402] 

[238]. de Hoop B, De Boo DW, Gietema HA, van Hoorn F, Mearadji B, Schijf L, van Ginneken 
B, Prokop M, and Schaefer-Prokop C, “Computer-aided detection of lung cancer on chest 
radiographs: effect on observer performance,” Radiology, vol. 257, no. 2, pp. 532–540, 2010. 
[PubMed: 20807851] 

[239]. Jorritsma W, Cnossen F, and van Ooijen PM, “Improving the radiologist-cad interaction: 
designing for appropriate trust,” Clinical radiology, vol. 70, no. 2, pp. 115–122, 2015. [PubMed: 
25459198] 

[240]. Drew T, Cunningham C, and Wolfe JM, “When and why might a computer-aided detection 
(cad) system interfere with visual search? an eye-tracking study,” Academic radiology, vol. 19, 
no. 10, pp. 1260–1267, 2012. [PubMed: 22958720] 

[241]. Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, and Siegel 
E, “Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for 
automated detection & patient monitoring using deep learning CT image analysis,” 2020.

[242]. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, and Shen D, “Review of artificial 
intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19,” 
IEEE Reviews in Biomedical Engineering, 2020.

[243]. Greenspan H, San-Jose Estepar R, Niessen W, Siegel E, and Nielsen M, “Position paper on 
COVID-19 imaging and AI: From the clinical needs and technological challenges to initial ai 
solutions at the lab and national level towards a new era for ai in healthcare,” Medical Image 
Analysis - Special issue with TMI on COVID-19, 2020.

[244]. “A review on neuroimaging-based classification studies and associated feature extraction 
methods for alzheimer’s disease and its prodromal stages,” NeuroImage, vol. 155, pp. 530–548, 
2017. [PubMed: 28414186] 

[245]. Mateos-Perez JM, Dadar M, Lacalle-Aurioles M, Iturria-Medina Y, Zeighami Y, and Evans 
AC, “Structural neuroimaging as clinical predictor: A review of machine learning applications,” 
NeuroImage: Clinical, vol. 20, pp. 506–522, 2018. [PubMed: 30167371] 

[246]. Nielsen AN, Barch DM, Petersen SE, Schlaggar BL, and Greene DJ, “Machine learning 
with neuroimaging: evaluating its applications in psychiatry,” Biological Psychiatry: Cognitive 
Neuroscience and Neuroimaging, 2019.

[247]. Fathi Kazerooni A, Bakas S, Saligheh Rad H, and Davatzikos C, “Imaging signatures 
of glioblastoma molecular characteristics: A radiogenomics review,” Journal of Magnetic 
Resonance Imaging, vol. 52, no. 1, pp. 54–69, 2020. [PubMed: 31456318] 

Zhou et al. Page 37

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The main traits of medical imaging and the associated technological trends for addressing 

these traits.
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Fig. 2. 
Leveraging the anatomy knowledge embedded in CT to decompose a chest x-ray [76].
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Fig. 3. 
Example output of the CORADS-AI system for a COVID-19 case. Top row shows coronal 

slices, the second row shows lobe segmentation and bottom row shows detected abnormal 

areas of patchy ground-glass and consolidation typical for COVID-19 infection. The CO-

RADS prediction and CT severity score per lobe are displayed below the images.
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Fig. 4. 
Cerebellum parcellation by the ACAPULCO cascaded deep networks method. Lobule labels 

are shown for (A) a healthy subject and subjects with (B) spinocerebellar ataxia (SCA) type 

2, (C) SCA type 3, and (D) SCA type 6 [121].
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Fig. 5. 
Top: 4D two-channel CNN architecture for joint LV motion tracking/segmentation network; 

Bottom: 2D echocardiography slices through 3D canine results (left = displacements with 

ground truth interpolated from sonomicrometer crystals; right = LV endocardial (red) and 

epicardial (green) segmented boundaries with ground truth from human expert tracing.) 

Reproduced from [175].
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Fig. 6. 
Example universal lesion detector for abdominal CT. In this axial image through the upper 

abdomen, a liver lesion was correctly detected with high confidence (0.995). A renal cyst 

(0.554) and a bone metastasis (0.655) were also detected correctly. False positives include 

normal pancreas (0.947), gallbladder (0.821), and bowel (0.608). A subtle bone metastasis 

(blue box) was missed. Reproduced from [186].
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Fig. 7. 
Application of deep learning for identifying cancerous regions from whole slide images 

as well as for identifying and segmenting different types of nuclei within the whole slide 

pathology images.
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