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Abstract

Coordinated activity across networks of neurons is a hallmark of both resting and active 

behavioural states in many species1–5. These global patterns alter energy metabolism over seconds 

to hours, which underpins the widespread use of oxygen consumption and glucose uptake as 

proxies of neural activity6,7. However, whether changes in neural activity are causally related 

to metabolic flux in intact circuits on the timescales associated with behaviour is unclear. Here 

we combine two-photon microscopy of the fly brain with sensors that enable the simultaneous 

measurement of neural activity and metabolic flux, across both resting and active behavioural 

states. We demonstrate that neural activity drives changes in metabolic flux, creating a tight 

coupling between these signals that can be measured across brain networks. Using local 

optogenetic perturbation, we demonstrate that even transient increases in neural activity result 

in rapid and persistent increases in cytosolic ATP, which suggests that neuronal metabolism 

predictively allocates resources to anticipate the energy demands of future activity. Finally, our 

studies reveal that the initiation of even minimal behavioural movements causes large-scale 

changes in the pattern of neural activity and energy metabolism, which reveals a widespread 

engagement of the brain. As the relationship between neural activity and energy metabolism is 
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probably evolutionarily ancient and highly conserved, our studies provide a critical foundation for 

using metabolic proxies to capture changes in neural activity.

Three technologies have widely been used to measure changes in neural activity across 

whole-brain volumes. Functional magnetic resonance imaging uses blood-oxygen-level-

dependent (BOLD) signals to capture changes in oxygenated blood flow as a proxy 

for neural activity, and has a temporal resolution of seconds and a spatial resolution 

of millimetres6. Fluorodeoxyglucose positron emission tomography (FDG PET) captures 

changes in glucose uptake, and has a temporal resolution of tens of minutes and a typical 

spatial resolution of centimetres7–9. Simultaneous imaging methods have demonstrated that 

FDG-PET-intrinsic (that is, task-free) brain networks spatially overlap with BOLD networks, 

which indicates a relationship between glucose uptake and blood oxygenation10. BOLD 

signals also correspond with low-frequency fluctuations in the local field potential, which 

indicates that these measures of blood flow and glucose metabolism can be proxies for 

neural activity11. In parallel, imaging approaches that use fluorescent sensors to measure 

changes in intracellular calcium concentrations can capture neural activity with single-cell 

resolution across large areas of the brain2–4,12–15. However, none of these approaches has 

allowed direct, simultaneous, brain-wide intracellular measurements of changes in both 

neural activity and metabolic flux at high spatial and temporal resolution.

Neural and metabolic signals correlate

Correspondences between neural activity and metabolism can be measured using genetically 

encoded sensors, combined with brain-wide imaging, in immobilized animals3,15 (Fig. 1a). 

Whole-brain imaging often measures functional connectivity networks that are defined by 

correlated changes in neural activity between regions over time, in which the strength of 

each connection is represented by the magnitude and sign of the correlation between the 

activity patterns in pairs of regions5. These correlations capture large-scale, infra-slow (<0.1 

Hz) interactions that reflect brain regions coordinating their activity16–18. We hypothesized 

that if normal variations in neural activity in the brain were closely coupled to variations in 

intracellular energy flux, then a functional connectivity network could be detected using 

sensors that measure changes in energy metabolism. To test this hypothesis, we took 

advantage of Pyronic (a sensor of changes in intracellular pyruvate concentration19–21) (Fig. 

1a) and iATPSnFR (a sensor of changes in ATP concentration22) (Extended Data Fig. 1), 

and compared these signals to intracellular calcium levels measured using GCaMP6s23. As 

changes in both the citric acid cycle and glycolysis alter pyruvate and ATP flux, we reasoned 

that changes in Pyronic and iATPSnFR signals should report whether changes in metabolic 

flux are correlated within and between brain regions.

We expressed both of these metabolic sensors pan-neuronally, along with a structural marker 

(tdTomato), and imaged the entire central brains of immobilized flies3 (Methods). Next, 

we aligned each brain with a template brain24 and used a standard atlas to extract each 

of these signals from 54 anatomically defined regions25. We observed strong correlations 

between some pairs of regions, but not others (Extended Data Fig. 2). We then compared the 

average correlations between all pairs of regions across all flies, which provided us with a 
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functional connectivity map of metabolic flux (Fig. 1b–d, Extended Data Fig. 3). All three 

connectivity maps were highly structured, which demonstrates that both metabolic flux and 

neural activity are coordinated between brain regions in a stereotyped manner.

