Pharmacological Activities and Safety of Ganoderma lucidum Spores: A Systematic Review

Review began 03/13/2023 Review ended 08/13/2023 Published 09/02/2023

© Copyright 2023

Thuy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distributior and reproduction in any medium, provided the original author and source are credited Nguyen Huu Lac Thuy 1 , Vo Linh Tu 2 , Le Nguyen Anh Thu 1 , Tran Thanh Giang 3 , Dao Tang Khanh Huyen 1 , Duong Hoang Loc 1 , Dao Ngoc Hien Tam 4 , Nguyen Tuan Phat $^{5,\,6}$, Hong-Han Huynh 7 , Thien Tan Tri Tai Truyen 8 , Quang-Hien Nguyen 6 , Uyen Do 9 , Dang Nguyen 10 , Truong Van Dat 1 , Le Huu Nhat Minh $^{11,\,12}$

1. Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM 2. Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM 3. Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, USA 4. Department of Regulatory Affairs, Asia Shine Trading & Service Company Ltd, Ho Chi Minh City, VNM 5. Faculty of Medicine, Hue University of Medicine and Pharmacy, Hue, VNM 6. Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA 7. International Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, TWN 8. Faculty of Medicine, Nam Can Tho University, Can Tho City, VNM 9. Science Department, Lone Star College, Houston, USA 10. Department of Medical Engineering, University of South Florida, Tampa, USA 11. Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, TWN 12. International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN 12. International Ph.D.

Corresponding author: Le Huu Nhat Minh, lehuunhatminh@gmail.com

Abstract

Ganoderma lucidum is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer. *G. lucidum* spore extracts are also reported to share similar bioactivities as extracts from its other parts. However, there is no systematic review that elucidates its pharmacological effect. Our aim is to comprehensively summarise current evidence of *G. lucidum* spore extracts to clarify its benefits to be applied in further studies. We searched five primary databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL). System for Information on Grey Literature in Europe (SIGLE), and Google Scholar on September 13, 2021. Articles were selected according to inclusion and exclusion criteria. A manual search was applied to find more relevant articles. Ninety studies that reported the pharmacological effects and/or safety of *G. lucidum* spores were included in this review. The review found that *G. lucidum* spore extracts showed quite similar effects as other parts of this medicinal plant including anti-tumor, anti-inflammatory, antioxidant effects, and immunomodulation. *G. lucidum* sporoderm-broken extract demonstrated higher efficiency than unbroken spore extract. *G. lucidum* extracts also showed their effects on some genes responsible for the body's metabolism, which implied the benefits in metabolic diseases. The safety of *G. lucidum* should be investigated in depth as high doses of the extract could increase levels of cancer antigen (CA)72-4, despite no harmful effect shown on body organs. Generally, there is a lot of potential in the studies of compounds with pharmacological effects and new treatments. Sporoderm breaking technique could contribute to the production of extracts should be used with caution as there was a concern about the increase in CA.

Categories: Endocrinology/Diabetes/Metabolism, Nutrition, Integrative/Complementary Medicine Keywords: sporoderm-broken extract, natural proteoglycan, antibacterial effect, ruizhi, biological activity, spore, reishi, lingzhi, ganoderma lucidum

Introduction And Background

In the past, lingzhi has been known as a magic herb as well as an auspicious symbol by the Chinese. It is also known as 'reishi,' shenzhi,' and 'xiancao,' which mean good fortune and mysterious power. Taoism played an important role in promoting lingzhi for either medical purposes or otherwise. In the ancient era, people used the fruit body of *Ganoderma lucidum*, which has bioactive compounds, including sterols, triterpenoids, fatty acids, and carbohydrates. *G. lucidum* is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer [1]. *G. lucidum* is known for its pharmacological activities that help promote human health [2].

G. lucidum spores are the fungus's mature germ cells, considered the essential and best part of the *G. lucidum* fruit body produced during the reproductive stage [5,4]. However, there are very few studies on *G. Lucidum* spore extract because the extracting procedure of the sporoderm is very difficult [5]. In recent years, thanks to spore-breaking techniques, the compounds inside *G. lucidum* spores have been studied more. *G. lucidum* spores have effects similar to the fruit body; moreover, their bioactive compounds, including sterols, tritterpenoids, fatty acids, and carbohydrates show higher concentrations than other parts of this fungus [3,6]. Understanding the biological effects, dosages, uses, pharmacological mechanisms, and safety of *G. lucidum* spores will help increase the effectiveness of using *G. lucidum* spores as well as developing products from them. However, no systematic review has been reported on these data.

Therefore, in our study, we summarize the existing evidence to assess the biological activity and safety of G. lucidum spores and their compounds with the help of a systematic review.

Review

Methods

Our systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) checklist (Appendix 1) [7]. Our review protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO) (ID number CRD42021279806).

Eligibility Criteria

All types of original studies (in vitro, in vivo, clinical trial, case reports, retrospective study), published in English up to September 13, 2021, which provided information about the pharmacological effect and/or safety of *G. lucidum* (lingzhi or reishi) spores, as well as their compounds, were included. Articles that only reported the efficacy of *G. lucidum* fruit bodies, mycelia, or other species of *Ganoderma* but not *G. lucidum*, and studies with unreliable data (such as abstract-only articles, conference papers, theses, posters, editorials, and letters) were excluded.

Search Strategies

The search was performed on the following five databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL), System for Information on Grey Literature in Europe (SIGLE), and Google Scholar by search terms given in Table 1. To find other relevant research, a manual search was conducted utilizing the references of the included articles.

How to cite this article

	Databases	Search Terms	Results
1	PubMed	("ganoderma lucidum" OR "G. lucidum" OR lingzhi OR reishi OR mannentake) AND (spore OR spores)	186
2	WHO Global Health Library (GHL)	("ganoderma lucidum" OR "G. lucidum" OR lingzhi OR reishi OR mannentake) AND (spore OR spores)	31
3	Virtual Health Library (VHL)	("ganoderma lucidum" OR "G. lucidum" OR lingzhi OR reishi OR mannentake) AND (spore OR spores)	181
4	Google Scholar	with all the words: spore with at least one of the words: "ganoderma lucidum" "G lucidum" lingzhi reishi mannentake in the title of article	261
5	SIGLE	"Ganoderma lucidum" OR "G. lucidum" OR lingzhi OR reishi OR mannentake	11

TABLE 1: Details of search terms in each database

Study Selection and Data Collection

We used the WebPlotDigitizer tool at https://automeris.io/WebPlotDigitizer/ to extract data from the chart. The search results were automatically filtered for duplicate entries using Endnote X8.1 (Clarivate Plc, London, United Kingdom). Two independent reviewers selected articles based on title and abstract screening, followed by full-text screening. Any disagreements were resolved through discussion. Two independent reviewers extracted data from each article. The main data were the preparation methods of *G. lucidum* spores and their pharmacological activities. Data were grouped by pharmacological activity and study design.

Risk of Bias

The modified Consolidated Standards of Reporting Trials (CONSORT) checklist [8] was used for in vitro studies (Appendix 2). Regarding the introduction, all of the studies included a structured summary of the trial design, methods, results, conclusions establishing the scientific background, explanation of rationale, and the specific hypotheses to be examined. Randomization criteria (to assess sample standardization) and protocol criteria were not applied to assess study quality. A study with a score of 9-10 was considered "low risk of bias", 7-8 was considered "moderate risk of bias", 5-6 was considered 'high risk of bias", and a score less than 5 was excluded from our systematic review.

In vivo studies were evaluated by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s tool (Appendix S) [9]. A "yes" judgment indicated a low risk of bias, a "no" judgment indicated a high risk of bias, and the judgment was considered "unclear" if insufficient details have been reported to assess the risk of bias properly. Cohort studies and case reports were evaluated using the Study Quality Assessment Tools (SQAT) [10] of the National Institute of Health. Ratings for each item ranged from 0 for potential flaws to 1 for good practice (Appendices 4, 5). Additionally, we followed SQAT's instructions to categorize "NA" (not applicable), "NR" (not reported), or "CD" (cannot determine). These were used for ambiguous fields when our investigators were not sure what score should be allotted, which suggested scientists should be cautious of potential flaws while adopting data from those studies. Each item received an equal number of points in the final percentage calculation. The scoring cut-off at 75% or above of the total points was considered "good" quality (low risk of bias), of which 75% and 43% were "fair" (moderate risk of bias), and articles that are 43% or below are considered "poor" quality (high risk of bias).

Clinical trials were evaluated using Risk of Bias 2 (RoB 2) from Cochrane (Appendices 6, 7) [11]. Ratings for each domain ranged from "low", "some concerns" to "high". A study that had all its domains rated "low" was considered "low risk of bias", if at least one domain was rated "some concerns" and none of them were "high", it was considered "some concerns" (moderate risk of bias), and if at least one domain is rated as "high" or the majority of domains are rated as "some concerns", it was considered "high risk of bias".

Results

A total of 661 articles resulted from the database search. Of these, 122 were duplicates and excluded. The remaining 539 articles are screened and finally, 90 articles were included in the final analysis. The PRISMA flow diagram is presented in Figure *1*. Among the included 90 articles, there were 40 in vitro studies, 26 in vivo studies, 18 studies that were both in vivo and in vitro, three clinical trials, two case reports, and one retrospective study.

FIGURE 1: PRISMA flow diagram of study selection

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis; WHO GHL: World Health Organization Global Health Library; SIGLE: System for Information on Grey Literature in Europe; VHL: Virtual Health Library

Activities Against Cancer

G. lucidum spores have a variety of activities in fighting against cancer. The long-chain fatty acids in ethanol extract from *G. lucidum* spores show cell proliferation inhibitory in vitro on HL-60 cells [12,13]. The ethanol extract of *G. lucidum* spores shas a stronger inhibitory activity on HUC-PC and MCT-11 cells in vitro than the aqueous extract [14]. Alcohol extract of *G. lucidum* spores can inhibit muna breast cancer cells (MDA-MB231) [15], non-small cell lung cancer (NCI-H460), colorectal adenocarcinoma (HCT-15) [16], and human leukemia THP-1 in vitro [17]. Triterpenoid extract from *G. lucidum* spores showed activities against cervical cancer Hela cells [18]. Spores of *G. lucidum* also suppress invasion of breast cancer eXDA-MB-231 and prostate PC-3 cells by inhibiting transcription factors [19,20]. *G. lucidum* spore extract show antitumormediated and immunomodulatory ability to significantly reduce PD-1 protein in B lymphocytes [21].

Studies showed that sporoderm-broken spores of *G. lucidum* (BSG) show excellent fighting capacity against cancer in vitro and in vivo. In an experimental mouse, oral administration of BSG (2, 4, and 8 g/kg per day) was able to significantly impede the growth of sarcoma S180, hepatoma, and reticulocyte sarcoma L-II cells. Tumor weight was significantly reduced by 14.1, 18.,5, and 16.6% compared with the control group [22]. In mice models inoculated with 4T1-breast cancer, treatment with BSG (400 mg/kg) showed a significantly lower tumor weight compared with the control group (387 \pm 23 mg vs. 512 \pm 45 mg, p < 0.05) [23]. Water extract of BSG (BSGWE) was seen to inhibit many cancer cell lines in vitro such as human osteosarcoma (HOS, U2, MGG5) [24,25], murine osteosarcoma (K7M2) [24], human colorectal cancer (HCT116, HT-29) [26,27], murine metastatic breast cancer (4T1) [25,28], murine sarcoma 180 (\$180) [29], HeLa [30,31], human CCA TFK-1 [52], and hepatocellular carcinoma (H22) [35].

In in vivo study, treatment of 0.5 mg BSGWE for four weeks significantly reduced tumor weight and volume of K7M2 cells transplanted into mice [24]. In a mouse model inoculated with HOS stably transfected cells into the tibia, treatment with BSGWE 600 mg/kg for 21 days significantly reduced tumor weight and volume (p < 0.01) [25]. In a HCT116 xenograft mouse model, six weeks of oral treatment with BSGWE inhibited tumor growth, tumor volume was reduced by 23.8 (dose of 150 mg/kg) and 47.8% (dose of 300 mg/kg). respectively (p < 0.05). The final tumor weight at surgery at both doses was significantly lower compared with the control group; 1.27 ± 0.19 g (150 mg/kg) and 1.00 ± 0.21 g (300 mg/kg) (p < 0.05 for both), respectively, in comparison with 2.22 ± 0.11 g (control) and 1.28 ± 0.23 g (treated with 5-FU) [26]. In an HT-29 xenograft mouse model, treatment with polysaccharide extracted from BSG (BSGP) (300 mg/kg) significantly reduced tumor mass and volume compared with the control group [27]. BSGP showed significant inhibition of S180 and 4T1 breast cancer growth in mice. In a mouse model inoculated with S180 cancer cells, 14 days of treatment with BSGP (100 and 200 mg/kg) significantly reduced tumor weight compared with the control group (physiological saline) (p < 0.05 and p < 0.01); inhibitor ratio was 49.1 and 59.9%, respectively [29]. Treatment with BSGP (10 mg/kg, 30 mg/kg, 100 mg/kg) for 21 days resulted in tumor weights (0.84 ± 0.32 g, 0.82 ± 0.34 g, 0.86 ± 0.16 g, respectively) compared with 1.45 ± 0.24 g in the control group (p < 0.01), while the tumor weight in cyclophosphamide (CTX) -treated group (30 mg/kg) was 0.88 ± 0.40 g [34]. Moreover, BSGP (200 mg/kg and 400 mg/kg) showed excellent effect when the tumo weight was lower than the group treated with paclitaxel (PTX), and significantly lower compared with the control group (p < 0.05) [28].

Ethanol extracts of BSG (BSGEE) significantly inhibited HCT116 cell proliferation in vitro (p < 0.01) in nude mice through multiple mechanisms [35]. The mean weights of tumor were 0.86 ± 0.28 (model group), 0.59 ± 0.20 (75 mg/kg), and 0.38 ± 0.23 g (150 mg/kg) (p < 0.05) [35]. A study examining the anti-tumor activity of BSGEE and ethanol/aqueous extract of BSC (BSGEA) showed that BSGEE inhibited the growth of all three lung cancer cell lines (A549, H441, and H661) with an IC50 of 150 µg/ml while BSGEA did not show efficacy up to 1000 µg/ml [36]. In the xenograft mouse model with human lung cancer A549 cells, treatment with BSGEE (200 mg/kg per day) for four weeks showed a mean tumor volume reduction of 39.35% compared with the control group (p < 0.05). The average tumor weight was 0.90 g in BSGEE-treated mice compared with 1.54 g in control mice (p < 0.05) [36].

