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Positron emission tomography (PET) with a reduced injection dose, i.e., low-dose PET, is an 

efficient way to reduce radiation dose. However, low-dose PET reconstruction suffers from a low 

signal-to-noise ratio (SNR), affecting diagnosis and other PET-related applications. Recently, deep 

learning-based PET denoising methods have demonstrated superior performance in generating 

high-quality reconstruction. However, these methods require a large amount of representative data 

for training, which can be difficult to collect and share due to medical data privacy regulations. 

Moreover, low-dose PET data at different institutions may use different low-dose protocols, 

leading to non-identical data distribution. While previous federated learning (FL) algorithms 

enable multi-institution collaborative training without the need of aggregating local data, it is 

challenging for previous methods to address the large domain shift caused by different low-dose 

PET settings, and the application of FL to PET is still under-explored. In this work, we propose 

a federated transfer learning (FTL) framework for low-dose PET denoising using heterogeneous 

low-dose data. Our experimental results on simulated multi-institutional data demonstrate that our 

method can efficiently utilize heterogeneous low-dose data without compromising data privacy for 

achieving superior low-dose PET denoising performance for different institutions with different 

low-dose settings, as compared to previous FL methods.
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I. INTRODUCTION

Positron emission tomography (PET) is a functional imaging modality that measures 

molecular-level activities inside tissues and has wide applications in oncology, cardiology, 

neurology, and biomedical research. To obtain high-quality PET images for diagnostic 

purposes, a given dose of radioactive tracer is injected into patients, which inevitably 

introduces radiation exposure to both patients and healthcare providers. According to the 

principle of As Low As Reasonably Achievable (ALARA) [1], reducing the administered 

injection dose is of great interest to the patients, in particular for oncology applications 

where serial scans are performed to measure response to therapy. However, compared 

to full-dose PET, low-dose PET with a reduced injection dose often results in low signal-

to-noise ratio (SNR) and potential image artifacts in the reconstructed image, leading to 

negative impacts on the downstream clinical tasks.

To reduce the injection dose and to maintain the PET image quality, deep learning-based 

PET denoising methods have been developed [2]–[13] to generate full-dose PET image from 

low-dose PET image, demonstrating superior reconstruction performance when compared 

with conventional methods [14]–[16]. However, the superior denoising performance of deep 

learning-based methods often relies on a large amount of representative paired data, which 

could be prohibitively expensive to collect. One way to alleviate this issue is through 

building a centralized dataset with multi-institutional data, but the patient data privacy 

concern poses a major challenge to such a solution [17], [18].

Zhou et al. Page 2

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recently, federated learning (FL) addresses the data privacy issue by building a client-to-

cloud platform for different local clients to learn collaboratively using their local data and 

computing resources without sharing any private local data. Specifically, the cloud server 

periodically communicates with local clients to collect local models for aggregating a global 

model, and re-distributes to local clients for local updates. Instead of directly transferring 

local data for global training, the FL method only involves the communication of model 

parameters or gradients, thus solving the data privacy concerns.

In the context of low-dose PET imaging, the different low-dose settings with various 

injection doses of different institutions present data heterogeneity, leading to domain shifts 

between different institutions. Examples of PET data with different low-dose settings, 

simulating multi-institution scenarios, are illustrated in Figure 1. The noise level of 

reconstruction gradually increases as the dose level decreases across different institution’s 

settings, leading to potential domain shifts. Unfortunately, the generalization capability 

of the global model trained with classical FL algorithm, such as FedAvg [19], may be 

non-ideal under these conditions. Previous works have attempted to address the domain 

shift issues, but only focuses on image classification task and only consider small domain 

shift scenarios [20]–[23]. In the application of MR reconstruction using FL, Guo et al. 
[24] tried to address the domain shift issue by iteratively aligning the latent feature of 

UNet [25] between target and other client sites. However, their cross-site strategy requires 

the target client to share both the latent feature and the network parameter with other 

client sites in each communication rounds, which could result in data privacy concerns 

[26], [27]. Moreover, the cross-site strategy requires communications between local clients 

with their local data which may contradict the purpose of FL. The communication process 

during the training will also be tedious and expensive when the number of clients is large, 

requiring high-frequency communication of both model parameters and latent features. 