To examine similarities between each of the metabolic flux networks and the calcium 

activity network, we computed the pairwise correlations between each correlation matrix 

(Fig. 1e–g). These comparisons revealed that all of these correlation matrices were very 

similar (R = 0.69 for pyruvate versus calcium; R = 0.80 for ATP versus calcium; and R = 

0.82 for ATP versus pyruvate), even though the metabolic flux and neural activity measures 

were made in different flies, using different sensors and targeting different aspects of energy 

metabolism. We obtained similar results when we co-expressed both Pyronic and the red-

shifted calcium indicator jRGECO1a pan-neuronally (or both iATPSnFR and jRGECO1a) 

and simultaneously measured both metabolic flux and neural activity in the same fly26 (n 
= 24 flies for Pyronic, n = 18 flies for iATPSNfR) (Extended Data Fig. 4a–g). These data 

demonstrate that the functional connectivity structure of neural signals throughout the brain 

is mirrored in the corresponding structure of metabolic flux, which suggests an intimate link 

between neural activity and metabolism.

Activity is necessary for metabolic networks

We next determined the relationship between metabolic flux and neural activity at the level 

of individual regions (Fig. 2, Extended Data Fig. 4). Our comparisons of the simultaneously 

recorded signals revealed substantial correlations (Fig. 2a, b, Extended Data Fig. 4h, i). 

These correlations were stronger when the metabolic flux and neural activity signals were 

filtered to select for low frequencies rather than high frequencies (Fig. 2c–f, Extended Data 

Fig. 4j–m), and were eliminated by shuffle controls that swapped regional identities (Fig. 

2g, h). iATPSnFR displayed a greater correlation with jRGECO1a than did Pyronic across 

all frequencies, but had a similar drop-off in correlation at higher frequencies (Fig. 2g, h). 

Thus, low-frequency changes in intracellular calcium levels (corresponding to the timescales 

of tens of seconds) are correlated with changes in metabolic flux.

To test whether physiological fluctuations in neural activity were necessary to drive 

correlated changes in metabolic flux, we imaged flies that simultaneously expressed either 

Pyronic and jRGECO1a or iATPSnFR and jRGECO1a before and after a bath application 

of tetrodotoxin (TTX). TTX blocks voltage-gated sodium channels, which prevents the 

generation of action potentials27 and thereby inhibits neural activity. If changes in neural 

activity drive changes in metabolic flux, then blocking neural activity should disrupt both 

the neural and metabolic functional connectivity maps by eliminating regional correlations 

between these signals. A bath application of TTX markedly reduced fluctuations in the 

Pyronic, iATPSnFR and jRGECO1a signals across a wide range of frequencies (Fig. 3a, b, 

Extended Data Fig. 5a), and largely eliminated the stereotyped correlations between these 

signals across the brain (Fig. 3c, Extended Data Fig. 5b). Thus, the observed metabolic 

network is substantially the product of neural activity.
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Activity drives metabolic flux

To determine whether local increases in neural activity were sufficient to alter metabolic flux 

and to measure the timescale of this coupling, we used the light-activated cation channel 

CsChrimson to depolarize neurons with subcellular resolution and millisecond precision28. 

We expressed CsChrimson in antennal-lobe projection neurons, simultaneously with either 

the calcium indicator GCaMP6s or the ATP sensor iATPSnFR29. We then imaged each 

sensor signal while locally stimulating CsChrimson in approximately 20-μm2 subregions 

of projection-neuron dendrites (Fig. 3d, Methods). Using a 10-ms activation pulse to drive 

CsChrimson, we were able to reliably evoke a minimal GCaMP6s response that rapidly 

decayed (Fig. 3e). Increasing the pulse length to 50 ms increased the size of the GCaMP6s 

response and somewhat slowed its decay (Fig. 3f), while remaining within physiological 

ranges. Increases in neural activity might be expected to result in increased consumption of 

ATP and a reduction in the iATPSnFR signal. However, the observed changes were instead 

dominated bya rapid and robust increase in the iATPSnFR signal that peaked within 500 

ms of stimulation, and decayed much more slowly than observed changes in intracellular 

calcium concentration (Fig. 3g, h). Specifically, with 10-ms activation pulses, GCaMP6s 

signals decayed exponentially with a time constant of τ = 3 s, whereas iATPSnFR signals 

decayed with a time constant of τ = 43 s (Fig. 3e, g). We observed similar results using 

50-ms activation pulses (Fig. 3f, h). Importantly, in control flies that lack CsChrimson 

laser stimulation did not alter either intracellular calcium or ATP concentration (Extended 

Data Fig. 5c, d). Finally, because laser stimulation of CsChrimson precludes the acquisition 

of fluorescent signals within 300 ms of the pulse, these observations do not exclude the 

possibility that neural activity might evoke immediate and briefdecrements inintracellular 

ATPconcentration.

These results demonstrate that neural activation is sufficient to increase intracellular ATP 

concentration for prolonged periods. This long-lasting increase probably accounts for the 

fact that low frequencies dominate the correlations between neural activity and metabolic 

flux (Fig. 2). For example, in ongoing physiological conditions, correlations between 

calcium and both pyruvate and ATP signals decay over a frequency range from 10−2 Hz 

to 10−1 Hz, or from a timescale of 100 s to 10 s (Fig. 2g, h). These timescales are broadly 

consistent with the timescales of exponential decay of the iATPSnFR signal in response to a 

transient elevation of calcium (Fig. 3g, h). Moreover, the result that increased neural activity 

increases ATP concentration also accounts for the positive correlations we observe between 

calcium and ATP concentrations under physiological conditions (Fig. 2). If neural activity 

had caused reductions in ATP concentration, these correlations would have been negative.