A study comparing the anti-tumor activity of BSG and *G. lucidum* sporoderm-nonbroken (NBSG) showed that the purity of BSG was more active than that of NBSG against cancer cells including SGC-7901, HeLa [37]. In a mouse model subcutaneously implanted with mouse S-180, treatment of 2 g/kg BSG and NBSG showed a 31.5% and 22.4% reduction in tumor weight, respectively, compared with untreated controls [38]. Two kinds of *G. lucidum* spore powder, BSG and sporoderm-removed *G. lucidum* (RSG) were compared in vivo and in vitro antitumor activities. The results showed that RSG exhibited stronger tumor suppressor activities than BSG in in vitro, and in the zebrafish model, the inhibition rate on gastric cancer cell SGC-7901, lung cancer cell A549, and B lymphocyte cell line Ramos of RSG was 78%, 31%, and 83%, respectively [39]. RSG also showed greater inhibition of three types of human gastric cancer cell lines (MKN28, AGS, NCI-N87) than BSG [40].

G. lucidum oil, lipid substance extracted from the *G. lucidum* spore, also showed strong anti-tumor activity. In in vitro, *G. lucidum* oil inhibited human acute myeloid leukemia cell (HL-60), human chronic myeloid leukemia cell (K562), human gastric carcinoma cell (SGC7901) [41], human breast carcinoma cell (MDA-MB-231) [42], and miR-378M cell [43]. In in vivo, *G. lucidum* oil (1.2 g/kg) significantly suppressed the growth of murine sarcoma (S180) and murine hepatoma (H22) transplant tumors. The inhibitory rate was 30, 9% (p < 0.05) and 44.9% (p < 0.01), respectively [41]. *G. lucidum* oil (6 g/kg) once daily orally in mice significantly reduced tumor volume of aT11-breast cancer after 21 days (p < 0.05); there was no significantly different from PTX (10 mg/kg twice weekly) [42]. Notably, *G. lucidum* oil, due to improved absorption efficiency and cell storage of *G. lucidum* oil nanosystems. In mice, treatment with *G. lucidum* oil 40 nm-nanosystems for 22 days reduced the tumor volume from 891 mm³ to 286 mm³, a therapeutic effect similar to CTX (40 mg/kg) [44].

Treatment with *G. lucidum* spore in gynecological cancer patients showed stable disease status in three out of six cases, while in the placebo group, all patients showed progressive disease [45]. Administration of *G. lucidum* spore twice daily in five cases of gastric cancer showed increased serum levels of tumor marker, CA72-4 [46]. A clinical study of 48 breast cancer patients showed that administration of *G. lucidum* spore powder (1000 mg three times daily) for four weeks resulted in significant improvements in areas of physical, reducing anxiety and improving the quality of life. Immune parameters such as tumor necrosis factor alpha (TNF-q) and interleukin-6 (IL-6) were also improved [47].

Immunomodulatory Activities of G. lucidum Spores

The polysaccharides of *G. lucidum* spores (SGP) were the most reported components of immunological activity, β -D-(1 \rightarrow 3)-glucan SGP at concentrations of 1-100 µg/mL displayed a dose-dependent T lymphocyte-stimulating activity induced by concanavalin A [48]. The carboxymethylated derivatives of polysaccharides (1 or 100 µg/mL) also enhanced the proliferation of T and B lymphocyte, as it will be decreased as the level of substitution increased. Substitute compounds with lower levels seem to be more active than higher ones [49]. SGP showed a dose-dependent stimulation of lymphocyte proliferation in mice induced by concanavalin A and lipopolysaccharide [50].

G. lucidum mycelium extract induced human peripheral blood mononuclear cell (PBMC) and monocyte proliferation, while in contrast, G. lucidum spore extract suppressed PBMGs [51]. In addition, SGP significantly suppressed the proliferation of T cell in the association with increased IL-10 production [52]. For splenic mononuclear cells, treatment with SGP (at concentrations of 200, 400, and 800 mg/ml) significantly increased the proliferation of mononuclear cells and increased cytokine production (IL-2, TNF- α) [55]. In another study, microwave-treated SGP also significantly stimulated the secretion of cytokine production (TNF- α , IL-6) [54]. Extracts of G. lucidum spores (40 mg/ml) and 80 mg/ml) significantly enhanced the function of human polymorphonuclear neutrophils (PMNs) (both p < 0.05). Extracts of G. lucidum spores may have modulated human immunity through the β 38 mitogen-activated protein kinase pathway [55].

The immunological activity of *G. lucidum* spores has also been tested in animals. Especially, β -D-glucan as an immunostimulator has attracted much attention because it is beneficial for the treatment of cancers, β -D-(1 \rightarrow 3)-glucan (dose of 25 or 50 mg/kg) for four successive days in mice showed an enhancing effect on T lymphocyte proliferation, significantly different from the control group [48]. The carboxymethylated α -D-(1 \rightarrow 3)-glucan (dose of 25 or 50 mg/kg) also substantially enhanced the proliferation of T and B lymphocyte [49]. The native glucan, named PGL (doses of 25 mg/kg and 50mg/kg) had a strong effect on suppressing the antibody production in mice (p < 0.05). And the effect at a higher dose of 50 mg/kg was stronger than that at a lower dose of 25 mg/kg [56]. The degraded glucan showed a greater ability to increase T and B lymphocyte proliferation and production of antibodies against sheep red blood cells in mice than native glucan [57]. Intraperitoneal treatment of SGP (dose of 50, 100, 200 mg/kg) for 10 days significantly increased the concanavalin A-induced proliferative response of splenocytes. In addition, two-week transperitoneal SGP showed dose-dependent inhibitory activities on tumor growth of Lewis lung cancer in C57BL/6 mice [54].

Crude SGP and refined SGP have shown activity in the immune system of BALB/c mice. Crude polysaccharide and refined polysaccharide treatment for 30 days suppressed mitogen-induced splenocyte proliferation (concanavalin A or lipopolysaccharide) (p < 0.05). Interestingly, tumor-killing ability of NK cells was significantly promoted by crude polysaccharides (p < 0.01) but not refined polysaccharides while only refined polysaccharides promoted the activation of T cells [58]. Meanwhile, GLSB70 and GLSB50, two polysaccharide from aqueous extracts of NBSG can stimulate humoral immunity in mice immunosuppressed with CTX. GLSB50 and GLSB70 (300 mg/kg per day) showed extremely significant increases in HC50 values (serum half-hemolytic values) (p < 0.01 and 0.05, respectively). GLSB50 exhibited better and comparable activity to the positive control lentinan [59]. In another study, NK cell cytotoxicity and macrophage phagocytosis were also significantly enhanced by the lipid fraction, and G. lucidum oil (800 mg/kg). *G. lucidum* oil showed immune-enhancing effects on both innate and cellular immunity and significantly increased the intestinal Bacteroidetes/Firmicutes ratio [60].

BSG and RSG showed immunological activity in the zebrafish model as significantly improved neutrophils (p < 0.05 or 0.01) after 24 h, RSG exhibited greater activity. Moreover, only RSG was able to significantly promote macrophage formation (p < 0.01) [61]. In mice, β-glucan from BSG (dose of 75, 150, 300 mg/kg) could promote dinitrochlorobenzene to delayed ear swelling similar lentinan (150 mg/kg) (62). CTM-induced immune suppression and SGP can counteract CTX toxicity and restore the immune system. In mice treated with SGP (50 mg/kg/day) thymus weight was significantly higher than in mice treated with CTX alone (p < 0.05) [63].

A randomized controlled double-blind trial in postoperative patients with breast and lung cancer showed that treatment with *G. lucidum* spore powder (2000 mg, twice daily for six weeks) increased CD3+ CD4+ CD3+ HLADR- cell types, whereas decreased CD4+ CD25+ Treg, CD3+ HLADR+ cell types compared to control [64].

Anti-inflammatory of G. lucidum Spores

In vitro study that simulates digestion has shown that RSG can promote the release of the active ingredient more readily than other forms of *G. lucidum* spores so that the active ingredients are more easily absorbed. In particular, BSGWE has the best anti-inflammatory effect on the intestines [65].

BSGP significantly reduced the expressions of pro-inflammatory cytokines in mice fed with a high-fat diet. BSGP also had gut microbiota modulating activities (increased *Allobaculum, Blifidobacterium,* and decreased *Lachnospiraceae_UCG-001, Ruminiclostrdium*) [66]. Besides, pretreatment with a high dose of *G. lucidum* spores (1 g/kg per day) can relieve symptoms of sialoadenitis in non-obese diabetic mice [67]. Antioxygenation Activity of G. lucidum Spores and Reduction of Oxidative Stress

The radical scavenging activity of *G. lucidum* spore increased as the concentration increased. The percentage inhibition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical of triterpenoids was 62.16% at 400 µg/ml [68]. In another study, the percentage inhibition of DPPH radical of triterpenoids (600 µg/ml) reached a maximum (61.09 \pm 1.38%) [18]. A novel natural proteoglycan from BSG and NBSG also showed antioxidant activity with DPPH scavenging activity of 90.6 \pm 8.5% and 72.6 \pm 3.7%, and with ABTS scavenging effect of 73.3 \pm 6.7% and 47.2 \pm 5.9%, respectively [31].

The breaking techniques and extraction solvent for *G. lucidum* spores may affect free radical scavenging activity. Among the reported methods, maceration with spheres of various materials extract contained the most significant antioxidant activity, with 57.22 \pm 0.09% [69]. Phenolic and polysaccharide extracts also showed different antioxidant capacities [70].

In the reducing power assay, *G. lucidum* spore powder revealed high antioxidant activity, the reducing power of *G. lucidum* spore powder increased with an increase in drying temperature (from 95°C to 105°C), in some cases even higher than the antioxidant property of ascorbic acid [71].

In a rabbit ischemia/reperfusion (I/R) model, pretreatment with BSG was shown to minimize damage, inhibiting the negative effects of I/R on both response compliance. That mean BSG can reduce oxidative stress [72]. In the *Drosophila melanogaster* model, the *G. lucidum* oil-treated groups had mean and maximum lifespans significantly longer than untreated groups, under both normal and oxidative stress conditions. *G. lucidum* oil treatment markedly affected the activity of antioxidant enzymes such as increasing total superoxide dismutase and catalase activities and decreasing malondialdehyde levels [73].

Protective Activity of G. lucidum Spores

Studies showed that *G. lucidum* spores or extracts of *G. lucidum* spores have protective capabilities such as retinal protection [74], cardiac protection [75-77], hepatic protection [78], intestinal protection [79], neuroprotective effect [80], bone marrow cells protection [81] and efficiency on apoptosis [74,79,82].

Organ protection against apoptosis by pre-treatment with *G. lucidum* spores has been observed in in vivo studies. Pre-treatment with *G. lucidum* spores (50, 100, 150 mg/mL, for 19 days) showed a dose-dependent reduction in the splenic index and significantly different apoptosis compared with the model group (p < 0.05) [82]. *G. lucidum* spore lipid administration inhibited N-methyl-N-nitrosourea-induced retinal photoreceptor apoptosis in vivo (p < 0.01 on days 1 and 3) [74]. SGP shows promising protective activities against PTX-induced small intestinal barrier injury by inhibiting apoptosis, and promoting small intestinal cells' proliferation [79].

Pre-treated G. lucidum spore oil (5mL, @P188/PEG400) nanosystem four to eight hours before X-ray irradiation protected H9C2 cells from X-rays (16 Gy) (cell viability of H9C2 cells increased to 101.4-112.3%. Moreover, treatment with G. lucidum spore oil (5mL, @P188/PEG400) nanosystem in mice significantly reduced X-ray-induced necrosis [75]. G. lucidum extracts also increased heart function [76,77].

In a mice model of cadmium chloride (CdCl2)-induced hepatotoxicity (3.7 mg Cd (II)/kg, i.p.), seven days of pre-treatment with *G. lucidum* spore reduced liver enzymes (Alanine transaminase (ALT), aspartate aminotransferase (AST)) and liver weight/body weight ratio [78]. In the nervous system, pre-treatment with a high dose of *G. lucidum* spores (8 g/kg) was shown to help protect neurons from apoptosis, and ameliorate cognitive dysfunction in rats undergoing intracerebroventricular injection of streptozotocin procedure [80]. In vivo trials in mice showed that *G. lucidum* spores could protect bone marrow mesenchymal stem cell and promote hematopoiesis recover vin CTX-treated [81].

Antimicrobial Activities of G. lucidum Spore

The aqueous extract of *G. lucidum* spore had antibacterial properties against *Staphylococcus aureus*, *Escherichia coli*, *Enterococcus faecalis*, and *Klebsiella pneumoniae* (minimal inhibitory concentration (MIC) of 125 mcg/ml, 125 mcg/ml, less than 02 mcg/ml, and 62.5 mcg/ml, respectively [83]. The Mann-Whitney U test and Chi-square test showed that there was no significant difference between the antibacterial effect of mycelium and spores against P. intermedia and that both mycelium and spores were effective (MIC of 5.64 and 3.62 mcg/ml, respectively [84]. Besides, topical application of *G. lucidum* spore powder or aqueous or organic solvents also showed antibacterial effects [85].

The antibacterial effect against *S. aureus*, *E. coli* was also tested with different extracts from *G. lucidum* spores. The extracted triterpenoids showed that the diameter of the inhibition zone for both bacteria was significant [18]. Chitosan from *G. lucidum* spore powder obtained through both thermal deoxidation, (TCD) and emerging ultrasonic-assisted deoxidation (USAD) also displayed enhancement of antibacterial zone against both *E. coli* and *S. aureus*, USAD extraction showed higher activity [86]. A novel natural proteoglycan from cracked (proteoglycan-C) and uncracked *G. lucidum* spore powder (proteoglycan-UC) also showed activity against these two bacteria [31].

The antibacterial activity of BSG and spores lipid was tested in a mice model against infection with *Mycobacterium tuberculosis*. The mean bacterial load at week 24 was approximately 2.5 log10 CFU in the lungs, and more than 4 log10 CFU in the spleen, showing significant statistical difference compared to the control group [87].