Similarly, Feng et al. [28] tried to address the domain shift issue by using a UNet [25] 

with a globally shared encoder for generalized representation learning and a client-specific 

decoder for domain-specific reconstruction. While achieving promising performance for the 

MR reconstruction task, the network architecture is limited to UNet or its variants due to 

the constraint in their FL algorithm designs. Moreover, instead of simple encoder-decoder 

structures, state-of-the-art deep learning-based image restoration networks often involve 

advanced designs, such as original resolution restoration [29], recurrent restoration [30], 

and multi-stage restoration [31]. Therefore, designing an FL algorithm that is not limited to 

specific network architecture while addressing the domain shift issue is an important task 

for medical imaging restoration. Furthermore, none of the aforementioned FL methods is 

for low-dose PET denoising and the application of federated learning for low-dose PET 

denoising is still highly under-explored.

To address these issues, we propose a federated transfer learning (FTL) framework for 

low-dose PET denoising using heterogeneous low-dose data. The general idea is to first 

obtain a global pre-trained model from collaborative training from multi-institution datasets. 

With a global model trained with large-scale and diverse data, it is then transferred to local 

institutions for fine-tuning, such that the domain shift issue can be mitigated with local 

data only training and better generalized to the local data domain. Thus, our FTL consists 

of two major steps. First, we employ a standard federated averaging method where the 

Zhou et al. Page 3

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models are independently trained at each institution and iteratively sent over to the central 

server for aggregation. After convergence, the pre-trained global model is downloaded by 

each institution for transfer learning on local low-dose data distribution. The proposed FL 

framework can be flexibly adapted to different denoising network architectures. From our 

experimental results on simulated multi-institutional data, we found our FTL, a simple yet 

efficient solution, can generate superior PET denoising results at different institutions with 

different low-dose settings, as compared to previous baseline methods.

II. RELATED WORKS

Low-dose PET Denoising.

Prior works on low-dose PET denoising can be categorized into conventional image post-

processing methods [14]–[16] and deep learning-based methods [2]–[13]. Conventional 

methods, such as Gaussian filtering, are standard post-processing procedures for PET 

denoising. However, with amplified noise levels under low-dose PET settings, these 

conventional methods are prone to over-smoothing the image and have challenges to 

preserve local structures. With recent advances in deep learning for natural image restoration 

[29]–[31], deep learning-based denoising methods have been developed for low-dose PET 

and have achieved promising performance. Kaplan et al. [5] used a 2D GAN [32] with UNet 

[25] as a generator to predict full-dose PET images from low-dose PET images. Wang et 
al. [3] further advanced the idea and used a 3D conditional GAN [33] to directly translate 

3D low-dose PET images to full-dose PET images. Similarly, Gong et al. [7] proposed to 

use a 3D Wasserstein GAN [34] which also achieved promising low-dose PET denoising 

performance. Based on previous GAN designs, Ouyang et al. [9] proposed to reinforce 

the denoising performance by incorporating patient-specific information. In addition to 

approaches using only the low-dose PET images as network input, low-dose PET denoising 

facilitated by other imaging modalities has also been investigated. For example, Xiang et al. 
[2] developed an auto-context CNN using both low-dose PET images and T1 MR images as 

inputs for full-dose PET generation. Similarly, Chen et al. [10] proposed to input low-dose 

PET images along with multi-contrast MR images into a UNet [25] for ultra-low-dose 

PET denoising. While deep learning-based methods have achieved promising denoising 

performance on low-dose PET, these previous works only investigated low-dose PET under 

single-institution with single-low-dose-level settings, where different institutions usually 

do not share the same low-dose protocol. Investigation on how to use multi-institutional 

low-dose data with different low-dose protocols while considering the data privacy issue to 

train models that can be generalized to different institutions is an important research topic 

and is still under-explored.

Federated Learning.