Our results reveal a disparity in timescales between the duration of the calcium and ATP 

responses to transient depolarization: ATP concentration rises within 500 ms, but then long 

outlasts the calcium concentration. We considered the functional importance of this rapid 

rise and very long decay. We examined the temporal statistics of physiologically relevant 

calcium signals during ongoing neural activity and found that these calcium fluctuations 

exhibit a 1/fα power spectrum, in which α = 1.15 ± 0.04 (±s.e.m.) (Fig. 3i). Such power 

spectra with exponents close to 1 indicate temporal fluctuations with a wide spectrum of 

time constants, including very slow ones30,31. Consistent with this observation, the temporal 
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autocorrelation function of calcium is not well-fit by a single exponential and possesses 

a long tail, dropping to half its peak value only after about 90 s (Fig. 3j). Thus, the 

timescale of the decay of excess ATP levels in our impulse experiments roughly matches 

the autocorrelation function of calcium under physiological conditions, which suggests a 

predictive energy allocation hypothesis (as developed in more detail in ‘Discussion’ below).

Behaviour directs activity and metabolism

We wondered how these signals are altered by the initiation of behaviour. We simultaneously 

imaged either Pyronic and jRGECO1a or iATPSnFR and jRGECO1a while recording leg 

movements (Methods). We then trained a generalized linear model using either neural 

activity or metabolic flux to predict bouts of movement (Fig. 4, Extended Data Fig. 6). 

Changes in neural activity in specific stereotyped regions of the brain predicted the timing 

of movement bouts, even when these bouts were brief (about 1 s long) (Extended Data Fig. 

6b, d). The accuracy of behavioural predictions spanned all but the lowest frequencies we 

observed, and closely tracked the power spectrum of behaviour itself (Fig. 4b, Extended 

Data Fig. 7). Conversely, models that attempt to predict bouts of activity from metabolic 

flux performed relatively poorly, but still above chance (Fig. 4a, b, Extended Data Fig. 6). 

These correlations were highest at intermediate frequencies, which is consistent with the 

relationship between the power spectrum of behaviour and with the low-frequency coupling 

between neural activity and metabolic flux (Fig. 4b, Extended Data Fig. 7). Conversely, 

given this low-frequency coupling, these data demonstrate that individual bouts of rapidly 

changing behaviour cannot be captured with metabolic proxies, regardless of sensor speed.

To probe the generality of the spatial structure of these generalized linear models across 

flies, we computed the average weights used in each model for each brain region at the 

optimal predictive frequency (Fig. 4b). Weights generated from calcium signals revealed a 

structured map of regions that are predictive of behaviour (Fig. 4c). Weights generated from 

metabolic flux signals were also structured; they captured a subset of the most strongly 

weighted regions in the neural activity maps and correlated with the overall structure 

observed with calcium (R = 0.36 for Pyronic; R = 0.5 for iATPSnFR) (Fig. 4c, Extended 

Data Fig. 6f, g). Thus, there is a region-specific pattern of common neural and metabolic 

load associated with behaviour.

To better define the regions that are correlated with behaviour initiation, we imaged 

GCaMP6s while recording leg movements at greater spatiotemporal resolution and trained 

generalized linear models on these datasets. The regions of the brain that predict behavioural 

activity were those that are highly enriched for dendritic processes of descending neurons, 

which are effectors of movement that provide all of the connections between the central 

brain and the ventral nerve cord32 (Extended Data Fig. 8a–d). The spatial weightings of 

these generalized linear models were very similar to those constructed with jRGECO1a (R 
= 0.82) (Extended Data Fig. 8e). Finally, correlations across brain regions slightly increased 

during behaviour but did not change in structure, which suggests that intrinsic functional 

connectivity is stable over short timescales (Extended Data Fig. 9).
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Discussion

Changes in intracellular calcium levels in neurons are tightly coupled to spatially local 

changes in ATP and pyruvate concentrations in vivo. Changes in metabolic flux emerge 

less than 500 ms after an increase in neural activity but persist for many tens of seconds, 

effectively low-pass-filtering neural activity and setting a fundamental limit on the ability 

of metabolic sensors to capture high-frequency components of neural signals. However, by 

providing fiducial benchmarks across both space and time, our data support the power of 

metabolic proxies such as BOLD and FDG PET to capture slow changes in neural activity.