Metabolism and G. lucidum Spore

G. lucidum spore and its extraction are considered to be potential in hypoglycemic and hypolipidemic activities. These activities were presented by blood glucose level [88-90], glycated hemoglobin (HbA1c) [89] and blood total cholesterol (TC), triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) levels [78,88-91].

In glycemic metabolism, in vitro studies show that *G. lucidum* spore powder extracts such as triterpenoids or proteoglycan can modulate insulin sensitivity in insulin-resistant HepG2 cells and reduce glucose concentration [31,68]; moreover, oligosaccharide of *G. lucidum* spore can be considered to use as an effective prebiotic [92]. In in vivo studies, treatment with resistant starch spores (10.5 g/kg bw/day) in diabetic rats reduced blood glucose level by 21.9% in week 3, and it was also significantly lower than the model group (p < 0.05) [88]. In the streptozotocin (STZ)-induced diabetic rats model, there was a significant reduction in blood glucose in the *G. lucidum* spores group (25.98 ± 5.20 mmol/L, vs 30.08 ± 3.13 mmol/L, p < 0.05). HbA1c decreased by 6% in the *G. lucidum* spores group compared with the STZ group (25.98 ± 5.20 mmol/L vs 30.08 ± 3.13 mmol/L, p < 0.05). HbA1c decreased by 6% in the *G. lucidum* spores group compared with the STZ group (but no significant difference) [89]. Treatment of *G. lucidum* spores levels in the intervention group and model group were 24.31 ± 1.17 mmol/L and 32.22 ± 1.71 mmol/L, respectively [90]. In addition, by the effect of *G. lucidum* spore and BSGEE [91] or SCP [89,90]), the HDL-C value in the intervention group increased [88,91], and reduced serum level of TG, TC, and LDL-C [89,91]. Moreover, *G. lucidum* spore powder significantly inhibited body weight from increasing under a high-fat diet. *G. lucidum* spore powder may tend to reduce serum TG

while it had no effects on HDL [66].

Efficiency on Alzheimer's Disease

In the Morris water maze, RSG (360 and 720 mg/kg) ameliorated amyloid β (A β) deposition and Tau phosphorylation, and prevented the reductions of neurotrophin brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B receptor in the hippocampus in sporadic Alzheimer's disease rats. Therefore, BSG enhanced memory and showed potential for the prevention and treatment of Alzheimer's disease [95].

Wound-healing Activity of G. lucidum Spore

Skin wound healing assay performed on mice showed using *G. lucidum* oil increased collagen deposition in skin burn injury. Moreover, *G. lucidum* oil significantly accelerated skin wound healing and reduced levels of inflammatory cytokines [94].

Induction of Proliferator-activated Receptor Alpha Activity

Based on fold induction data, it is found that *G. lucidum* spore lipid potently and selectively induced the activity of PPARe. As a result, *G. lucidum* spore lipid may be the potential the in treatment of many diseases such as hyperlipidemia, modulating the immune reaction specifically, suppressing chronic inflammation [95].

Proliferation Enhancers

Ganoderma spores extract at 0.01% and 0.1% (wt/vol) significantly promoted embryonic stem cell growth (p < 0.05) [96].

Epilepsy Treatment

In vitro experiments showed the antiepileptic activity of *G. lucidum* spore. The expression of NT-4 in *G. lucidum* spore group was higher than model group (p > 0.01), and at 0.122 mg/ml concentration *G. lucidum* spore for best effects [97]. Ganoderic acids from *G. lucidum* also showed antiepileptic potential based on the evaluation of apoptosis, and BDNF and TRPC3 expression, especially at 80 µg/ml [98]. A retrospective study of 18 patients with epilepsy showed that using *G. lucidum* spore reduced the weekly seizure frequency from 3.1 ± 0.8 to 2.4 ± 1.2 (p = 0.04) [99].

Anti-aging Activity of G. lucidum Spore

The anti-aging effect of ganodermasides A and ganodermasides B from *G. lucidum* spores was shown through upregulation of UTH1 expression and extending the replicative life span of yeast [100].

The pharmacological activities of *G. lucidum* spore are listed in Table 2.

Author (Year)	Pharmacological activities	Intervention/ Control	Dose	Result (Mean ± SD)	Conclusion
in vitro					
			100 µg/ml	HL-60 growth = 117.35 \pm 19.56 (% of control) $^{(*)}$	
			150 µg/ml	HL-60 growth = 97.79 \pm 12.35 (% of control) $^{(^{*})}$	
Fukuzawa et al.,	Antitumor offect	Spore extract	200 µg/ml	HL-60 growth = 61.76 \pm 35 (% of control) $^{(*)}$	GLS could cause HL-
(2008) [12]	Antitumor enect		250 µg/ml	HL-60 growth = 23.68 \pm 24.7 (% of control) $^{(*)}$	early apoptosis
			300 µg/ml	HL-60 growth = 4.12 \pm 4.12 (% of control) $^{(*)}$	
		Control		HL-60 growth = 100 (% of control) (*)	
Xinlin et al., (1997)	Antitumor effect	GLSAE-SB	1000 µg/ml	$ \begin{array}{l} \label{eq:control} \text{OD} \ \text{value} \ (\text{Hela} \ \text{cell}) = 0.186 \pm 0.00038 \ (p < 0.01 \\ \text{vs. control}) \ \text{OD} \ \text{value} \ (\text{HepG2} \ \text{cell}) = 0.172 \pm \\ 0.0058 \ (p < 0.01 \ \text{vs. control}) \ \text{OD} \ \text{value} \ (\text{SGC-} \\ 7901 \ \text{cell}) = 0.201 \pm 0.0021 \ (p < 0.01 \ \text{vs.} \\ \text{control}) \ \text{OD} \ \text{value} \ (\text{HeG0} \ \text{cell}) = 0.286 \pm 0.005 \ (p \\ < 0.01 \ \text{vs. control}) \ \text{OD} \ \text{value} \ (\text{L210} \ \text{cell}) = \\ 0.487 \pm 0.0045 \ (p < 0.01 \ \text{vs. control}) \end{array} $	GLS was able to inhibit cancer cell lines such as Hela, HepG2, SGC-7901, HL60, and L1210
[01]		Control		$\begin{array}{l} \label{eq:constraint} \text{OD} \mbox{ value (Hela cell)} = 0.356 \pm 0.0046 \mbox{ OD} \mbox{ value (HegC2 cell)} = 0.342 \pm 0.0052 \mbox{ OD} \mbox{ value (SGC-7901 cell)} = 0.351 \pm 0.0053 \mbox{ OD} \mbox{ value (HL60 cell)} = 0.35 \pm 0.0049 \mbox{ OD} \mbox{ value (L1210 cell)} = 0.53 \pm 0.0048 \end{array}$	
Lu et al.,	Antitumor effect	Spore ethanol extract		$\label{eq:IC50} \begin{array}{l} \mbox{(HUC-PC cells)} = 280 \ \mbox{\mug/ml IC}_{50} \ \mbox{(MTC-11} \\ \mbox{cells)} = 234 \ \mbox{\mug/ml} \end{array}$	When compared to water extracts, ethanol
[14]		Spore water extract		IC_{50} (HUC-PC cells) = 500 $\mu g/ml$ IC_{50} (MTC-11 cells) = 465 $\mu g/ml$	a greater growth- inhibiting impact
Lu et al., (2004)	Antitumor effect	Ethyl acetate fraction	40 µg/ml	$ \begin{array}{l} \mbox{Proliferation human umbilical vein endothelial} \\ \mbox{cell} = 50.92 \pm 10.5 (\%) \ (p < 0.05 \ vs. \ control) \ (^{\prime}) \\ \mbox{Proliferation breast cancer MDA-MB231 cell} = \\ \mbox{26.31} \pm 5.26 \ (\%) \ (^{\prime}) \end{array} $	The alcohol extract of GLS has anti-breast cancer effects by anti-
[15]		Control		Proliferation human umbilical vein endothelial cell = $100 \pm 27.53 (\%)$ ^(*) Proliferation breast cancer MDA-MB231 cell = $100 \pm 42.30 (\%)$ ^(*)	proliferative of tumor cells and endothelial cells
Oliveira et al., (2014) [16]	Antitumor effect	Spore methanol extract		Gl ₅₀ (NCI-H460 cells) = 386.9 ± 11.15 μg/ml Gl ₅₀ (HCT-15 cells) = 280.8 ± 11.17 μg/ml	Methanolic spore extracts are considered highly effective against

			0mg/ml		
Sliva et			0.5 mg/ml	$ \begin{array}{l} \mbox{Migration (MDA-MB-231cells)} = 84.73 \pm 6.87 \\ (\%) {}^{(7)} \mbox{Migration (PC-3 cells)} = 63.7 \pm 8.07 \\ (\%) \\ (^{(7)} \mbox{Relative NF-kB activity} = 85.64 \pm 9.151 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 68.53 \pm 5.596 \\ (\%) \\ (^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} \mbox{Relative AP-1 activity} = 84.73 \pm 6.762 \\ (\%) {}^{(7)} Relative AP-1 $	GLS inhibited breast cancer cell motility in a
al., (2002) [19]	Antitumor effect	GLS	1.2 mg/ml	$ \begin{array}{l} \label{eq:migration} (\text{MDA-MB-231 cells}) = 22.9 \pm 14.1 ~(\%) \\ \end{tabular} \begin{tabular}{l} (^{1}) \end{tabular} & \text{Migration} (\text{PC-3 cells}) = 39.51 \pm 7.26 ~(\%) \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} & \text{Relative NF-RB activity} = 73.77 \pm 9.796 ~(\%) \end{tabular} \end{tabular} \begin{tabular}{l} (^{1}) \end{tabular} \end{tabular}$	dose-dependent manner
			2.5 mg/ml	$ \begin{array}{l} \mbox{Migration (MDA-MB-231cells) = 12.21 \pm 4.58} \\ (\%) \ ^{(1)} \ \mbox{Migration (PC-3 cells) = 16.12 \pm 2.42} \ (\%) \\ \ ^{(1)} \ \mbox{Relative NF-kB activity = 67.83 \pm 0.70} \ \ (\%) \ ^{(1)} \\ \ \mbox{Relative AP-1 activity = 46.15 \pm 3.496} \ \ (\%) \ ^{(2)} \end{array} $	
		Whole spores	2.5 mg/ml	$ \begin{array}{l} \mbox{Migration (MDA-MB-231cells) = 12.923 \pm 1.385 \\ (\%) \ (^{\uparrow}) \ NF-kB \ activity \ (\%) = 29 \pm 4.6 \ (\%) \ (p < 0.005) \ (^{\uparrow}) \ Migration \ (PC-3 \ cells) = 16.154 \pm 2.769 \ (\%) \ (^{\uparrow}) \ NF-kB \ activity \ (\%) = 35 \pm 14.5 \ (\%) \\ (p < 0.005) \ (^{\uparrow}) \end{array} $	
Sliva et al., (2003) [20]	Antitumor effect	Broken spores	2.5 mg/ml	$\begin{split} & \mbox{Migration} \ (\mbox{MDA-MB-231 cells}) = 28.615 \pm 4.154 \\ (\%) \ ^{(*)} \ \mbox{NF-kB} \ \mbox{activity} \ (\%) = 29 \pm 0.8 \ (\%) \ ^{(*)} \ \mbox{Migration} \ (\mbox{PC-3 cells}) = 6 \pm 0.462 \ (\%) \ ^{(*)} \ \mbox{NF-kB} \ \mbox{activity} \ (\%) = 2 \pm 0.2 \ (\%) \ (\rho < 0.05) \ ^{(*)} \end{split}$	Strong anti-cancer activity of GLS has been demonstrated against breast and prostate cancer cells
		Control	0 mg/ml	$\label{eq:migration} \begin{array}{l} \mbox{Migration} (\mbox{MDA-MB-231cells}) = 99.231 \pm 12 \ (\%) \\ \mbox{$^{(1)}$ NF-kB activity} \ (\%) = 100 \pm 5.7 \ (\%) \ (p < 0.05) \\ \mbox{$^{(1)}$ Migration} \ (PC-3 \ cells) = 98.769 \pm 10.616 \ (\%) \\ \mbox{$^{(1)}$ NF-kB activity} \ (\%) = 100 \pm 7.6 \ (\%) \ (\%) \\ \end{array}$	
Song et	Antitumor effect	GLSP + primary itumor effect macrophages (Mø)	400 µg/ml	The inhibiton rate (H22 cells) = 18.4 \pm 1.8 (%) (p < 0.01 vs control) $^{(^{*})}$	The MTT experiment demonstrated that GLSP+Mø significantly and dose-dependently reduced the growth of
al., (2021) [33]			800 µg/ml	The inhibiton rate (H22 cells) = 27.8 \pm 1.8 (%) (p < 0.01 vs control) $^{(^{\circ})}$	
		Control	0 µg/ml	The inhibiton rate (H22 cells) = 0 (%)	H22 cells
Wang et	Mediated immunomodulation and cancer treatment	GLS extract	0.5 mg/ml	Fold change in PD -1 protein = 0.38 ± 0.01 Fold change in PD -1 protein = 1.71 ± 0.01 % of PD-1 cells = 1.8 ± 0.01 (%) Fold change in CCL5 protein = 12.63 ± 2.73 (p < 0.5) Fold change in CCL5 protein = 35.37 ± 3.28 (p < 0.1)	G. lucidum could be used to develop novel immunomodulators to prevent and treat cancer along with many other illnesses
al., (2019) [21]		Control		Fold change in PD -1 protein = 0.92 ± 0.01 Fold change in PD -1 protein = 1.17 ± 0.01 % of PD-1 cells = 3.7 ± 0.01 (%) Fold change in CCL5 protein = 1.05 ± 0.01 Fold change in CCL5 protein = 0.89 ± 0.01	
Zhong et		BSGP		$\begin{split} &\text{IC}_{50} \text{ (MKN28 cells)} = 18.88 \pm 1.58 \text{ (mg/ml)} \text{ IC}_{50} \\ &\text{(NCI-N87 cells)} = 13.44 \pm 0.73 \text{ (mg/ml)} \text{ IC}_{50} \\ &\text{(AGS cells)} = 11.76 \pm 1.16 \text{ (mg/ml)} \end{split}$	RSGP may be a promising autophagy inhibitor in the
al., (2021) [40]	Antitumor effect	RSGP		$\begin{split} & \text{IC}_{50} \; (\text{MKN28 cells}) = 5.03 \pm 1.62 \; (\text{mg/ml}) \; \text{IC}_{50} \\ & (\text{NCI-N87 cells}) = 8.08 \pm 1.39 \; (\text{mg/ml}) \; \text{IC}_{50} \\ & (\text{AGS cells}) = 3.76 \pm 2.85 \; (\text{mg/ml}) \end{split}$	treatment of gastric cancer as it is more effective than BSGP at reducing gastric cancer cell viability
		Extract I (SB)		IC ₅₀ (HeLa cells) = 4.46 (mg/ml)	It was discovered that
Zhu et al., (2000) [30]	Antitumor effect	Extract I subjected to silica gel chromatography (Extract III)		IC_{50} (HeLa cells) = 0.75 (mg/ml)	extracts I and III from spores with fractured sporoderm inhibited cell proliferation in a dose-dependent way
		Ganoderma	0.4 µl/ml	Cell number (miR-378) = 136.36 \pm 6.06 (%) $^{(*)}$	The miR-378 cells'
Wu et al., (2012)	Antitumor effect	Epirubicin	2 µg/ml	Cell number (miR-378) = 88.25 \pm 10.23 (%) (p < 0.01 vs control) $^{(^{*})}$	sensitivity to epirubicin was considerably boosted by the
[43]		Ganoderma + Epirubicin	0.4 µl/ml + 2 µg/ml	Cell number (miR-378) = 28.03 \pm 4.16 (%) (p < 0.01 vs. control) $^{(*)}$	addition of <i>Ganoderma</i> oil
		TGF-β1	2 ng/ml	Number of cell migration = 170.9 ± 15.28 ^(*)	
Li et al.,	Inhibits	TGF-β1 + GLE	2 ng/ml + 400µg/ml	Number of cell migration = 48.72 \pm 7.28 (p < 0.01 versus TGF-β1 alone) $^{(^{*})}$	TFK-1 cells' TGF-1-
(2016) [32]	cholangiocarcinoma cell migration	TGF-β1 + GLE	2 ng/ml + 800µg/ml	Number of cell migration = 36.36 \pm 8.73 (p < 0.01 versus TGF- $\beta1$ alone) $^{(^{*})}$	induced migration was prevented by the GLS extract
		Control (DMSO)		Number of cell migration = 21.81 \pm 6.55 (p < 0.01 versus TGF- β 1 alone) $^{(^{\circ})}$	
Chen et				IC ₅₀ (K562 cells) = 1.13 mg/mL IC ₅₀ (K562	GBS oil caused dose- dependent cytotoxicity