FL with a decentralized learning framework enables multiple local institutions to collaborate 

in training shared models, while maintaining their local data privacy [35]. Even though 

a classical FL algorithm, such as FedAvg [19], allows collaborative training without 

sharing data, it does not address the domain shift issue caused by the data distribution 

difference between different clients. In the classification task, recent studies mitigate this 

issue by keeping parts of the network parameters local, with solutions such as local 
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batch normalization [20] and keeping the last output layer local [21], [22]. However, these 

methods are limited to small domain shift, e.g. covariance shift, and may have sub-optimal 

performance when domain shift is large. To protect patient data privacy while enabling 

collaborative training, FL has also been applied to medical imaging tasks and demonstrated 

promising performance [24], [28], [36]–[39]. For example, Li et al. [38] applied the FedAvg 

[19] for the brain MR tumor segmentation task. Similarly, Feki el al. [37] investigated the 

use of FedAvg [19] for the chest X-ray COVID-19 classification task. However, none of 

these works consider the domain shift caused by the data heterogeneity across different 

institutions. Recently, for the fMRI classification task, Li et al. [39] investigated using 

federated adversarial domain alignment [40] to reduce the domain shift for improved 

classification performance. Guo et al. [24] proposed federated learning with cross-site 

modeling (FLCM) to address the domain shift issues in the application of MR reconstruction 

by iteratively aligning the latent feature distribution between the clients. However, their 

method requiring frequent communication between clients increases the communication cost 

and the risk of potential privacy leakage. As an alternative, Feng et al. [28] proposed to 

use a client-specific decoder to reduce the domain shift when reconstructing MR images. 

However, these methods require specific types of network architecture, i.e. the encoder-

decoder structure with a latent feature, and cannot be generalized to applications requiring 

other network architectures for optimal performance. For example, in the application 

of medical image reconstruction and restoration, cascaded/recurrent network design with 

fully-complete backbone network architectures have demonstrated superior performance 

as compared to encoder-decoder type networks [30], [41]–[44]. Therefore, it is desirable 

to develop a federated learning framework that can be adapted to networks with flexible 

architecture while addressing the domain shift issue. Furthermore, federated learning for 

low-dose PET denoising using heterogeneous low-dose data has not been well studied in 

previous works.
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Algorithm 1:

Personalized Federated Learning with Transfer Learning for PET Denoising.

III. METHODS

The general pipeline of our federated transfer learning (FTL) is illustrated in Figure 2. 

The FTL is a two-stage framework, consisting of collaborative training of a global model 

using all institution data with federated learning, and then using transfer learning to train 

individual models with local data only, such that the data privacy is preserved.

A. Federated Transfer Learning Framework

Denoting D1, D2, …, DN as low-dose PET datasets from N different institutions. Each local 

dataset Dn contains pairs of full-dose and low-dose PET 3D images, but with different 

low-dose settings. Within each institution, the local denoising model can be trained using the 

local data by iteratively optimizing:

ℒn = ∑
(x, y) ∈ Dn

Gn(x) − y 2
2, (1)

where Gn is the local denoising model at the nth institution, and parameterized by θGn. x 

and y form a low-dose and full-dose PET image pair fromDn. The L2 loss is computed 
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between the predicted full-dose image Gn(x) and the ground truth full dose image y. Since we 

assume the data collected at each institution uses different low-dose settings, non-identical 

data distribution is expected amongDn. Therefore, a locally trained denoising model may not 

generalize well to another institution’s low-dose PET data. One potential way to alleviate 

this issue is to train the denoising model using a combined dataset from N institutions, i.e.,
Dcomb  = D1 ∪ D2 ∪ … ∪ DN . However, it is infeasible to directly combine multi-institution 

data due to data privacy concerns that might prevent data sharing across institutions.

To address this issue and allow multiple institutions to collaboratively train personalized 

PET denoising models that perform well on their own data distribution, we use a two-stage 

framework. In stage 1, we employ a federated averaging method to obtain a global model. 