Our work reveals a relationship between neural activity and metabolism: increases in neural 

activity are dominated by increases rather than decreases in ATP concentration. This result 

suggests a hypothesis of predictive energy allocation. We propose that metabolism predicts 

and meets the energy demands of future neural activity through increased ATP production, 

which is then (on average) balanced through increased ATP consumption by subsequent 

activity-dependent processes. Under physiological conditions, the expected time course of 

future neural activity can be approximated by the temporal autocorrelation function of 

calcium, which predicts elevated levels of neural activity over many tens of seconds. In 

our optogenetic experiments, the excess ATP generated by an isolated transient calcium 

pulse thus lasts about as long as neural activity would have been elevated on average 

under physiological conditions. Thus, evolution appears to have tuned the coupling between 

neural activity and metabolism to meet both immediate energy demands as well as future 

activity-dependent needs.

Even minimal behavioural movements could be well-predicted by models that positively 

weighted large regions of the brain that are enriched for the dendritic processes of 

descending neurons, while negatively weighting other regions. This result was surprising 

because increasing or decreasing the activities only of pairs of descending neurons is 

sufficient to initiate or suppress bouts of walking behaviour, respectively, which argues for 

a relatively simple motor command structure33. By contrast, our finding that the movements 

we measured are associated with large-scale changes in neural and metabolic activity argue 

for a much more complex control framework. Thus, even in the relatively compact fly brain, 

distributed neural and metabolic networks similar to those described in vertebrates have 

essential roles in guiding behaviour34–38.

Methods

No statistical methods were used to predetermine sample size. The experiments were 

not randomized, and investigators were not blinded to allocation during experiments and 

outcome assessment.

Fly preparation

GCaMP6s flies were females of the genotype w+/w−;UAS-myr::tdTomato/UAS-
GCaMP6s;nSyb-Gal4/+. iATPSnFR flies were females of the genotype w+/w−;UAS-
iATPSnFR/UAS-myr::tdTomato;nSyb-Gal4/+. Dual iATPSnFR and jRGECO flies were 

of the genotype w+/w−; UAS-iATPSnFR/+;UAS-jREGECO1a/nSyb-Gal4. Pyronic flies 
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were females of the genotype w+/w−;UAS-myr::tdTomato/+;nSyb-Gal4/UAS-Pyronic. 

Dual Pyronic and jRGECO1a flies were females of the genotype w+/w−;+/+;nSyb-
Gal4/UAS-Pyronic,UAS-jRGECO1a. CsChrimson activation flies were of the genotype 

w+/w−;iATPSnFR/GH146-Ga l4;UAS-CsChrimson::tdTomato/+, and w+/w−;GCaMP6s/
GH146-Gal 4;UAS-CsChrimson::tdTomato/+. Flies were raised on molasses medium at 

25 °C with a 12/12-h light/dark cycle. Flies were housed in mixed male/female vials and 

5-day-old female flies were selected for whole-brain imaging, and 5–10-day-old female 

flies were selected for CsChrimson activation experiments, and were transferred to medium 

containing 1 mM all trans-retinal 2 days before experiments.

Flies were prepared as previously described3. In brief, flies were cold-immobilized on ice 

and placed into a mount separating the head from the body. The frontal parts of the head 

were removed to allow optical access to the central brain. In sessions in which behaviour 

was not monitored, legs were immobilized. In sessions monitoring leg movements, legs were 

kept free.

Image alignment and registration

High-resolution images were aligned to a template brain and atlas as previously described, 

except that in dual Pyronic and jRGECO1a-imaged flies, a high-resolution anatomical scan 

was made of the jRGECO1a signal instead of myr::tdTomato3. Motion correction was 

performed using 3dvolreg of AFNI, as previously described3.

Two-photon imaging

Flies were imaged at room temperature on a Bruker Ultima system with resonant scanning 

capability, a piezo objective mount and GaAsP-type photomultiplier tubes using a Leica 

20× HCX APO 1.0 NA water immersion objective lens. GCaMP6s and iATPSnFR signals 

were excited with a Chameleon Vision II femtosecond laser (Coherent) at 920 nm, and 

collected through a 525/50-nm filter. myr::tdTomato signals were excited at 920 nm and 

collected through a 595/50-nm filter. Pyronic signals were excited at 860 nm and collected 

through a 525/50-nm filter. jRGECO1a signals were excited at 1,070 nm using a Fidelity II 

femtosecond laser (Coherent) and collected through a 595/50-nm filter. GCaMP6s, Pyronic 

and iATPSnFR functional data in Fig. 1 and Extended Data Fig. 6, as well as all dual 

imaging experiments with iATPSnFR and jRGECO1a, were collected in resonant scanning 

mode (8-kHz line scan rat and bidirectional scanning) and were volumetrically imaged at a 

resolution of 128 × 128 (3 × 3 μm) with 68 z-sections (3-μm steps, and effective frame rate 

of about 100 Hz). Dual imaging experiments, representing all other datasets using Pyronic 

and jRGECO1a, were collected in galvo scanning mode alternating between 1,070-nm and 

860-nm lasers line by line at a resolution of 32 × 32 (12 × 12 μm) with 15 z-sections (12-μm 

steps and effective frame rate of about 15 Hz). In CsChrimson activation experiments, the 

1,070-nm femtosecond laser was directed using a separate set of galvanometers than the 

imaging set, and was set to activate specific regions during planer imaging using the 920-nm 

laser imaging at 7 Hz. The 1,070-nm laser ran an activation pattern comprising up to 10 

ROIs in a sample in succession, with each ROI being scanned with a spiral pattern that was 5 

μm in diameter.