al., (2016) [41]	Antitumor effect	Ganoderma spores oil		cells) = 2.27 mg/mL IC ₅₀ (K562 cells) = 6.29 mg/mL	in K562, HL60 and SGC-7901 cells
			100 µg/ml	Migration (H441 cells) = 81.02 ± 1.5 (% of control) (p < 0.05 vs control) (*)	
		E/E-BSG	200 µg/ml	Migration (H441 cells) = 63.18 ± 3.8 (% of control) (p < 0.01 vs control) ([*])	Lung cancer cell viability and migration were significantly inhibited by oily
			300 µg/ml	Migration (H441 cells) = 17.83 \pm 4.6 (% of control) (p < 0.001 vs control) (*)	
Chen et al., (2016) [36]	Antitumor effect	Negative control (0 µg/ml)		Migration (H441 cells) = 100 \pm 3.0 (% of control) (*)	
		E/E-BSG	10 µg/ml	Colony number (A549 cells) = 67.26 \pm 6.12 (% of control) (p < 0.05 vs control) $^{(*)}$	extracts of BSG
		E/E-SBGS	50 µg/ml	Colony number (A549 cells) = 2.29 \pm 1.53 (%of control) (p < 0.001 vs control) (*)	
		Negative control (0 µg/ml)		Colony number (A549 cells) = 100 \pm 10 (% of control) $^{(^{*})}$	
		40 nm-GLSO@NEs		IC_{50} (MGC803) = 0.15 ± 0.01 (µl/ml)	
			0.1 µl/ml	Early apoptotic cells (MGC803 cells) = 0 ± 0.91 (%) ⁽⁷⁾ Late apoptotic cells (MGC803 cells) = 5.04 ± 1.37 (%) ⁽⁷⁾ Migrated cell (MGC803 cells) = 76.27 ± 13.98 (%) ($p < 0.01$ vs. control) ⁽⁷⁾ Invaded cell (MGC803 cells) = 88.24 ± 2.51 (%) ($p < 0.01$ vs. control) ⁽⁷⁾	
Dai et al., (2021) [44]	Antiitumor effect	40 nm-GLSO@NEs	0.2 µl/ml	$ \begin{array}{l} \label{eq:2.1} \text{Early apoptotic cells (MGC803 cells) = } 9.62 \pm \\ 0.91 \ (\%) \ (p < 0.05 \ vs. \ control) \ ^{(1)} \text{Late apoptotic cells (MGC803 cells) = } 36.18 \pm 4.13 \ (\%) \ (p < \\ 0.01 \ vs. \ control) \ ^{(1)} \ \text{Migrated cell (MGC803 cells) = } 36.18 \pm 4.13 \ (\%) \ (p < \\ 0.01 \ vs. \ control) \ ^{(1)} \ \text{Migrated cell (MGC803 cells) = } 36.18 \pm 4.13 \ ^{(2)} \ (\phi < 0.01 \ vs. \ control) \ ^{(1)} \ \text{Invaded cell (MGC803 cells) = } 52.94 \pm 5.04 \ ^{(5)} \ (p < 0.01 \ vs. \ control) \ ^{(1)} \end{array} $	The anticancer efficacy of various- sized GLSO@NEs was strong, and there
			0.4 µl/ml	Early apoptotic cells (MGC803 cells) = 28.85 ± 1.84 (%) (p < 0.01 vs. control) ⁽¹⁾ Late apoptotic cells (MGC803 cells) = 39.39 ± 3.66 (%) (p < 0.01 vs. control) ⁽¹⁾ Migrated cell (MGC803 cells) = 17.79 ± 5.09 (%) (p < 0.001 vs. control) ⁽¹⁾ Invaded cell (MGC803 cells) = 23.98 ± 0.02 (%) (p < 0.001 vs. control) ⁽¹⁾	was no evident toxicity
		Control		Early apoptotic cells (MGC803 cells) = 0 (%) ^(*) Late apoptotic cells (MGC803 cells) = 2.75 ± 0.91 (%) ^(*) Migrated cell (MGC803 cells) = 100 ± 4.24 (%) ^(*) Invaded cell (MGC803 cells) = 100 ± 3.36 (%) ^(*)	
		Model		Fold change of control (PARP) = 1.02 ± 0.14 Fold change of control (caspase-3) = 1.02 ± 0.21	
Jiao et al.,		Antitumor effect GLSO	0.2 µl/ml	Fold change of control (PARP) = 0.32 ± 0.01 (p < 0.001 vs. model) Fold change of control (caspase-3) = 1.12 ± 0.14	In MDA-MB-231 cells,
(2020) [42]	Antitumor effect		0.4 µl/ml	Fold change of control (PARP) = 0.28 ± 0.01 (p < 0.001 vs. model) Fold change of control (caspase-3) = 2.13 ± 0.1 (p < 0.001 vs. model)	expression of Bax and caspase-3
			0.6 µl/ml	Fold change of control (PARP) = 0.226 ± 0.01 (p < 0.001 vs. model) Fold change of control (caspase-3) = 3.45 ± 0.3 (p < 0.001 vs. model)	
			0 mg/ml	Cell viability = 100 (% of control) Cell cycle distribution (G0/G1) = 52.6 (%) Apoptosis = 10.37 (%) Average migration cells = 143.48 \pm 15.21	
Li et al., (2017) [34]		Antiitumor effect BSGEE	0.64 mg/ml		
	Antitumor effect		1.6 mg/ml	Cell viability (24h) = 64.06 \pm 10.94 (% of control) (p < 0.01 vs. control) Cell viability (48h) = 50 \pm 6.25 (% of control) (p < 0.01 vs. control) Cell viability (72h) = 41.4 \pm 2.35 (% of control) (p < 0.01 vs. control) Cell cycle distribution (G0/G1) = 56.62 (%) Apoptosis = 18.15 \pm 2.59 (%) Average migration cells = 113.04	HCT116 cell growth was significantly lowered by BSGEE in a dose- and time- dependent manner
			4 mg/ml		

			10 mg/ml	Cell viability (24h) = 14.84 \pm 2.34 (% of control) (p < 0.01 vs. control) Cell viability (48h) = 8.59 \pm 1.57 (% of control) (p < 0.01 vs. control) Cell viability (72h) = 3.91 \pm 2.34 (% of control) (p < 0.01 vs. control) Apoptosis = 27 \pm 2.63 (%) Average migration cells = 23.91 \pm 6.52	
		Control	0 mg/ml	$\%$ cell viability = 100 \pm 0.5 (% of control)	
			1.25 mg/ml	$\%$ cell viability (24h) = 80 \pm 0.5 (% of control) (p < 0.01 vs. control)	Colorectal cancer
Na et al., (2017)	Antitumor effect	BSGWE	2.5 mg/ml	$\%$ cell viability (24h) = 75 \pm 0.5 (% of control) (p < 0.001 vs. control)	HCT116 cell viability was significantly lowered by BSGWE in
[20]			5 mg/ml	$\%$ cell viability (24h) = 70 \pm 0.5 (% of control) (p < 0.001 vs. control)	a time- and dose- dependent manner
			7.5 mg/ml	$\%$ cell viability (24h) = 68 \pm 1 (% of control) (p < 0.001 vs. control)	
Shi et al.,	Antitumor offect	RGLSP		$\label{eq:GGC-7901} \begin{array}{l} \mbox{IC}_{50} \mbox{ (SGC-7901 cells)} = 1.9 \mbox{ (mg/mL)} \mbox{ IC}_{50} \mbox{ (A549 cells)} = 2.526 \mbox{ (mg/mL)} \end{array}$	The three tumor cell lines were inhibited by RCLSR and RCLSR in
[39]	Anatamor circor	BGLSP		IC ₅₀ (SGC-7901 cell) = 9.774 (mg/mL) IC ₅₀ (A549 cells) = 7.923 (mg/mL)	a dose-dependent manner
			0 mcg/ml	Viability (24h) = 99.5 ± 1.5 (%) Viability (48h) = 98.74 (%)	
			12.5 mcg.ml	Viability (24h) = 77.2 ± 4.68 (%) Viability (48h) = 93.46 (%)	
		500	25mcg/ml	Viability (24h) = 85.71 ± 3.83 (%) Viability (48h) = 87.43 (%)	
		ESG	50mcg/ml	Viability (24h) = 82.65 ± 4.59 (%) Viability (48h) = 91.59 (%)	
			100 mcg/ml	Viability (24h) = 79.59 ± 3.82 (%) Viability (48h) = 92.71 (%)	
			200 mcg/ml	Viability (24h) = 85.71 ± 6.36 (%) Viability (48h) = 84.42 (%)	GLS extract (12.5-200 µg/mL) treatments for 24 or 48 hours had no
Su et al., (2018) [23]	Antiitumor effect	Model		PD-1 mRNA relative fold of change in tumor = 1.42 \pm 0.26 PD-1 µg/mg protein = 3.33 \pm 0.33 CTLA-4 mRNA relative fold of change in tumor = 1.37 \pm 0.29 CTLA-4 IOD/10 ⁶ pixel in tumor = 666 \pm 166	effect on the viability of 4T1 cells, suggesting that the anticancer activity of GLS extract was not directly mediated via
		ESGH	400 mg/kg	PD-1 mRNA relative fold of change in tumor = 0.71 \pm 0.08 (p < 0.05 vs. model group) PD-1 µg/mg protein = 1.67 \pm 0.083 (p < 0.01 vs. model group) CTLA-4 mRNA relative fold of change in tumor = 0.63 \pm 0.1 (p < 0.05 vs model group) CTLA-4 IOD/10 ⁶ pixel in tumor = 1066 \pm 300	cytotoxicity
		ESGL	200 mg/kg	PD-1 mRNA relative fold of change in tumor = 1.45 ± 0.13 PD-1 µg/mg protein = 2.16 ± 0.167 (p < 0.01 vs. model group) CTLA-4 mRNA relative fold of change in tumor = 0.92 ± 0.08 (p < 0.05 vs. model group) CTLA-4 IOD/10 ⁶ pixel in tumor = 400 ± 66.67	
Suictal		Model		IOD/10 ⁶ pixel = 5066 ± 2800	PTY and GLSP in
(2018)	Antitumor effect	SLP	200 mg/kg	IOD/10 ⁶ pixel = 800 ± 533	combination showed
[28]		SHP	400 mg/kg	$IOD/10^{6} \text{ pixel} = 533 \pm 400$	greater tumor control
			2 mg/ml	$\begin{split} \text{HOS cell viability (24h) = 125.84 (%) HOS cell} \\ \text{viability (48h) = 100.42 (%) HOS cell viability (72h) = 76.27 (%) U2 cell viability (24h) = 81.36 (%) U2 cell viability (72h) = 106.78 (%) MG63 cell viability (72h) = 102.96 (%) MG63 cell viability (24h) = 110.59 (%) MG63 cell viability (24h) = 110.59 (%) MG63 cell viability (72h) = 81.36 (%) HOS cell number = 312.33 \pm 21.25 (%) U2 cell number = 482 \pm 23.37 (%) \end{split}$	
Zhang et al., (2019) [25]	Antitumor effect	BSGWE	4 mg/ml	HOS cell viability (24h) = 67.37 (%) HOS cell viability (48h) = 40.67 (%) HOS cell viability (72h) = 10.17 (%) U2 cell viability (24h) = 66.1 (%) U2 cell viability (24h) = 66.1 (%) U2 cell viability (24h) = 30.51 (%) MG63 cell viability (24h) = 30.51 (%) MG63 cell viability (72h) = 24.15 (%) HOS cell cycle distribution (G2/M phase) = 16.5 ± 0.82 (%) U2 cell cycle distribution (G2/M phase) = 14.98 ± 1.12 (%) HOS cell cycle distribution (G2/M phase) = 14.98 ± 1.12 (%) HOS cell under = 180.67 ± 15.33 (%) U2 cell under = 124.67 ± 19.01 (%) Apoptotic cells = 3.69 ± 0.71 (%) Apoptotic cells = 8.86 ± 0.42 (%)	Osteosarcoma cell cycle progression at the G2/M phase was halted by BSGWE, which inhibited osteosarcoma cell proliferation and migration in a dose- dependent manner