Assuming there are Q global training epochs and P local training epochs at each institution, 

the iterative optimization of local model parameter can be written as:

θGn
p + 1 θGn

p − α∇ℒn (2)

where ℒn is the denoising loss function defined in Eq. (1), and α is the learning rate in stage 

1. At the end of each global training epoch, the local model parameters θGn at each institution 

are uploaded to a central server for aggregating the local model updates. The central server 

updates the global model with local model updates by averaging the updated parameters 

from all local models:

θG
q = 1

N ∑
n = 1

N
θGn

q
(3)

where q denotes the q-th global epoch. After Q rounds of communication between local 

institutions and the central server, we can obtain a collaboratively-trained global model GA 

with parameter θGA
Q  by utilizing multi-institutional datasets while without directly accessing 

them.

In stage 2, the trained global model GA with θGA
Q  is downloaded by each institution 

for personalized fine-tuning. Assuming there are T fine-tuning training epochs at each 

institution, the iterative fine-tuning of local model can be written as:

θGn
t + 1 θGn

t − β ∇ℒn (4)

where t denotes the t-th fine-tuning epoch, and β is the learning rate in stage 2. After T 

epochs of training using the local datasetDn, we obtain the personalized models G1,...,GN 

with parameters of θG1
T , …, θGN

T . The algorithm is summarized in Algorithm 1.

B. Network Architecture and Implementation Details

In our experiment, we use a dual attention residual dense U-Net (DuAttRDUNet) as our 

PET denoising network [45]. The architecture details are illustrated in Figure 3. The 

DuAttRDUNet is a U-shape network with dual attention residual dense blocks (DuAttRDB) 

embedded at different resolution levels. The DuAttRDB consists of a densely connected 
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module [46], [47], a dual attention module [48], and a residual connection. Here, we set 

the number of input feature of each DuAttRDB to 64. Since PET is 3D imaging data 

and its FOV varies in the z direction, we implement a 2.5D DuAttRDUNet that takes five 

continuous axial slices as inputs and predicts the denoised central slice. We implemented our 

FTL in Python with Pytorch1. The Adam solver [49] was used to optimize the denoising 

network in both stages of the FTL. During the first stage training, we used a constant 

learning rate of 1e−4 and trained for 90 global epochs. The number of local epoch is set to 

2. During the second stage training, we used a reduced constant learning rate of 2e − 5 and 

trained the local model using local dataset for 10 epochs. The batch size is set to 8 in both 

stages.

C. Heterogeneous Low-dose Human Data

To simulate a multi-institutional dataset with heterogeneous low-dose settings for our study, 

we collected 175 subjects in our experiments. The subjects were injected with a 18F-FDG 

tracer and the whole-body protocol with continuous-bedmotion scanning was used. All data 

were acquired using a Siemens Biograph mCT PET/CT system. The 175 subjects were split 

into 120 subjects for training and 55 subjects for evaluation. The 120 subjects were further 

split into 3 groups with 40 subjects in each group and with no patient overlapping between 

groups. Each group was treated as one individual institutional data. To create heterogeneous 

low-dose data that vary between groups, we used uniform down-sampling of the patient 

list-mode data with down-sampling ratios of 20%, 40%, and 60% for the three groups, 

respectively. For the 55 subjects in the evaluation set, we also used uniform down-sampling 

of the patient list-mode data with down-sampling ratios of 20%, 40%, and 60%, such that 

each subject has three low-dose images for evaluation. In the evaluation set, 10 subjects 

with lung lesions were annotated on tumor regions at voxel-level which were used for the 

evaluation of tumor quantification. For both the low-dose and full-dose images, they were 

reconstructed using the ordered-subsets expectation maximization (OSEM) algorithm with 2 

iterations and 21 subsets, provided by the vendor. A post-reconstruction Gaussian filter with 

5mm full width at half maximum (FWHM) was used. The voxel size of the reconstructed 

image was 4.07 × 4.07 × 3mm3. The image size was 200 × 200 in the transverse plane and 

varied in the axial direction depending on patient height.