Mann et al. Page 7

Nature. Author manuscript; available in PMC 2023 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Quantification of iATPSnFR responses in whole brains

Standard flies expressing iATPSnFR pan-neuronally were prepared similarly to those for 

imaging experiments, except that the head capsule was fully removed and glued to the 

bottom of an imaging chamber before dissection. Flies were dissected in modified fly saline 

that contained 30 μM saponin to permeabilize the membranes to ATP. Whole volumes 

were collected as in standard resonant imaging sessions at 128 × 128 (3 × 3 μm) with 

68 z-sections (3-μm steps and effective frame rate of about 100 Hz). Standard fly saline 

containing 30 μM saponin was perfused across the sample for several minutes to establish 

baseline fluorescence. Then, 10 ml of fly saline containing 30 μM saponin and 0.1, 0.5, 1, 2, 

3 or 4 mM ATP was perfused over the brain. Change in fluorescence was measured as the 

per cent change from baseline to the peak during ATP perfusion and was normalized to the 

highest value observed for each individual brain.

Quantification of calcium, Pyronic and ATP coupling between ROIs

To measure the coupling between ROI activities in each fly, we first averaged the calcium, 

Pyronic or ATP signals from all voxels in each ROI to produce a single time series for 

each ROI and each sensor. We then computed the Pearson correlation of the time series 

of each ROI pair to generate a 60 × 60 correlation matrix for each fly that represents the 

couplings between ROIs. We averaged these correlation matrices across all flies to obtain 

representative correlation matrices (n = 12 flies for GCaMP6s, n = 10 for Pyronic, n = 

10 for iATPSnFR, n = 24 for dual-imaged jRGECO1a and Pyronic flies). To compare 

the correlation matrices obtained for these signals, we computed the Pearson correlation 

between the corresponding average correlation matrices.

Temporal frequency analysis of neural activity and metabolic flux correlations

Correspondence between neural activity and metabolic flux was measured at a range of 

frequencies between 0.01 Hz and 0.5 Hz. Using the SciPy open-source mathematical library 

in Python39,40, we applied a Tukey window to the brain signals and then performed a Ricker 

wavelet transform to decompose the signals into 30 frequency bands. At each frequency 

band, we measured the Pearson correlation between the filtered calcium and Pyronic or 

iATPSnFR signals for each ROI independently, and then averaged this correlation over all 

ROIs and all flies. We tested against spatially shuffled signals. To obtain the spatial shuffle, 

we randomly permuted the identity of the ROIs independently for the Pyronic or iATPSnFR 

and calcium signals in each fly. Error bars represent s.e.m. over n = 24 flies. Additionally, 

we low-passed and high-passed filtered one example calcium trace and its corresponding 

Pyronic or iATPSnFR trace by setting to zero the Fourier coefficients of these signals above 

and below 0.1 Hz, respectively, and computing the inverse Fourier transform of the resulting 

coefficients.

TTX application and effect quantification

The jRGECO1a and Pyronic signals were imaged for 1,000 s before TTX application. TTX 

was then added to the bath through the perfusion at a concentration of 1 μM. After a waiting 

period of 1,200 s, the brain was imaged again for another 1,000 s. Analyses were performed 

on n = 8 flies. The effect of TTX on the Fourier spectrum of the calcium and Pyronic 
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signals was measured in two ways. First, for each ROI we estimated variance by integrating 

the spectrum between 0.01 Hz and 0.5 Hz (the range of frequencies for which we could 

correctly estimate the spectrum on a recording of 1,000 s) before and after addition of TTX 

(n = 8 flies, error bars are s.e.m.). Second, to visualize the influence of TTX at different 

frequencies, we represented the relative power (difference between the power after addition 

of TTX and before addition of TTX) as a function of frequency, averaged over all flies 

and ROIs (n = 54 ROIs, error bars are 95% confidence intervals). We also measured the 

influence of TTX on the coupling between ROIs. For each fly, we computed the correlation 

matrix between ROI activity over three periods of 500 s, with two of the periods taken 

before the addition of TTX and one period taken after addition of TTX. We evaluated 

the self-consistency of each coupling before addition of TTX by measuring the Pearson 

correlation between the first two matrices, and we evaluated the effect of TTX on coupling 

by measuring the Pearson correlation between the second and third correlation matrices. We 

also measured the effect of TTX on the coupling between calcium and Pyronic signals in 

two ways. First, we computed the correlation of their correlation matrices before and after 

addition of TTX. Second, for each individual ROI, we measured the correlation of calcium 

and Pyronic signals before and after addition of TTX.