			8 mg/ml	HOS cell cycle distribution (G2/M phase) =22.78 ± 0.73 (%) U2 cell cycle distribution (G2/M phase) = 21.23 ± 0.82 (%) HOS cell cycle distribution (G2/M phase) = 22.78 ± 0.73 (%) U2 cell cycle distribution (G2/M phase) = 21.23 ± 0.82 (%) Apoptotic cells = 62.8 ± 1.93 (%) Apoptotic cells = 32.14 ± 2.2 (%)	
		NC		$\begin{array}{l} \text{HOS cell cycle distribution (G2/M phase)} \\ = 11.42 \pm 1.02 \ (\%) \ U2 \ cell cycle distribution \\ (G2/M phase) = 8.9 \pm 0.47 \ (\%) \ \text{HOS cell number} \\ = 498.67 \pm 20.95 \ (\%) \ U2 \ cell cycle distribution \\ (G2/M phase) = 8.9 \pm 0.47 \ (\%) \ \text{HOS cell number} \\ = 498.67 \pm 20.95 \ (\%) \ U2 \ cell number = 713.33 \pm \\ 27.08 \ (\%) \end{array}$	
		Control		Apoptotic cells = 18.41 ± 2.97 (%) Apoptotic cells = 8.08 ± 0.27 (%)	
		GLP	0	Cell viability 24h = 98.75 ± 5	
Pan et al.,			2.5 mg/ml	Cell viability 24h = 71.86 ± 2.5	GLP induced
(2019)	Antitumor effect		5 mg/ml	Cell viability 24h = 63.75 ± 3.13	apoptosis of CRC cells
			10 mg/ml	Cell viability 24h = 48.75 ± 3.75	
		RMPI-1640	0	Inhibitory ratio (Sarcoma 180 cells) = 0 (%) Inhibitory ratio (PG cells) = 0 (%)	
Wang et al., (2012)	Immunological activity, antitumor effect	2002	100 mg/l	Inhibitory ratio (Sarcoma 180 cells) = 3.3 (%) Inhibitory ratio (PG cells) = 2.0 (%)	BSGP did not inhibit the growth of S180 cells and PG cells
		DOUP	400 mg/l	Inhibitory ratio (Sarcoma 180 cells) = 7.1 (%) Inhibitory ratio (PG cells) = 0.8 (%)	
		NC		Early apoptosis rate (HOS) = 4.41 ± 1.18 (%) Late apoptosis rate (HOS) = 5.29 ± 1.47 (%)	
He et al., (2020) [24]	Immunological activity, antitumor effect	RECIME	2 mg/ml	Early apoptosis rate (HOS) = 10.59 ± 2.06 (%) (p < 0.001 vs. control) Late apoptosis rate (HOS) = 9.71 ± 1.47 (%) (p < 0.001 vs. control)	BSGWE-induced osteosarcoma cell apoptosis
		BSGWE	5 mg/ml	Early apoptosis rate (HOS) = 21.76 ± 3.53 (%) (p < 0.001 vs. control) Late apoptosis rate (HOS) = 10.29 ± 2.06 (%) (p < 0.001 vs. control)	
			1 µg/ml	A570 = 0.71 ± 0.03 (p < 0.05 vs. control)	At doses of 1-100
Bao et al.,	Immunological activity	PSGL-I-1A	10 µg/ml	A570 = 0.85 ± 0.02 (p < 0.01 vs. control)	g/mL, the native glucan
[48]			100 µg/ml	A570 = 0.89 ± 0.01 (p < 0.001 vs control)	T lymphocyte
		Control	0 µg/ml	A570 = 0.64 ± 0.03	proliferation
			1 µg/ml	A570 (T cell) = 0.65 ± 0.02 (p < 0.01 vs. control) A570 (B cell) = 0.54 ± 0.02 (p < 0.01 vs. control)	
		PSG-CM-1	100 µg/ml	A570 (T cell) = 0.75 ± 0.03 (p < 0.001 vs control) A570 (B cell) = 0.65 ± 0.03 (p < 0.001 vs control)	
Bao et al		mmunological PSG-CM-2 ctivity	1 µg/ml	A570 (T cell) = 0.62 ± 0.03 (p < 0.05 vs. control) A570 (B cell) = 0.49 ± 0.02 (p < 0.05 vs. control)	The
(2001) [49]	Immunological activity		100 µg/ml	A570 (T cell) = 0.66 \pm 0.02 (p < 0.01 vs. control) A570 (B cell) = 0.54 \pm 0.01 (p < 0.01 vs. control)	derivatives promote the growth of T and B
		PSG-CM-3	1 µg/ml	A570 (T cell) = 0.57 ± 0.04 A570 (B cell) = 0.44 ± 0.05	lymphocytes
			100 µg/ml	A570 (T cell) = 0.61 \pm 0.03 (p < 0.05 vs. control) A570 (B cell) = 0.5 \pm 0.02 (p < 0.05 vs. control)	
		Control	0 µg/ml	A570 (T cell) = 0.55 ± 0.03 A570 (B cell) = 0.41 ± 0.05	
			1mcg/mL	Relative cell proliferation (%) = 68.36 ± 10.21 (%) (p < 0.001 vs. control) ^(*)	
		GLS extract	10mcg/mL	Relative cell proliferation (%) = 70.4 \pm 8.17 (%) (p < 0.001 vs. control) ^(*)	
			100mcg/mL	Relative cell proliferation (%) = 69.38 \pm 8.17 (%) (p < 0.001 vs. control) ^(*)	
Chan et	Immunclesia-I		1000mcg/mL	Relative cell proliferation (%) = 72.4489 \pm 7.14 (%) (p < 0.001 vs. control) ^(*)	PBMCs and monocytes proliferated
al., (2005) [51]	activity		1mcg/mL	Relative cell proliferation (%) = 120.41 \pm 8.16 (%) ^(*)	when exposed to GL- M, but GLS extract had a slight inhibitory
		GL-M	10mcg/mL	Relative cell proliferation (%) = 148.97 \pm 12.25 (%) (p < 0.01 vs. control) ^(*)	Impact
			100mcg/mL	Relative cell proliferation (%) = 153.06 ± 10.2 (%) (p < 0.01 vs. control) ^(*)	
			1000mcg/mL	Relative cell proliferation (%) = 266.32 \pm 27.55 (%) (p < 0.001 vs. control) ^(*)	
		Negative control		Relative cell proliferation (%) = 100 (%) ^(*)	

Chan et al., (2007) [52]	Immunological activity	GLS extract GL-SG Negative control (RPMI)			There was a significant suppression of T cell proliferation from the GLS extract- treated DC:T mixed lymphocyte reaction
		Unstimulated cells		TNF- α = 14.47 ± 13 (pg/ml) IL-6 = 111.47 ± 33	
			50 µg/ml	(pg/ml) TNF-α = 144.38 ± 19 (pg/ml) (p < 0.05 vs. control) IL-6 = 449.18 ± 42 (pg/ml) (p < 0.05 vs. control)	
Guo et al., (2009) [54]	Immunological activity, antitumor effect	GLSP	100 µg/ml	$\label{eq:TNF-a} \begin{split} &TNF-a = 251.87 \pm 31 \; (pg/ml) \; (p < 0.05 \; vs. \\ &control) \; IL-6 = 731.14 \pm 82 \; (pg/ml) \; (p < 0.05 \; vs. \\ &control) \end{split}$	GSG could stimulate the MAPKs signal pathway and cause the production of TNF- and
			200 µg/ml	$\label{eq:TNF-a} \begin{array}{l} \text{TNF-a} = 444.38 \pm 37 \; (pg/ml) \; (p < 0.05 \; \text{vs.} \\ \text{control}) \; \text{IL-6} = 1032.78 \pm 138 \; (pg/ml) \; (p < 0.05 \\ \text{vs. control}) \end{array}$	IL-6
		GSG + PMB		$\label{eq:TNF-a} \begin{split} &\text{TNF-}\alpha = 441.17 \pm 24 \; (pg/ml) \; (p < 0.05 \; \text{vs.} \\ &\text{control}) \; \text{IL-}6 = 1013.11 \pm 101 \; (pg/ml) \; (p < 0.05 \; \text{vs. control}) \\ &\text{vs. control}) \end{split}$	
			1 g/kg	Proliferative respone = 4346.82 (%)	
Yue et al.,	Immunological	Ganoderma spore	2 g/kg	Proliferative respone = 6612.71 (%)	When compared to the pileus extract, BSG
(2008)	activity, antitumor effect		4 g/kg	Proliferative respone = 4670.52 (%)	had higher growth-
		Control		Proliferative respone = 3560.69 (%)	Inhibiting properties
			0 mg/ml	Phagocytic activity of PMNs = 42.92 ± 10.25 (%) (p < 0.05 vs. control) Phagocytic activity of PMNs with p38 MAPK inhibitor = 42.88 ± 19.06 (%) (p < 0.05 vs. control)	
Hsu et al.,	Immunological	mmunological G. lucidum spores activity extract	40 mg/ml	Phagocytic activity of PMNs = 54.02 ± 16.875 (%) (p < 0.05 vs. control) Phagocytic activity of PMNs with p38 MAPK inhibitor = 50.07 ± 6.705 (%) (p < 0.05 vs. control) Activation ratio = 0.496 ± 0.687 (p < 0.05 vs. control)	The p38 MAPK pathway is activated by the G. lucidum extract, which then modifies human immunity by stimulating human PMNs
(2012) [55]	activity		80 mg/ml	Phagocytic activity of PMNs = 57.22 ± 12.27 (%) (p < 0.05 vs. control) Phagocytic activity of PMNs with p38 MAPK inhibitor = 54.12 ± 11.79 (%) (p < 0.05 vs. control) Activation ratio = 0.506 \pm 0.746 (p < 0.05 vs. control)	
			100 mg/ml	$\label{eq:phagocytic activity of PMNs} = 59.16 \pm 8.9~(\%) \\ (p < 0.05~vs.~control) Phagocytic activity of PMNs with p38 MAPK inhibitor = 48.15 \pm 9.67 \\ (\%)~(p < 0.05~vs.~control) \\ \end{tabular}$	
			0	$ \begin{array}{l} \mbox{Cell proliferation = 1 ± 0.05 (fold of control)$^{(')} IL-$$$ 2 production = 1.1 ± 0.03 (fold of control)$^{(')}$ $$ TNF-$$$ a production = 1 ± 0.2 (fold of control)$^{(')}$ } \label{eq:control} \end{array}$	
			200 µg/ml	Cell proliferation = 1 ± 0.05 (fold of control) (p < 0.05 vs. control) ^(*) IL-2 production = 1.8 ± 0.02 (fold of control) (p < 0.05 vs. control) ^(*) TNF- α production = 3.4 ± 0.2 (fold of control) (p < 0.05 vs. control) ^(*)	
Ma et al., (2008) [53]	Immunological activity	GLSP	400 µg/ml		GLSP significantly enhanced IL-2 and TNF-production
			800 µg/ml	$ \begin{array}{l} \mbox{Cell proliferation}=1.3\pm0.07 \mbox{ (fold of control) (p}\\ <0.05 \mbox{ vs. control) }^{(r)} \mbox{ IL-2 production}=4.5\pm0.19 \\ \mbox{ (fold of control) (p}<0.01 \mbox{ vs. control) }^{(r)} \mbox{ TNF-}\alpha \\ \mbox{ production}=5.6\pm0.23 \mbox{ (fold of control) (p}<0.01 \\ \mbox{ vs. control) }^{(r)} \end{array} $	
		LPS		A570 = 0.5 ± 0.02 (nm) ^(*)	
		ConA		A570 = 0.6 ± 0.04 (nm) (*)	
			50 µa/ml	$4570 = 0.55 \pm 0.12 \text{ (nm)}^{(*)}$	
		LPS+CGLP	oo µg/mi	A370 = 0.55 ± 0.12 (nm) 17	
			100 µg/ml	A570 = 0.62 \pm 0.05 (nm) (p < 0.05 vs. control) $^{(*)}$	GLP might enhance
Zhang et	Immunological	I PS+GI P	50 µg/ml	A570 = 0.61 ± 0.04 (nm) ^(*)	the proliferation of
al., (2011) [50]	activity	LFOTULF	100 µg/ml	A570 = 0.65 ± 0.05 (nm) p < 0.05 vs. control) ^(*)	lymphocytes stimulated by ConA or
		ConA+CGLP	50 µg/ml	A570 = 0.75 ± 0.02 (nm) (p < 0.01 vs. control) (*)	LPS
				A570 = 0.789 ± 0.001 (nm) (p < 0.01 vs. control)	