D. Evaluation Metrics and Baselines

For denoising evaluation, we computed the Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index (SSIM), and Normalized Mean Square Errors (NMSE) between the 

predicted full-dose image and the ground truth full-dose image. RMSE and PSNR stress the 

evaluation of intensity profile recovery, while SSIM focuses on the evaluation of structural 

recovery. To evaluate the denoising performance on important pathological regions, such as 

lung tumor, we also calculated the lesion region’s bias using:

Bias  = ∑m ∈ R Y m
pred  − ∑m ∈ R Y m

gt 

∑m ∈ R Y m
gt  (5)

1 http://pytorch.org/ 
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where R is the lesion region. Y pred and Y gtare the predicted and ground-truth full dose 

image, respectively. For comparative study, we compared our method against four previous 

medical image restoration with FL methods, including FedAvg [19], FLCM [24], FedPer 

[21], [28], and FedSP [28] without the contrastive regularization. For a fair comparison, we 

used the DuAttRDUNet as the denoising network in all the compared methods. In FedPer, 

the last output layer was set as the personalized layer and is local.

IV. RESULTS

The visual comparisons between our FTL and previous FL methods under 20%-count 

low-dose setting are shown in Figure 4. With the coronal view visualization, we can observe 

that the 20%-count low-dose image suffers from a high noise level due to insufficient counts 

in the acquisition. Comparing the full-dose to the low-dose image, we can observe that the 

noise causes artefactual hot spots across the chest, abdominal, and pelvic regions. While 

FedAvg can reduce the global noise, the artefactual hot spots remain in the liver and intestine 

regions (zoom-in regions in Figure 4). Similar observations can be found for the FLCM 

where the false positive hot spots presented in the original low-dose image still remain in 

the denoised image. As compared to previous methods, our FTL can generate reconstruction 

with intensity and structure best matched with the full-dose ground truth image, where the 

artefactual hot spots are eliminated in the liver, intestine, and cardiac regions by our method. 

In Figure 5, we show an additional visual comparison of our denoising performance under 

three different low-dose settings corresponding to three different institutional settings. As we 

can see, original reconstruction with a lower dose level leads to a higher noise level. The 

personalized denoising model from the FTL can consistently generate high-quality denoised 

images across various low-dose levels of different institutional settings.

The quantitative evaluation of different FL methods under different low-dose settings 

from different institutions is shown in Table I. In the 20%-count low-dose experiment, 

compared to the original low-dose reconstruction, our method can improve the image 

quality with NMSE decreased from 0.0292 to 0.0124 and PSNR increased from 25.86 

to 29.24 on average, outperforming the previous baseline methods. Similarly, in the 40%-

count low-dose experiment, our method achieves the best performance as compared to 

previous baseline methods, maintaining the NMSE lower than 0.0065 and PSNR over 

32.30. Comparing the experiments from 20%-count to 40%-count low-dose settings, the 

reconstruction improvement of our method is mainly due to the increase in dose level, where 

the PSNR already increased from 25.86 to 30.24 in the original reconstruction. Similar 

observations can be found in the 60%-count low-dose experiment. The evaluation of lesion 

region’s bias is summarized in Table II. In the 20%-count low-dose experiment, compared to 

the original low-dose reconstruction, our method can reduce the bias from 0.007 ± 0.023 to 

0.004 ± 0.015, better than the previous baseline methods. Similar observations can be found 

in both the 40%-count and 60%-count low-dose experiments.

For ablative studies, we first compared the performance of denoising models trained from 

scratch using only local data v.s trained using our FTL framework. In Figure 6, we 

demonstrate the visual comparison of low-dose reconstructions from denoising models 

trained from a single institution 20%count low-dose paired data and trained from our FTL. 
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As we can see, while the denoising model trained with only local data can reduce the 

global noise level, it also reduces the hypermetabolic hot spot signals presented in the 

full-dose images. On the other hand, our FTL not only reduces the global noise level 

but also maintains the hot spot signals in the final reconstructions. The corresponding 

quantitative evaluation is summarized in Table III. When the denoising model is trained 

from scratch using only 20%-count low-dose paired data (1st row), it yields PSNR of 28.56 

and NMSE of 0.0144 when evaluating on the same institutional data. Due to the domain 

shift caused by different low-dose settings, when applying the denoising model trained from 

one institutional data to another institutional data, it yields inferior denoising performance. 