Chrimson activation

Before experiments, adult flies were put on fly food containing 1 mM all trans-retinal for 

2 days. Flies were prepared for CsChrimson activation by first removing the head capsule 

and gluing it to the base of a dish similar to that used for whole-fly mounts. The head 

removal substantially reduces background activity that would interfere with measurements, 

and provides a baseline of low activity with which to work. Heads are prepared in a manner 

otherwise identical to that described in ‘Fly preparation’ and perfused with the same saline 

solution as in other experiments. GCaMP6s and iATPSnFR were imaged using the standard 

galvos on a Bruker Ultima at 7 Hz using 920-nm light. Crimson was activated using the 

uncaging galvo light path on the microscope using 1,070-nm light. Five-μm ROIs were 

drawn on the relevant portions of the antennal lobes and pulses ranging from 10 to 100 ms 

were delivered during imaging. These pulses consisted of 5 spirals covering the 5-μm ROIs. 

In most cases, up to 10 ROIs were pulsed in sequence in any given experiment. The power 

of the laser was set such that a 10-ms pulse would deliver a minimal GCaMP6s response 

(1–10% change) of about 17 mW at the stage.

Computation of autocorrelation and spectra

To compute the temporal autocorrelation function of calcium, for each fly we z-scored the 

activity trace of each ROI independently (that is, subtracted the temporal mean and divided 

by the s.d.), computed the autorrelation function for each ROI on a window of 200 s, and 

averaged the resulting autorrelograms over ROIs and flies. To compute the power spectrum 

of calcium, for each fly and each ROI we subtracted the temporal mean activity, computed 

the spectrum, divided it by total variance of the ROI so as to preserve the shape of the 

spectrum but not its overall amplitude (total area under the spectrum curve is 1), and then 

averaged the resulting spectra across ROIs and flies. We fit a linear function to the log–log 

spectra of each fly to estimate the decay slope and s.e.m.
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Examination of behaviour-related fluctuations in neural and metabolic activity

To measure behaviour, we imaged the body of the fly with a c-mount camera (640 × 512 

pixels at 20 frames per s, Flir Blackfly S BFS-U3-04S2M-CS) with a 50-mm f./2.0 lens 

(Edmund Optics). Bouts of activity were manually scored using behavioural observation 

research interactive software (BORIS)41. Flies were scored as behaving if the proximal 

segments of any of the legs moved. The analyses below were performed on n = 12 flies 

for jRGECO1a signals, and n = 8 flies for Pyronic signals, all for 2,000 s. We predicted 

behaviour by fitting a logistic regression (a special case of generalized linear model) on the 

brain signals of all ROIs. To avoid overfitting, we used an L2 penalty of 1 × 105 on the 

weights of the logistic regression. We fitted the model weights on half of the recording and 

tested the model prediction on the other half for cross-validation (all predictions presented 

are from the testing phase). Before this analysis, to remove slow signal fluctuations that 

were not predictive of behaviour, we fitted for each ROI a 10-degree polynomial and 

subtracted this polynomial curve from the signal. To assess the predictability of behaviour 

from jRGECO, Pyronic and iATPSnFR signals, we computed a ROC curve and measured 

the AUC. To assess the predictive power of brain signals at different frequencies, we 

applied a Ricker wavelet decomposition to both brain signals and behaviour and fit a 

logistic regression model independently for each frequency band. To compare the spatial 

weight maps of the logistic regression with the smooth processes of descending neurons, we 

used n = 6 flies imaged at 1.2 Hz for GCaMP6s only. To test whether behaviour affected 

coupling between ROIs for jRGECO1a, Pyronic and iATPSnFR signals, we measured the 

average difference in coupling across all ROI pairs, between rest and behaviour, for each fly 

independently, and performed a two-tailed t-test to decide whether this average difference 

was different from 0.

Statistics

Comparisons of correlation matrices (Fig. 3c) were performed using a two-tailed paired 

t-test. AUC analysis (Fig. 4a) was performed using a one-tailed t-test against 0.5 (no 

predictive value). Comparisons of correlations during behaviour and at rest (Extended Data 

Fig. 9) were calculated using a one-tailed t-test between the respective correlation values for 

each ROI. All data were collected from distinct samples (flies for whole-brain imaging or 

ROIs for CsChrimson experiments).
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Extended Data

Extended Data Fig. 1 |. Normalized iATPSnFR responses in whole brains to ATP.
Normalized ∆F/F values for different concentrations of ATP measured in whole brains 

expressing iATPSnFR pan-neuronally. n = 10 flies, mean ± s.e.m.

Mann et al. Page 11

Nature. Author manuscript; available in PMC 2023 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2 |. Example traces and correlations of Pyronic, jRGECO1a and iATPSnFR.
a, Pyronic traces over an imaging session in different regions. b, A pair of traces that exhibit 

high correlation over time. c, Scatter plot of these two regions demonstrating correlation. d, 

A pair of traces that exhibit lower correlation over time. e, Scatter plot of these two regions 

demonstrating correlation. f–j, As in a–e, but with jRGECO1a. k–o, As in a–e, but with 

iATPSnFR.
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Extended Data Fig. 3 |. Correlation matrices of GCaMP6s, Pyronic and iATPSnFR.
a–c, Correlation matrices for GCaMP6s, Pyronic and iATPSnFR, reproduced and enlarged 

from Fig. 1, and labelling each individual region.
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Extended Data Fig. 4 |. Correspondence of functional networks derived from simultaneous 
jRGECO1a, Pyronic and iATPSnFR measurements.
a, Left, traces displaying iATPSnFR (green) and corresponding jRGECO1a signal (blue). 