			100 µg/ml	(*)	
			50 µg/ml	A570 = 0.78 \pm 0.08 (nm) (p < 0.01 vs. control) (*)	
		ConA+GLP	100 µg/ml	A570 = 0.87 \pm 0.03 (nm) (p < 0.01 vs. control) $^{(*)}$	
		Water extract group	0.8 g	Indicator A = 0.64 \pm 0.08 (mg/mL) ^(*) Indicator B = 0.18 \pm 0.03 (mg/mL) (p < 0.05 vs. control) ^(*)	
Cai et al., (2021) [65]	Anti-inflammatory	Alcohol extract group	0.8 g	Indicator A = 0.72 \pm 0.06 (mg/mL) (p < 0.05 vs. control) ⁽¹⁾ Indicator B = 0.13 \pm 0.02 (mg/mL) (p < 0.05 vs. control) ⁽¹⁾	The intestinal anti- inflammatory activities were better in the water extract than they
		Glucose control group	0.8 g	Indicator A = 0.57 \pm 0.08 (mg/mL) (p < 0.05 vs. control) $^{(1)}$ Indicator B = 0.15 \pm 0.01 (mg/mL) (p < 0.05 vs. control) $^{(1)}$	were in the alcohol extract
Saavedra Plazas et al., (2020)		RM	1g	% inhibition DPPH = 47.85 \pm 0.07 (%) AB	
		BR	1g	% inhibition DPPH = 57.22 \pm 0.09 (%) $^{\text{B}}$	BR extract had higher
al., (2020)	Antioxidant activity	MBR1	1g	% inhibition DPPH = 45.13 \pm 0.03 (%) $^{\text{A}}$	antioxidant activity
		Control (Unbroken spores)	1g	% inhibition DPPH = 46.83 \pm 0.08 (%) AB	
Dai et al., (2019)	Protection against radiation-induced	GLSO@P188/PEG400 NS	0.5 µL/mL	$\begin{split} \text{Cell viability } 0.5\text{h} &= 94.43 \pm 4.89 \ (\% \ \text{of control})^{(^{1})} \\ \text{Cell viability } 4\text{h} &= 101.77 \pm 8.15 \ (\% \ \text{of control})^{(^{1})} \\ \text{Cell viability } 8\text{h} &= 112.36 \pm 3.67 \ (\% \ \text{of control})^{(^{1})} \end{split}$	H9C2 cells were effectively protected against X-rays (16 Gy) by pre-treating
[75]	heart disease	Control		Cell viability = 100 (% of control) ^(*)	GLSO@P188/PEG400 NS before IR for 4–8
		X-ray alone (16 Gy)		Cell viability = 70.2 \pm 7.9 (% of control) ^(*)	hours
			10 mg/ml	Antioxidant activity (95°C) = 1.32 ± 0.19 Antioxidant activity (100°C) = 2.14 ± 0.19 Antioxidant activity (105°C) = 2.66 ± 0.08 Antioxidant activity (AA°C) = 2.27 ± 0.06	
Nguyen and Nguyen (2015) [71]	Antioxidant activity	GLS powder	15 mg/ml	Antioxidant activity (95°C) = 2.48 ± 0.19 Antioxidant activity (100°C) = 2.93 ± 0.1 Antioxidant activity (105°C) = 3.06 ± 0.15 Antioxidant activity (AA°C) = 2.7 ± 0.04	The dried wall-broken spore powder had a strong antioxidant activity
			20 mg/ml	Antioxidant activity (95°C) = 3.07 ± 0.25 Antioxidant activity (100°C) = 3.7 ± 0.18 Antioxidant activity (105°C) = 3.67 ± 0.11 Antioxidant activity (AA°C) = 2.81 ± 0.06	
		GLSP	10 µg/ml	DPPH radical-scavenging activities = 21.91 \pm 1.39 (%) $^{(*)}$	
			50 µg/ml	DPPH radical-scavenging activities = 20.86 \pm 7.66 (%) $^{(^{\prime})}$	
			100 µg/ml	DPPH radical-scavenging activities = 25.04 \pm 7.3 (%) $^{(*)}$	
			200 µg/ml	DPPH radical-scavenging activities = 39.99 \pm 3.23 (%) $^{(*)}$	
			300 µg/ml	DPPH radical-scavenging activities = 45.91 \pm 8.35 (%) $^{(^{\prime})}$	
			400 µg/ml	DPPH radical-scavenging activities = 65.39 \pm 3.82 (%) $^{(^{\prime})}$	Triterpenoid extract
	Type 2 diabetes,	Control		Glucose consumption = 6.47 \pm 0.63 $(\text{mmol/L})^{(^{*})}$	with good biocompatibility
Shen et al., (2019)	mild DPPH radical scavenging activity,	Metformin	0.001 mol/l	Glucose consumption = $1.21 \pm 0.52 \text{ (mmol/L)}^{(*)}$	showed potential use for type 2 diabetes,
[68]	and inhibition of antioxidant activity		0.02 mg/ml	Glucose consumption = 0.94 ± 0.42 (mmol/L) ^(*)	mild DPPH radical scavenging activity,
		Triterpenoid	o.oo mg/mi	Glucose consumption = $1.1 \pm 0.37 \text{ (mmol/L)}^{(1)}$	and inhibition of antioxidant activity
			0.06 mg/ml	< 0.01 vs. control) (*)	
		Control		Glucose consumption = 0.83 \pm 0.83 (mmol/L)(")	
		Insulin	5x10 ⁻⁷ mol/l	Glucose consumption = 1.06 \pm 0.22 $\left(\text{mmol/L}\right)^{(*)}$	
		Metformin	0.001 mol/l	Glucose consumption = 2.29 \pm 0.18 (mmol/L) (p < 0.01 vs. control) $^{(^{*})}$	
			0.015 mg/ml	Glucose consumption = 1.35 \pm 0.06 (mmol/L) (p < 0.01 vs. control) $^{(*)}$	
		Triterpenoid	0.03 mg/ml	Glucose consumption = 1.82 \pm 0.12 (mmol/L) (p < 0.01 vs. control) $^{(*)}$	
			0.06 mg/ml	Glucose consumption = 2.21 \pm 0.28 (mmol/L) (p < 0.01 vs. control) $^{(*)}$	
		FB-Ph		DPPH scavenging activity = 0.14 \pm 0.01 (mg/ml) Reducing power = 0.62 \pm 0.02 (mg/ml) β -carotene bleaching inhibition = 0.26 \pm 0.03	

				(mg/ml)	
Heleno et		FB-Ps		DPPH scavenging activity = 0.22 ± 0.03 (mg/ml) Reducing power = 0.81 ± 0.03 (mg/ml) β- carotene bleaching inhibition = 9.03 ± 0.56 (mg/ml)	GLSP have the most antioxidant activity
[70]	Anuoxidant activity	S-Ph		DPPH scavenging activity = 0.58 ± 0.04 (mg/ml) Reducing power = 1.25 ± 0.04 (mg/ml) β - carotene bleaching inhibition = 1.61 ± 0.21 (mg/ml)	other polysaccharide extracts
		S-ps		DPPH scavenging activity = $0.15 \pm 0 \text{ (mg/ml)}$ Reducing power = $0.69 \pm 0.02 \text{ (mg/ml)} \beta$ - carotene bleaching inhibition = 2.02 ± 0.29 (mg/ml)	
Nayak et	Antimicrobial	Mycelium		Minimum inhibitory concentration = 5.64 \pm 8.5 (µg/ml)	The antimicrobial activity of mycelium
al., (2021) [84]	activity against P. intermedia	Spore		Minimum inhibitory concentration = 3.62 \pm 4.23 (µg/ml) (p = 0.9476. vs mycelium)	and spore of G. lucidum was comparable
Nayak et	Antimicrobial	BROWE	500 µg/ml	Percentage of sensitive = 65 (%) Percentage of resistant = 35 (%)	At 16-500 µg/ml G. Iucidum, 65% of
ai., (2015) [85]	activity	BSGWE	16 µg/ml	Percentage of sensitive = 65 (%) Percentage of resistant = 35 (%)	sensitive and 35% were resistant
Nayak et al., (2010) [83]	Antimicrobial activity	BSGWE		Minimum inhibitory concentration (Staphylococcus aureus) = 125 (µg/ml) Minimum inhibitory concentration (Escherichia coli) = 125 (µg/ml) Minimum inhibitory concentration (Enterococcus faecalis) < 2 (µg/ml) Minimum inhibitory concentration (Klebsiella pneumoniae) = 62.5 (µg/ml)	BSGWE displayed antibacterial activity
			600 µg/ml	DPPH radical-scavenging activities = 61.08 ± 1.22 (%) ^(*)	
	Antibacterial, antioxidant and anti- cancer	nd anti- GLSP	800 µg/ml	(L929 cell) Cell viability = $82.68 \pm 0.52 (\%)^{(*)}$ (HeLa cell) Cell viability = $51.77 \pm 0.74 (\%)^{(*)}$	The extracted triterpenoids have demonstrated the ability to inhibit DPPH radicals, antibacterial and anticancer
Shen et al., (2020)			6 µI	The average inhibition zone diameter for <i>E. coli</i> = 11.04 ± 0.12 (mm) (p < 0.05 vs. control) ⁽¹⁾ The average inhibition zone diameter for <i>S.</i> <i>aureus</i> = 11.74 ± 0.20 (mm) (p < 0.05 vs. control) ⁽¹⁾	
[18]			8 µl	The average inhibition zone diameter for <i>E. coli</i> = 11.69 ± 0.05 (mm) (p < 0.05 vs. control) ^(?) The average inhibition zone diameter for S. <i>aureus</i> = 11,83 ± 0.14 (mm) (p < 0.05 vs. control) ^(?)	
			0	The average inhibition zone diameter for <i>E. coli</i> = $9.10 \pm 0.11 \text{ (mm)}^{(1)}$ The average inhibition zone diameter for <i>S. aureus</i> = $9,13 \pm 0.09 \text{ (mm)}^{(1)}$	
		GLSP		Inhibition zone diameter <i>E. coli</i> = 0 (mm) Inhibition zone diameter S. aureus = 0 (mm)	
Zhu et al		C-T (surface chitosan obtained using thermochemical deacetylation)		Inhibition zone diameter <i>E. coli</i> = 16.9 ± 0.1 (mm) Inhibition zone diameter S. aureus = 16.4 ± 0.2 (mm)	Chitosan obtained
(2018) [87]	Antimicrobial activity	C-U (surface chitosan obtained using ultrasound-assisted deacetylation)		Inhibition zone diameter <i>E. coli</i> = 23.8 \pm 0.1 (mm) Inhibition zone diameter S. aureus = 21.3 \pm 0.1 (mm)	through both processes shows antibacterial potential
		C-C (commercial chitosan)		Inhibition zone diameter <i>E. coli</i> = 43.8 ± 0.2 (mm) Inhibition zone diameter S. aureus = 21.1 ± 0.3 (mm)	
		Proteoglycan-C	1 mg/ml	DPPH 90.6 ± 8.5 (%) ^(*) ABTS 73.3 ± 6.7 (%) ^(*)	
		Proteoglycan-UC	1 mg/ml	DPPH 72.6 \pm 3.7 (%) $^{(*)}$ ABTS 47.2 \pm 5.9 (%) $^{(*)}$	
		Control		Glucose concentration = $10.9 \pm 0.78 \text{ (mmol/L)}^{(*)}$	
		Metformin	10 ⁻³ mol/l	Glucose concentration = $10.55 \pm 0.87 \text{ (mmol/L)}$ (*)	
			10 mg/ml	Glucose concentration = 9.85 \pm 0.66 (mmol/L) $^{(*)}$	
		Proteoglycan-C	1 mg/ml	Glucose concentration = 10.2 \pm 0.52 $\left(\text{mmol/L}\right)^{(*)}$	
Zhu et al.,	Hyperglycemic,		0.1 mg/ml	Glucose concentration = 10.94 \pm 0.48 (mmol/L) (*)	Proteoglycan-UC has
(2019) [31]	antitumor and antioxidant activity		10 mg/ml	Glucose concentration = 9.98 \pm 0.74 $\left(\text{mmol/L}\right)^{(*)}$	and anti-bacterial
		Proteoglycan-UC	1 mg/ml	Glucose concentration = 10.42 \pm 0.78 (mmol/L) (*)	eneois
				Glucose concentration = 10.98 ± 0.35 (mmol/L)	

			0.1 mg/ml	(*)	
		Proteoglycan-C		Inhibition zone diameter E. coli = 20.8 (mm) $^{(1)}$ Inhibition zone diameter S. aureus = 27.2 (mm) $^{(2)}$	
		Proteoglycan-UC		Inhibition zone diameter E. coli = 20.1 (mm) (°) Inhibition zone diameter S. aureus = 25.2 (mm) (°)	
		Inulin		Growth rate at pH 2.5 in 0-2h = 0.086 (%) Growth rate at pH 2.5 in 2-4h = 0.043 (%)	Lactobacillus showed
Yang et al., (2020) [92]	Prebiotic effects	UB-080		Growth rate at pH 2.5 in 0-2h = 0.114 (%) Growth rate at pH 2.5 in 2-4h = 0.712 (%)	a better growth rate when using UB-O80 and B-O80 than with
		B-O80		Growth rate at pH 2.5 in 0-2h = 0.121 (%) Growth rate at pH 2.5 in 2-4h = 0.695 (%)	inulin
		SGPL + PTX (4 µM)	100 µg/ml	Apoptosis = 35.09 ± 2.9 (%)	
Li et al.,		SGPM + PTX (4 µM)	200 µg/ml	Apoptosis = 28.07 ± 5.37 (%)	SGP showed a potential protective
(2020) [79]	Induced intestinal barrier injury	SGPH + PTX (4 µM)	400 µg/ml	Apoptosis = 23.12 ± 1.66 (%) (p < 0.05 vs. PTX aroup)	effect against PTX- induced small intestine
		PTX (4 µM)		Apoptosis = 35.90 ± 3.8 (%)	barrier damage
		GSP	0	Apotosis rate % = 2.06	
		CSP	1ma/ml	Apotosis rato % = 40.49 ± 4.99	
		GGF	iiiig/iiii	Apotosis rate % = 20.28 ± 2.06 (n < 0.01	1 2204002 (414
Wang et	Induced apoptosis	GSP+DEVD		Approves rate % = 29.38 ± 2.06 (p < 0.01 compared with that of Ganoderma lucidum alone)	inhibitor) or PD98059 (ERK1/2 inhibitor)
[17]	THP-1 cells	GSP+IETD		Apotosis rate $\% = 36.08 \pm 4.13$ (p < 0.05 compared with that of Ganoderma lucidum alone)	active lipids of GLS- induced apoptosis in THP-1 cells
		GSP+LEHD		Apotosis rate % = 25.77 ± 3.61 (p < 0.01 compared with that of Ganoderma lucidum alone)	
		Model	0 mg/mL	Apoptotic rate (TUNEL) (%) = 10.1 ± 0.55 (%)	
		Blank control group	0 mg/mL	Apoptotic rate (TUNEL) (%) = 1.84 ± 0.66 (%)	
		Drug control group	150 mg/mL	Apoptotic rate (TUNEL) (%) = 2.23 ± 0.82 (%)	
		High dose group	150 mg/mL	Apoptotic rate (TUNEL) (%) = 2.4 ± 0.61 (%)	
		Moderate dose group	100 mg/mL	Apoptotic rate (TUNEL) (%) = 4.63 ± 0.88 (%)	In comparison to the
Wang et	Inhibitive effect on	Low dose group	50 mg/mL	Apoptotic rate (TUNEL) (%) = 6.52 ± 1.02 (%)	dose, and the model
al., (2014) [82]	apoptosis	Model	0 mg/mL	Splenic index (mg/g) = 2.6 ± 0.21	group, the apoptosis rate in the high dosage
		Blank control group	0 mg/mL	Splenic index (mg/g) = 3.87 ± 0.61	group was significantly
		Drug control group	150 mg/mL	Splenic index (mg/g) = 3.92 ± 0.63	lower
		High dose group	150 mg/mL	Splenic index (mg/g) = 3.14 ± 0.36	
		Moderate dose group	100 mg/mL	Splenic index (mg/g) = 2.85 ± 0.34	
		Low dose group	50 mg/mL	Splenic index (mg/g) = 2.76 ± 0.63	
		DMSO	50 ma/ml	Apontosis rate = $12.3 + 1.6 / (\%)$	
		стх		Apoptosis rate = 70.1 ± 15.17 (%) (p < 0.05 vs. DMSO) ^(*)	
		Co-treated		Apoptosis rate = 35.04 \pm 8.97 (%) (p < 0.05 vs. DMSO, p < 0.05 vs. CXT) $^{(*)}$	
		Pre-treated		Apoptosis rate = 25.23 \pm 1.67 (%) (p < 0.05 vs. DMSO, p < 0.01 vs. CXT) $^{(*)}$	
		DMSO		CFU-E = 15.77 ± 2.2	
Dec. et .	Protects bone	СТХ		CFU-E = 3.5 ± 0.54	GSL pre-treatment and co-treatment increased
Pan et al., (2019)	marrow mesenchymal stem	Co-treated		CFU-E = 4.96 ± 0.57	the proliferation and
[81]	cells and hematopoiesis	Pre-treated		CFU-E = 11.33 ± 1.35	apoptosis in CTX-
		DMSO		BFU-E = 45.6 ± 2.58	treated MSCs
		СТХ		BFU-E = 3.66 ± 0.98	
		Co-treated		BFU-E = 10.86 ± 1.17	
		Pre-treated		BFU-E = 35.9 ± 2.75	
		DMSO		CFU-GM = 91.06 ± 12.05	
		CTX		CFU-GM = 22.2 ± 3.65	
		Co-treated		CFU-GM = 31.43 ± 10.22	
		Pre-treated		CFU-GM = 52.1 ± 7.41	
		Untreated		Viability = 8.2 (%) (*)	