For example, when applying the model trained with 20%-count data to those 40%-count 

data (1st row and 2nd column), it only yields PSNR of 30.63 and NMSE of 0.0089 which 

is significantly lower than those of the model trained with 40%-count data and applied 

on the 40%-count data (2nd row and 2nd column). While training and applying the same 

institutional local data mitigates the domain shift issue, our FTL (last row) with diverse 

multi-institutional data collaborative training still yields the best performance with PSNR 

boost from 28.56 to 29.24 for the 20%-count experiment for example. The corresponding 

tumor region’s bias is reported in Figure 7. In the 20%-count experiment, the bias can 

be reduced by using the denoising models trained from scratch using only local data. Our 

FTL method provides further reduced mean bias and reduced standard deviation. Similar 

observations can be seen in both the 40% and 60% experiments.

We also studied the denoising performance when using different federated learning settings 

of FTL. A visual comparison example is shown in Figure 8. As we can observe, when 

training a denoising model using FL with multi-institutional data consisting of 40%-count 

and 60%-count data, directly applying it to the 20%-count data can reduce the global 

noise level but with noise-induced hot spots remain in the liver region. When the model 

was further fine-tuned with 20%count local data, the denoising performance further 

improves with these hot spots being eliminated. The corresponding quantitative evaluation 

is summarized in Table IV. A denoising model trained with FL and multi-institutional data 

consisting of 40%-count and 60%-count data yields PSNR of 28.43 when evaluating on 

20%-count data (1st row and 4th column), which is inferior to the performance of the 

denoising model directly trained on 20%-count from scratch (Table III 1st row and 4th 

column). However, when the model was further fine-tuned on 20%-count local data (2nd 

row and 4th column), it boosts the PSNR up to 29.15 which is better than the model trained 

from scratch. Similar observations can be found for the other FTL setups. The last row 

reports the performance of our FTL which was first trained using all three institutional local 

data with FL and then fine-tuned on individual local data, providing the best performance 

across different setups.

V. DISCUSSION

In this work, we developed a federated learning framework, called FTL, for low-dose PET 

denoising using simulated heterogeneous multi-institutional low-dose data. Specifically, the 

proposed FTL consists of two major steps. In the first step, a standard federated averaging 

is used, such that the denoising models are independently trained at individual institutions 

and iteratively sent over to the central server for model aggregation. During this process, 
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no local data is shared between institutions. After the convergence of federated training, the 

global model is re-distributed to each institution for transfer learning on local data only, 

generating a personalized denoising model for each institution such that the domain shift can 

be mitigated. Unlike previous works of FLCM [24] and FedPer [21], [28] that are bound to 

specific network architecture, our FTL framework allows flexible network architecture to be 

integrated.

From our experimental results, we demonstrated the feasibility of using our FTL for low-

dose PET denoising with three different low-dose settings corresponding to three different 

simulated institutions. First of all, as we can observe from Table I and Figure 4, our 

method generating three personalized denoising models for each individual institution can 

consistently outperform previous methods, including FLCM, FedPer, and FedSP that also 

generate three personalized models, one for each institution, as well as FedAvg that only 

generates one global model for all institutions. The lesion bias analysis, as shown in Table 

II, also demonstrated the FTL provides less bias quantification for lung lesions as compared 

to previous methods. Please note the lesion regions usually have higher SNR as compared 

to other regions, due to the higher amount of tracer concentration in these regions. Thus, the 

bias in the lesion region is already very low from the original low-dose reconstruction, e.g. 