Right, Pyronic signals (orange) and corresponding jRGECO1a signals (blue) across six 

different brain regions b, Correlation matrix derived from jRGECO1a in the simultaneous 

imaging experiments from a and Fig. 2. c, Correlation matrix derived from Pyronic in 

the simultaneous imaging experiments from a and Fig. 2. d, Scatter plot of the pairwise 

correlations between jRGECO1a and Pyronic. e–g, As in b–d, but with jRGECO1a and 

iATPSnFR. n = 23 flies for Pyronic and n = 9 flies for iATPSnFR. h–m, Comparison of 

jRGECO1a and Pyronic signals within a single brain region (saddle (SAD)). h, Traces of 

Pyronic and jRGECO1a signals including all frequency components. i, Pairwise comparison 

of Pyronic and jRGECO1a signals including all frequency components and the correlation 

between these signals. j, k, As in h, i, but filtered to include only low-frequency (<0.1 
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Hz) components. l, m, As in h, i, but filtered to include only high-frequency (>0.1 Hz) 

components.

Extended Data Fig. 5 |. Neural activity drives metabolic flux in the brain.
a, jRGECO1a (blue), Pyronic (orange) and iATPSnFR (green) traces in three different brain 

regions before (left) and after (right) application of TTX. b, Region-by-region correlations 

between jRGECO1a and Pyronic signals (orange) and between jRGECO1a and iATPSnFR 

signals (green), across all flies, before TTX application (top row) and after TTX application 

(bottom row). Mean ± s.e.m. c, GCaMP6s response to 100-ms activation pulse in flies that 

lack CsChrimson. n = 45 ROIs, mean ± s.e.m. d, As in c, but with iATPSnFR. n = 45 ROIs, 

mean ± s.e.m.
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Extended Data Fig. 6 |. Example model predictions of behaviour and CsChrimson controls.
a, Schematic of the data processing and analysis pipeline used: (i) traces of Pyronic, 

iATPSnFR, jRGECO1a and behaviour (movement of the legs); (ii) half of the dataset 

was used to train a logistic regression model relating neural activity and metabolic flux 

to behaviour; (iii) predicted behavioural outputs were generated using the withheld data 

and were compared to the actual behaviour during those time periods; and (iv) model 

prediction was evaluated by correlating predicted behaviour to observed behaviour. b, Left, 

four example flies showing the prediction based on the model for jRGECO1a (blue) with 

the corresponding behaviour trace (black). Correlation between signals shown above each 

trace. Right, weights for each ROI generated by the model shown on right (oriented as in 

Fig. 4c). c, As in b, but with Pyronic (orange). d, e, As in b, c, but with a different set of four 

flies, with jRGECO1a (blue), iATPSnFR (green) and behaviour trace (black). f, Correlation 
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between model weights derived from iATPSnFR and jRGECO1a. g, Correlation between 

model weights derived from Pyronic and jRGECO1a.

Extended Data Fig. 7 |. Frequency spectra of jRGECO1a, Pyronic, iATPSnFR and behaviour.
Normalized spectra from data presented in Fig. 4.
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Extended Data Fig. 8 |. Correlation of model weights for GCaMP6s and descending-neuron 
innervation.
a, Model weights for each brain region generated using GCaMP6s. b, The number of 

descending-neuron processes in each brain region (abbreviations defined as in ref. 32). c, 

Graphical representation of model weights, similar to Fig. 4c. d, Correlation between model 

weights and descending-neuron innervation by each region. e, Correlation between model 

weights derived from GCaMP6s and jRGECO1a.

Extended Data Fig. 9 |. Changes in correlations across regions during behaviour for both 
jRGECO1a and Pyronic.
a, Functional connectivity map of jRGECO1a during bouts of rest. b, Functional 

connectivity map of jRGECO1a during bouts of activity. c, Correlation of functional 

connectivity maps during resting and behaving bouts. Correlations increase across the vast 

majority of regions (P = 0.004, n = 12 flies, one-tailed t-test). d–f, As in a–c, but for Pyronic 

(P = 0.13, n = 7 flies, one-tailed t-test). g–i, As in a–c, but for iATPSnFR (P = 0.38, n = 13 

flies, one-tailed t-test).
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Metabolic and neural networks are highly correlated across the brain.
a, Top left, schematic of the preparation that allows two-photon imaging across the fly brain. 