		Resveratrol	10 µM	Viability = 11 (%) (*)	
			1 µM	Viability = 8.9 (%) (*)	Canadamaaidaa A
Weng et	Anti-aging	Ganodermaside A	10 µM	Viability = 11.4 (%) ^(*)	and B regulated UTH1
al., (2010) [100]			100 µM	Viability = 9.4 (%) (*)	expression in order to extend the replicative
			1 µM	Viability = 9.1 (%) (*)	life span of yeast
		Ganodermaside B	10 µM	Viability = 11.1 (%) (*)	
			100 µM	Viability = 9.6 (%) (*)	
		DMSO		PRAP α fold induction = 0.09 ± 0.26 ^(*)	
		Silloo		PPAR-a fold induction = 4.1 ± 0.15 (n < 0.001	GLS induced the
Huang et	to do a data a stillate.	Wy14,643	50 µM	vs. control) (*)	expression of PPAR-α target gene carnitine
al., (2011) [95]	of PPARα	GS	0.01 %	PPAR-a fold induction = 1.97 \pm 0.21 (p < 0.01 vs. control) (*)	palmitoyl transferase- 1a in human carcinoma HepG2
		GS	0.10 %	PPARa fold induction = 6.28 ± 0.36 (p < 0.001 vs. control) ^(*)	cells
Li et al.,	Enhance of		0.01 %	% Change in Specific Growth Rate = 10.5% (p < 0.05)	GLS showed potential
(2013) [96]	embryonic stem cells	GLS	0.10 %	% Change in Specific Growth Rate = 7.7% (p < 0.01)	to improve mES cell proliferation
		Control		The expression level of NT-4 = $0.56 \pm 0.31^{(*)}$	The expression of
Wang et		Model		The expression level of NT-4 = $0.73 \pm 0.28^{(*)}$	neurotrophin-4 was
al., (2013) [97]	Anti-epileptic effects	GLS group 1		The expression level of NT-4 = 1 ± 0.21 ^(*)	in the GLS treated
-		GLS group 2		The expression level of NT-4 = $0.78 \pm 0.35^{(*)}$	group compared with the model group
		Normal control		Apoptosis rate = 8.6 ± 2.42	
				Apoptosis rate = 54.4 ± 0.08 (p < 0.05 vs.	
		Model group		normal control group) Apoptosis rate = 25.65 ± 0.405 (p < 0.05 vs.	
		L-GAS		model group) Apoptosis rate = 19.85 ± 6.125 (p < 0.01 vs.	
		M-GAS		other concentrations of GAs groups) Apoptosis rate = 32.25 ± 0.845 (p < 0.01 vs.	
		H-GAS		other concentrations of GAs groups)	
		Normal control		BDNF fluorescence intensity = 0.609 ± 0.073	
		Model group		BDNF fluorescence intensity = 0.679 ± 0.063 (P<0.05 vs normal control group)	GAs could exert a protective effect on hippocampal neurons by promoting neuronal survival and the
Yang et al., (2016) [98]	Anti-epileptic effects	L-GAs		BDNF fluorescence intensity = 0.756 ± 0.059 (P<0.05 vs model group)	
		M-GAs		BDNF fluorescence intensity = 0.916 ± 0.063 (P<0.01 vs other concentrations of GAs groups)	recovery of injured neurons
		H-GAs		BDNF fluorescence intensity = 0.85 ± 0.065 (P<0.01 vs other concentrations of GAs groups)	
		Normal control		TRPC3 fluorescence intensity = 0.662 ± 0.05	
		Model group		TRPC3 fluorescence intensity = 0.767 ± 0.091 (P<0.05 vs normal control group)	
		L-GAs		TRPC3 fluorescence intensity = 0.85 ± 0.065 (P<0.05 vs model group)	
		M-GAs		TRPC3 fluorescence intensity = 0.925 ± 0.065 (P<0.01 vs other concentrations of GAs groups)	
		H-GAs		I RPC3 fluorescence intensity = 0.913 ± 0.088 (P<0.01 vs other concentrations of GAs groups)	
in vivo					
		Ganoderma extracts	4 g/kg	$\label{eq:2.1} \label{eq:2.2} \begin{split} & \text{Inhibitory rate (S180 cells) = 39.1 (\%) (p < 0.05 \\ & \text{vs. control) Inhibitory rate (H22 cells) = 44.6 (\%) } \\ & (p < 0.01 \text{ vs. control)} \end{split}$	The proliferation of the
Chen et al., (2016) [41]	Antitumor effect in mice (n = 10)	Ganoderma spores oil	1.2 g/kg	$\label{eq:stability} \begin{array}{l} \mbox{Inhibitory rate (S180 cells) = 30.9 (\%) (p < 0.05 \\ \mbox{vs. control}) \mbox{Inhibitory rate (H22 cells) = 44.9 (\%)} \\ \mbox{(}p < 0.01 \mbox{ vs. control}) \end{array}$	S180 and H22 transplant tumors in mice was significantly inhibited by
		5-FU (positive control)	25 mg/kg	$\label{eq:2.1} \begin{split} & \text{Inhibitory rate (S180 cells)} = 54.1 \ (\%) \ (p < 0.01 \\ & \text{vs. control}) \ & \text{Inhibitory rate (H22 cells)} = 64.8 \ (\%) \\ & (p < 0.01 \ \text{vs. control}) \end{split}$	Ganoderma spores
Chen et al., (2016)	Antitumor effect in mice $(p = 10)$	E/E-SBGS	200 mg/kg daily	$\begin{split} & \text{Tumor volume (A549 cells) = 831.35 \pm 112.43} \\ & (\text{mm}^3) (\text{p} < 0.05 \text{ vs. control)} ^{(1)(\#)} \text{Tumor weight} \\ & (\text{A549 cells) = 0.9 \pm 0.17 (g) (p < 0.05 \text{ vs.} \\ & \text{control)} ^{(n)(\#)} \end{split}$	These results demonstrated that G. lucidum spores
[36]	mice (n = 10)	Control		Tumor volume (A549 cells) = 1410.81 \pm 216.22 (mm ³) $^{(*)}$ (#) Tumor weight (A549 cells) = 1.54 \pm	inhibited the growth of tumors

				0.27 (g) ^(*) ^(#)	
Dai et al.,	Antitumor offect in	40 nm-GLSO@NEs	3 ml/kg	Tumor weight (MGC803 cells) = 0.65 ± 0.31 (g) (p < 0.05 vs. control) (*)	Tumors growth were
(2021) [44]	mice (n = 7)	Control		Tumor weight (MGC803 cells) = 1.63 ± 0.25 (g) (*)	significantly inhibited by 40 nm-GLSO@NEs
		Model		% apoptosis area = 4.89 \pm 0.1 Fold change of control = 1 \pm 0.1 Fold change of control = 1 \pm 0.02	
		Model (procaspase-9)		Fold change of control = 1 ± 0.1	
Jiao et al.,	Antitumor effect in	GLSO (PPAR)	6g/kg/day	Fold change of control = 0.5 ± 0.2 (p < 0.05 vs. control)	GLSO significantly
[42]	mice (n = 12)	GLSO	6g/kg/day	% apoptosis area = 17.4 \pm 2.6 (p < 0.001 vs. model) Fold change of control = 0.7 \pm 0.1 (p < 0.05 vs. control) Fold change of control = 0.9 \pm 0.06	4T1 tumors in vivo
		PTX		% apoptosis area = 11.24 \pm 2.1 (p < 0.001 vs. model)	
		Model		Tumor weight = 0.85 ± 0.01 (g) Liver weight = 1.24 (g)	In nude mice, consumption of 75 and 150 mg/kg BSGEE
Li et al.,		Normal		Liver weight = 1.5 ± 1.17 (g)	
(2017) [35]	Antitumor effect in mice (n = 12)		75 mg/kg	Tumor weight = 0.59 ± 0.01 (g) (p < 0.05 vs. model) Liver weight = 1.24 (g)	significantly lowered the growth of the
		BSGEE	150 mg/kg	Tumor weight = 0.37 ± 0.11 (g) (p < 0.01 vs. model) Liver weight = 1.46 (g)	HCT116 xenograft tumor
			150 mg/kg	Tumor weight = 1.27 ± 0.19 (g) (p < 0.05 vs. control)	
Na et al.,	Antitumor effect in	BSGWE	300 mg/kg	Tumor weight = 1.00 ± 0.21 (g) (p < 0.05 vs.	Final tumor weights of the two dosages were
(2017) [26]	mice (n = 18)	Control		Tumor weight = 2.22 ± 0.11 (g)	all significantly lower than those of the
				Tumor weight = 1.28 ± 0.23 (g) (p < 0.05 vs.	control group
		5-FU (n = 8)	20 mg/kg	control)	
		Cisplatin	50 µg/ml	Inhibition rate of human gastric cancer (SGC- 7901) = 36.9 ± 3.12 (%) (p < 0.001 vs. model group) Inhibition rate of of human lung cancer (A549) = 31.91 ± 3.23 (%) (p < 0.001 vs. model group)	
			33 µg/ml	Inhibition rate of human gastric cancer (SGC- 7901) = 37.69 ± 4.37 (%) Inhibition rate of of human lung cancer (A549) = 13.47 ± 3.45 (%)	
Shi et al.,			BGSP	100 µg/ml	Inhibition rate of human gastric cancer (SGC- 7901) = 50 ± 5.96 (%) (p < 0.01 vs. model group) Inhibition rate of of human lung cancer (A649) = 26.24 ± 3.26 (%) (p < 0.01 vs. model group)
(2021) [39]	zebrafish (n = 30)		28 µg/ml	Inhibition rate of human gastric cancer (SGC- 7901) = 50 \pm 5.96 (%) (p < 0.01 vs. model group) Inhibition rate of of human lung cancer (A549) = 20 \pm 5.16 (%)	stronger inhibitory actions against tumors transplanted into zebrafish
		RGSP	83 µg/ml	Inhibition rate of human gastric cancer (SGC- 7901) = 65.87 \pm 3.57 (%) (p < 0.001 vs. model group) Inhibition rate of of human lung cancer (A549) = 26.8 \pm 2.41 (%) (p < 0.01 vs. model group)	
			250 µg/ml	Inhibition rate of human gastric cancer (SGC- 7901) = 76.98 \pm 3.66 (%) (p < 0.001 vs. model group) Inhibition rate of of human lung cancer (A549) = 30.64 \pm 1.84 (%) (p < 0.001 vs. model group)	
		Model		$\begin{split} & \text{Tumor} = 522.19 \pm 44.81 \ (\text{mg}) \ \%\text{T cell} \ (\text{CD3}^+) = \\ & 41.75 \pm 2.04 \ (\%) \ (p < 0.01 \ \text{vs. normal group}) \\ & \%\text{Th cell} \ (\text{CD3}^+\text{CD4}^+) = 28.7 \pm 1.48 \ (\%) \ \%\text{Tc} \\ & \text{cell} \ (\text{CD3}^+\text{CD4}^+) = 8.81 \pm 1.44 \ (\%) \ \text{Relative fold} \\ & \text{of change of } p_1 \ \text{protein} = 0.5 \pm 0.09 \ (\%) \ (p < 0.01 \ \text{vs. normal group}) \ \text{Relative fold of change} \\ & \text{of p1} \ \text{protein} = 3.48 \pm 0.7 \ (\%) \ (p < 0.05 \ \text{vs.} \\ & \text{model group}) \ \text{Chao1 index} = 1257.73 \pm 71.27 \\ & \text{ACE index} = 1283.42 \pm 95.58 \end{split}$	
		PTX	15mg/mg	$\begin{split} & \text{Turmor} = 196.26 \pm 44.74 \ (\text{mg}) \ (p < 0.01 \ \text{vs.} \\ & \text{model group)} \ \% \text{T cell} \ (\text{CD3}^+) = 26.86 \pm 4.08 \\ & (\%) \ (p < 0.01 \ \text{vs} \ \text{model group)} \ \% \text{Th cell} \\ & (\text{CD3}^+\text{CD4}^+) = 16.48 \pm 3.89 \ (\%) \ \% \text{Tc cell} \\ & (\text{CD3}^+\text{CD4}^+) = 5.94 \pm 1.01 \ (\%) \ \text{Relative fold of} \\ & \text{change of pg1 protein} = 0.46 \pm 0.08 \ (\%) \ \text{Relative fold of} \\ & \text{fold of change of pg1 protein} = 3.48 \pm 0.7 \ (\%) \ (p < 0.05 \ \text{vs. model group)} \end{split}$	
				Tumor = 371.49 \pm 31.54 (mg) (p < 0.05 vs.	Polysaccharide-rich