0.007±0.023 from 20%-count data. Even under this condition, our method further reduced 

the bias to a lower level with reduced standard deviation as well. Second, one of the goals 

of our FTL is to address the domain shift issue. As we can observe from Table III, Figure 

6, and Figure 7, while training a denoising model from scratch using local data with limited 

diversity can avoid domain shift issues and provide reasonable denoising performance for 

each institution, our method yields a superior performance as compared to them since we 

utilize all institutional data with diverse distribution for the federated pre-training. Similar 

observations can be found in Table IV where the best performance is given when all the 

institutional data is used in the first step of FTL, and then fine-tune using local data. Even 

though our FTL achieves superior performance as compared to models trained from local 

data only, we think increasing the amount of local data and diversity may further boost our 

performance and may also potentially close the gap between the model trained from local 

data only and federated learning-based methods.

The presented work also has limitations with several potential improvements that are the 

subjects of our future studies. First, our work considers a three-institution scenario with 

three different low-dose settings, i.e. 20%-count, 40%-count, and 60%-count. However, the 

number of institutions could be more than three with more diverse low-dose settings. For 

example, Kaplan et al. [5], Ladefoged et al. [50], and Zhou et al. [51] used a 10%-count low-

dose setting. Wang et al. [3] and Whiteley et al. [52] deployed a 25%-count low-dose setting, 

while Ouyang et al. [9] considered a 1%count ultra-low-dose setting. Even though we only 

consider three different low-dose settings in our work, our proposed framework can be 

flexibly adapted to a different number of institutions with different low-dose settings. In fact, 

we believe that expanding the number of institutions with more diverse low-dose settings 

could potentially further improve our method’s performance. Second, we created our multi-

institutional low-dose PET dataset based on simulation which uses data all acquired from the 

Siemens mCT PET/CT systems and reconstructed with the OSEM reconstruction algorithm 

incorporated with point-spread-function (PSF) and time-offlight (TOF) information. In real-
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world applications, low-dose PET data from different institutions could be acquired with 

different vendor systems, reconstructed with different algorithms, and administered with 

different tracer types. Our pilot study mainly focuses on low-dose 18F-FDG PET with 

OSEM reconstruction which is the most common protocol in clinic PET and previous works 

of low-dose PET. In our future work, we will investigate the performance of our framework 

with data acquired from different tracer types, vendor systems, and reconstruction protocols 

from different institutions. We believe our method with transfer learning could potentially 

be adapted to changing elements in the system and their reconstruction algorithms. Thirdly, 

for a fair comparison, we performed all our experiments using the same denoising network 

architecture, i.e. DuAttRDUNet (Figure 3). While our framework is technically simple, it 

can be flexibly adapted with different advanced denoising networks that do not use U-shape 

design. For instance, the residual dense network based on the residual dense block without 

any downsampling operation has demonstrated superior performance in general image 

restoration tasks [46]. Similarly, SwinIR [53] based on residual Swin Transformer blocks 

[54] without any downsampling operation also showed significant advantages for image 

restoration tasks. Combining these networks with dual domain learning has also shown to 

yield superior medical image reconstruction performance [30], [44], [55]–[57]. Deploying 

these networks in our FTL could potentially further improve our denoising performance and 

will be an important direction of our future studies. Lastly, in our current experiment, we 

assumed a similar amount of data from each institution, thus we used a equally weighted 

parameter averaging strategy in our first stage’s training. In our future work with a more 

diverse and potential imbalanced amount of real data, we will investigate using weighed 

parameter averaging strategies [58] to further improve our method’s performance.

There are also additional challenges and considerations that the current work did not 

consider which would require attention in the future works on using FL for PET applications 

[59]–[61]. First, even though FL has demonstrated its effectiveness in protecting patients’ 

privacy by keeping institutional data locally, there are still privacy and security challenges 

in FL. For example, the parameter in the deep learning model still contains sensitive 

information that could allow one to reconstitute the patients’ information in the local 

training set [62]. Adversarial attacks from malicious parties can also degrade the deep 

learning model’s performance, thus causing severe consequences when a model is deployed 

in real clinical scenarios [63]. Additional data safety measurements in FL, such as model 

encryption, differential privacy, and adversarial defense against malicious clients, should be 

considered to better protect the data privacy [64], [65]. Second, the FL requires standardized 

data from different institutions to allow stable training of deep learning models. Different 

institutions may have different infrastructure and imaging data management protocols, 

resulting in imaging data stored in different formats. This introduces additional data 

heterogeneity that may affect the federated training’s convergence which could negatively 

impact the model’s final performance. Thus, appropriate data preprocessing and curation 

measurements should be performed to standardize the data before performing federated 

learning [66], [67]. Lastly, an appropriate system architecture is also required to perform 