Top right, cartoon of the imaged region of the fly brain. Bottom, schematic of a neuronal 

process, denoting the metabolic pathways that lead to ATP production, and the sensors 

that were used to measure changes in intracellular calcium concentration (GCaMP6s and 

jRGECO1a), pyruvate concentration (Pyronic) and ATP concentration (iATPSnFR). CAC, 

citric acid cycle. b–d, Matrices of pairwise correlations between brain regions. b, GCaMP6s. 

c, Pyronic. d, iATPSnFR. e–g, Scatter plots of the pairwise correlations between matrices. e, 

Pyronic versus GCaMP6s. f, iATPSnFR versus GCaMP6s. g, iATPSnFR versus Pyronic. n = 

12 flies for GCaMP6s, n = 10 for Pyronic, n = 10 for iATPSNFr.
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Fig. 2 |. Simultaneous measurements of neural activity and metabolic flux reveal correlations 
that are dominated by low frequencies.
a–f, Comparison of jRGECO1a and iATPSnFR signals within a single brain region (right 

superior medial protocerebrum (SMP-R)). a, Traces of iATPSnFR and jRGECO1a signals 

including all frequency components. b, Pairwise comparison of iATPSnFR and jRGECO1a 

signals, including all frequency components and the correlation between these signals. c, d, 

As in a, b, but filtered to include only low-frequency (<0.1 Hz) components. e, f, As in a, 

b, but filtered to include only high-frequency (>0.1 Hz) components. g, Pairwise correlations 

between iATPSnFR and jRGECO1a signals measured in each brain region, as a function 

of frequency (green trace) and shuffle control in which pairwise comparisons were done 

between brain regions with identities that have been shuffled (black trace). n = 24 flies, 

mean ± s.e.m. (shading). ROI, region of interest. h, As in g, but with Pyronic (orange). n = 

24 flies, mean ± s.e.m. (shading).
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Fig. 3 |. Neural activity drives metabolic flux in the brain.
a, Comparison of the variance of the signals of each ROI before and after TTX application, 

jRGECO1a (blue) (n = 20 flies), Pyronic (orange) (n = 8 flies) and iATPSnFR (green) (n 
= 20 flies), mean ± s.e.m. for each region. b, The relative reduction in signal power caused 

by TTX application, as a function of frequency across all brain regions and flies (n = 54 

regions, mean ± 95% confidence interval (shading)). c, Correlation of the correlation maps 

between flies before and after TTX application, across all brain regions, for jRGECO1a 

(calcium) (blue dots), Pyronic (pyruvate) (orange dots) and for iATPSnFR (ATP) (green 

dots) (mean ± 95% confidence interval) ***P < 0.0004, **P < 0.005. d, Schematic of 

optogenetic stimulation-imaging protocol. Top, cartoon of the imaged fly brain showing 

the whole-mounted brain and a detailed view of antennal lobe (AL) and imaged projection 

neurons (PN), with multiple stimulation ROIs indicated by black circles. Bottom, example 

of stimulation-imaging protocol, with CsChrimson activation (black) and imaging responses 

of either GCaMP6s (blue) or iATPSnFR (green). e, Left, GCaMP6s response to 10-ms 

CsChrimson activation (stimulation window denoted by black tick, not to scale). Frames 

collected during the stimulation window are not shown, as optical stimulation produces a 

large artefact (n = 141 ROIs, mean ± s.e.m.). Right, 10 s of imaging data from left (box) 

with exponential fit (black). f, As in e, but with a 50-ms activation pulse (n = 77 ROIs). 

g, As in e, but with iATPSnFR (n = 124 ROIs, mean ± s.e.m). h, As in g, but with a 

50-ms activation pulse (n = 123 ROIs). i, Normalized spectrum of calcium signals from data 
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collected for Fig. 4 (blue), with linear fit (red). AU, arbitrary units. j, Autocorrelation of 

calcium signal from data collected for Fig. 4.
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Fig. 4 |. Neural activity and metabolic flux are correlated with behaviour in specific regions.
a, Receiver–operator curve (ROC) showing a good prediction of behaviour across all flies, 

using models based on jRGECO1a (blue line) (area under curve (AUC) = 0.82, P < 0.0001, 

one-tailed t-test against 0.5), and poorer but significant prediction of behaviour using 

Pyronic (orange line) (AUC = 0.54, P < 0.05, one-tailed t-test against 0.5), and iATPSnFR 

(green line) (AUC = 0.59, P < 0.001) mean ± s.e.m. b, Comparisons of correlations 

between predictions of behaviour based on jRGECO1a (blue line), Pyronic (orange line) 

and iATPSnFR (green line) across a range of frequencies. c, Average weights of each ROI 

generated from the logistic regression model when computed at the peak frequency of 

correlation for metabolic flux and behaviour (0.04 Hz) mean ± s.e.m. Images are sagittal 

(left), coronal (middle) and axial (right) views of the central brain, and coloured by weight. 

A, anterior; D, dorsal; P, posterior; V, ventral. n = 12 flies for jRGECO1a, n = 8 flies for 

Pyronic, n = 13 flies for iATPSnFR.
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