FL. For example, local institutions need private or cloud-based computation resources in 

order to perform local training before federated training. Federated learning also requires 

internet connections with high-performance bandwidth between different institutions to 
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enable model parameter passing. Many institutions may still lack these resources to enable 

the proposed FL methods. Therefore, the design of FL algorithms should also consider 

different system architectures, especially when these resources are limited.

VI. CONCLUSION

We developed a federated transfer learning framework (FTL) for low-dose PET denoising 

using heterogeneous data. Our FTL aims to generate a personalized denoising model for 

each institution by first collaboratively training a global model using all institutional data 

while without sharing data during this process, and then fine-tune using each institution’s 

local data to alleviate the domain shift issue. Our experimental results demonstrate that 

our method can provide high-quality denoising reconstruction, superior to previous baseline 

image reconstruction with federated learning methods under simulated multi-institution with 

diverse low-dose settings.
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Fig. 1. 
Illustration of PET patient data with three unique low-dose settings, where 20%-count, 

40%-count, 60%-count low-dose settings were utilized to simulate the multi-institutional 

data, respectively. The corresponding full-dose PET is shown on the right of the low-dose 

PET. The lower the dose level, the higher the noise level in the reconstructed image, thus 

causing a non-identical data distribution.
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Fig. 2. 
The framework of the Federated Transfer Learning (FTL). During the first stage, with 

iterative communication between central server and local models in individual institutions, 

a global model collaboratively trained by all the institution data is obtained in a data-

preserving manner. During the second stage, the global model is downloaded by individual 

institution and further fine-tuned by the dataset hold by each institution.
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Fig. 3. 
The network architecture of Dual Attention Residual Dense U-Net (DuAttRDUNet) used in 

the FTL framework (Figure 2).
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Fig. 4. 
Qualitative comparison of low-dose reconstructions using different federated learning 

methods under the 20%-count low-dose setting (institution #1).
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Fig. 5. 
Qualitative comparison of FTL reconstructions on multi-institution dataset with 20%-count, 

40%-count, and 60%-count low-dose settings.
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Fig. 6. 
Visual comparison of low-dose reconstruction from denoising model trained from single 

institution data and from our FTL.
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Fig. 7. 
Comparison of lesion region’s bias from the original low-dose reconstruction (red bar), the 

reconstruction using model trained only from its own institutional data (green bar), and 

our FTL reconstruction (blue bar). We evaluated on three different institution data with 

20%-count (left), 40%-count (middle), and 60%-count (right) low-dose settings.
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Fig. 8. 
Visual comparison of low-dose reconstruction using different federated learning settings 

of FTL. Results on 20%-count low-dose data are shown here. 40% + 60% means two 

institution data used during the federated learning stage of FTL. → 20% means transfer 

learning on target institution data.
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TABLE II

COMPARISON OF LESION REGION’S BIAS FROM DIFFERENT FEDERATED LEARNING RECONSTRUCTION METHODS. WE EVALUATED 

ON THREE DIFFERENT INSTITUTION DATA WITH THREE DIFFERENT LOW-DOSE SETTINGS. STANDARD DEVIATIONS WERE REPORTED 

IN (). BEST RESULTS ARE MARKED IN BOLD.

20%-count 40%-count 60%-count

LDPET 0.007(0.023) 0.006(0.019) 0.002(0.010)

FedAvg [19] 0.006(0.021) 0.005(0.017) 0.001(0.009)

FLCM [24] 0.005(0.019) 0.004(0.015) 0.001(0.008)

FedPer [21] 0.005(0.018) 0.004(0.016) 0.001(0.008)

FedSP [28] 0.005(0.019) 0.004(0.014) 0.001(0.007)

Ours 0.004(0.015) 0.003(0.012) 0.001(0.004)
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