Su et al., (2018) [23]	Antitumor effect in mice (n = 6-8)	ESGH ESGL	400mg/kg 200mg/kg	model group) %T cell (CD3 ⁺) = 37.08 ± 3.67 (%) %Th cell (CD3 ⁺ CD4 ⁺) = 22.03 ± 2.59 (%) %To cell (CD3 ⁺ CD4 ⁺) = 11.11 ± 0.64 (%) Relative fold of change of pg1 protein = 0.63 ± 0.12 (%) ($p < 0.01$ vs. model group) Chao1 index = 1020.61 ± 143.39 ($p < 0.01$ vs. normal group) ACE index = 1101.6 ± 106.4 ($p < 0.01$ vs. normal group) ACE index = 1101.6 ± 106.4 ($p < 0.01$ vs. normal group) ACE index = 102.61 ± 143.39 ($p < 0.01$ vs. 101 vs. normal group) Turnor = 445.09 ± 49.06 (mg) %T cell (CD3 ⁺) = 37.96 ± 2.62 (%) %Th cell (CD3 ⁺ CD4 ⁺) = 13.18 ± 1.58 (%) Eelative fold of change of pg1 protein = 0.51 ± 0.03 (%) Eelative fold of change of pg1 protein = 0.51 ± 0.09 (%) ($p < 0.01$ vs. model group)	extract from BSG might be a good candidate for breast cancer treatment.
		Normal		$\label{eq:constraint} \begin{array}{l} (\text{CD3}^{+}\text{CD4}) = 62.18 \pm 2.86 \ (\%) \ \% \text{ To cell} \\ (\text{CD3}^{+}\text{CD4}^{+}) = 44.62 \pm 2.38 \ (\%) \ \% \text{To cell} \\ \text{CD3}^{+}\text{CD4}^{+}) = 15.05 \pm 1.07 \ (\%) \ \text{Relative fold of} \\ \text{change of pg1 protein} = 1.16 \pm 0.09 \ \%) \ \text{Relative} \\ \text{fold of change of pg1 protein} = 1.21 \pm 0.18 \ (\%) \\ \text{Chao1 index} = 1391.75 \pm 123.25 \ \text{ACE index} = \\ 1497.32 \pm 116.68 \end{array}$	
		Model		$\begin{split} \text{Turmor} &= 0.81 \pm 0.24 \text{ T cell} (\text{CD3+}) = 52.5 \pm 7.5 \\ (\%) \text{ PD-1 T cell} &= 21.25 \pm 5.75 (\%) \text{ Tim-3 T cell} \\ &= 16.6 \pm 6.7 (\%) \text{ Tc cell} \text{ CD3+CD8+} = 25.56 \pm \\ 5.74 (\%) (p-0.01) \text{ Th cell} \text{ CD3+CD4+} = 12.62 \\ &\pm 1.38 (\%) \text{ Chao1 index} = 2323.8 \pm 380.2 \text{ ACE} \\ &\text{index} = 2457.14 \pm 322.86 \end{split}$	
Su et al.,	Antitumor effect in	PTX		$\begin{array}{l} {\sf Tumor}=0.64\pm0.15\ (p<0.05\ vs.\ model\ group)\\ {\sf T\ cell}\ (CD3+)=55\pm8.3\ (\%)\ PD-1\ T\ cell=2.0.83\\ \pm6.25\ (\%)\ Tim-3\ T\ cell=22.5\pm9.1\ (\%)\ (p<\\ 0.05)\ T\ cell\ CD3+CD8+=27.6\pm7\ (\%)\ (p<\\ 0.01)\ Th\ cell\ CD3+CD4+=10.67\pm1.95\ (\%)\ (p<\\ <0.05)\ Chao1\ index=1885.71\pm380.29\ (p<\\ 0.05)\ ACE\ index=1866.6\pm380.4\ (p<0.05) \end{array}$	The combination of PTX and SGP demonstrated superior tumor control in the mouse breast cancer
[28]	mice (n = 6)	SLP		$\begin{array}{l} Tumor = 0.52 \pm 0.12 \ (p < 0.05 \ vs. model group) \\ T \ cell \ (CD3+) = 47.5 \pm 9.1 \ (\%) \ PD-1 \ T \ cell = \\ 14.9 \pm 5.1 \ (\%) \ Tim-3 \ T \ cell = 14.9 \pm 6.7 \ (\%) \ (p < 0.01) \ T \ cell \ CD3+CD8+ = 21.03 \pm 7.01 \ (\%) \ (p < 0.01) \ T \ cell \ CD3+CD8+ = 9.9 \pm 2.13 \ (\%) \\ Chao1 \ index = 1809.52 \pm 190.48 \ (p < 0.05) \ ACE \\ index = 1733.3 \pm 361.7 \ (p < 0.05) \end{array}$	model, with early tumor growth reduction and clear ki67 expression inhibition than PTX alone
		SHP		$\begin{array}{l} \mbox{Tumor}=0.44\pm0.2~(p<0.05~vs.~model~group)~T~\mbox{cell}~(CD3+)=47.5\pm8.33~(\%)~PD-1~T~\mbox{cell}~214.16\pm5~(\%)~Tm-3~T~\mbox{cell}~213.4\pm2.2~(\%)~Tc~\mbox{cell}~CD3+CD3+=18.14\pm8.18~(\%)~Th~\mbox{cell}~CD3+CD3+=18.14\pm8.18~(\%)~Th~\mbox{cell}~CD3+CD3+=19.44~(\%)~ACE~\mbox{index}=1504.76\pm228.24~(p<0.05) \end{array}$	
Zhang et		NC		Tumor volume = $2.21 \pm 0.28 \text{ (mm}^3)$ Tumor weight = $1.86 \pm 0.07 \text{ (g)}$	
al., (2019) [25]	Antitumor effect in mice	BSGWE	600 mg/kg	Tumor volume = $1.14 \pm 0.67 \text{ (mm}^3) \text{ (p < } 0.01 \text{ vs.}$ control) Tumor weight = $1.61 \pm 0.14 \text{ (g) p < } 0.01 \text{ vs. control} \text{)}$	BSGWE significantly inhibited tumor growth
		Control		Tumor weight = 3 ± 0.4 (g) Tumor volume 6 weeks = 1722.97 ± 185.81 (mm ³)	
Pan et al., (2019)	Antitumor effect in mice (n =10)		150 mg/kg	Tumor weight = 1.92 ± 0.3 (g) Tumor volume 6 weeks = $1283.78 + 168.92$ (mm ³)	GLP inhibited tumor growth
[27]		GLP	300 mg/kg	Tumor weight = 1.25 ± 0.2 (g) Tumor volume 6 weeks = 979.72 ± 168.92 (mm ³)	
		Model		Inhibitory ratio (Sarcoma 180 cells) = 0 (%)	BSGP 100 and 200
Wang et	And the second second		50 mg/kg	Inhibitory ratio (Sarcoma 180 cells) = 30.7 (%)	mg/kg significantly
al., (2012)	Antitumor effect in mice (n =10)	BSGP	100mg/kg	Inhibitory ratio (Sarcoma 180 cells) = 49.1 (%)	decreased the growth of sarcoma 180 in
			200mg/kg	Inhibitory ratio (Sarcoma 180 cells) = 59.9 (%)	comparison to the model group
		CY	30mg/kg	Inhibitory ratio (Sarcoma 180 cells) = 81 (%)	
He et al.,		NC	200 µL saline	$\label{eq:constraint} \begin{split} & \text{Tumor volume (1st week) = 0.31 (mm^3) Tumor volume (2nd week) = 0.71 (mm^3) Tumor volume (3rd week) = 1.64 (mm^3) Tumor volume (4th week) = 3.14 (mm^3) \end{split}$	
(2020) [24]	Antitumor effect in mice (n = 3)	BSGWE	0.5 mg BSGWE dissolved in 100 µL saline	Tumor volume (1st week) = 0.31 (mm ³) (p < 0.001 vs. control) Tumor volume (2nd week) = 0.57 (mm ³) (p < 0.001 vs. control) Tumor volume (3rd week) = 1.37 (mm3) (p < 0.001 vs. control) Tumor volume (4th week) = 2.49 (mm ³) (p < 0.001 vs. control)	BSGWE inhibited tumor growth
			50 mg/kg	$\begin{array}{l} (C57BL/6\ mice)\ Tumor\ weight = 702.61 \pm 60 \\ (mg)\ (p < 0.05\ vs.\ negative\ control)\ ^{(*)}\ (BALB/c \\ nu/nu)\ Tumor\ weight = 976.63 \pm 67\ (mg)\ ^{(*)} \end{array}$	

		GSG	100 mg/kg	$\label{eq:c57BL/6 mice} \begin{array}{l} \mbox{Tumor weight} = 562 \pm 41 \mbox{ (mg)} \\ \mbox{(p < 0.05 vs. negative control)} \begin{tabular}{l} \end{tabular} \end{tabular} BALB/c \mbox{ nu/nu} \\ \mbox{Tumor weight} = 969.5 \pm 55 \mbox{ (mg)} \begin{tabular}{l} \end{tabular} \end{tabular} \end{tabular}$	
Guo et al., (2009) [54]	Antitumor effect in C57BL/6 and BALB/c nu/nu mice		200 mg/kg	$\begin{split} &(C57BL/6 \mbox{ mice}) \mbox{ Tumor weight = } 412 \pm 44 \mbox{ (mg)} \\ &(p < 0.05 \mbox{ vs. negative control}) ^{(r)} \mbox{ (BALB/c nu/nu)} \\ &\mbox{ Tumor weight = } 969.5 \pm 55 \mbox{ (mg)} ^{(r)} \end{split}$	GSG administration increased the anti- tumor activity that had been identified against
	(n = 10)	Cyclophosphamide		$\begin{array}{l} ({\rm C57BL/6\ mice})\ {\rm Tumor\ weight} = 19 \pm 22\ ({\rm mg})\ (p \\ < 0.01\ vs.\ {\rm negative\ control})\ ^{(1)}\ ({\rm BALB/c\ nu/nu}) \\ {\rm Tumor\ weight} = 52.27 \pm 21\ ({\rm mg})\ (p < 0.01\ vs. \\ {\rm negative\ control})\ ^{(1)} \end{array}$	Lewis mice
		PBS (NC)		(C57BL/6 mice) Tumor weight = 891 ± 62 (mg) ^(*) (BALB/c nu/nu) Tumor weight = 973.63 ± 64 (mg) ^(*)	
		Control		Tumor weight = 426.1 ± 172 (mg)	
Yue et al., (2008)	Antitumor effect in	BS	1000 mg/kg	Tumor weight = $330.5 \pm 191.4 \text{ (mg)} \text{ (p < } 0.05 \text{ vs. control)}$	2 and 4 g/kg of BS were significantly different from those of
[38]	mice (n = 19)	BS	2000 mg/kg	Tumor weight = 305 ± 184 (mg) (p < 0.05 vs. control)	the untreated control mice
		BS	4000 mg/kg	Tumor weight = 329.9 ± 195.8 (mg)	
		Control	0.1 mL/10g BW	Tumor weight = 1.45 ± 0.24 (g)	
		СТХ	30mg/kg BW	Tumor weight = 0.88 ± 0.4 (g) (p < 0.01 vs. control)	
Fu et al.,	Antitumor effect in		3mg/kg BW	Tumor weight = 0.96 ± 0.29 (g) (p < 0.05 vs. control)	WGLP could
(2019) [34]	mice (n = 8)		10mg/kg BW	Tumor weight = 0.84 ± 0.32 (g) (p < 0.01 vs. control)	significantly inhibit the S180 tumor growth
		WGLP	30mg/kg BW	Tumor weight = 0.82 ± 0.34 (g) (p < 0.01 vs. control)	
			100 mg/kg BW	Tumor weight = 0.86 ± 0.16 (g) (p < 0.01 vs. control)	
		Normal saline (negative control)	20 ml/kg per day	Tumor weight hepatoma cell = 2.17 ± 0.16 (g) Tumor weight sarcoma S-180 cell = 1.78 ± 0.13 (g) Tumor weight sarcoma L-II cell = 2.21 ± 0.21 (g)	
		CTX (positive control)	20 ml/kg per day	Tumor weight hepatoma cell = 0.8 \pm 0.14 (g) (p < 0.001 vs. negative control) ⁽⁷⁾ Tumor weight sarcoma S-180 cell = 0.37 \pm 0.1 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma L-II cell = 0.68 \pm 0.18 (g) (p < 0.001 vs. negative control) ^(*)	
		Spore	8 g/kg per day in twice	Tumor weight hepatoma cell = 1.79 \pm 0.28 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma 5-180 cell = 1.44 \pm 0.22 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma L-II cell = 1.83 \pm 0.29 (g) (p < 0.001 vs. negative control) ^(*)	
		GS	8 g/kg per day in twice	Tumor weight hepatoma cell = 1.39 ± 0.27 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma S-180 cell = 1.13 ± 0.22 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma L-II cell = 1.42 ± 0.26 (p < 0.001 vs. negative control) ^(*)	Both the oil extract
Liu et al., (2002) [22]	Antitumor effect in mice (n = 10)	SBGS	2 g/kg per day	Tumor weight hepatoma cell = 1.18 ± 0.17 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma S-180 cell = 0.8 ± 0.17 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma L-II cell = 0.98 ± 0.2 (p < 0.001 vs. negative control) ^(*)	from the germinating spores and the SBGS had notable anticancer effects
		SBGS	4 g/kg per day	Tumor weight hepatoma cell = 0.92 ± 0.13 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma S-180 cell = 0.45 ± 0.15 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma L-II cell = 0.67 ± 0.13 (p < 0.001 vs. negative control) ^(*)	
		SBGS	8 g/kg per day in twice	Tumor weight hepatoma cell = 0.39 ± 0.13 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma S-180 cell = 0.25 ± 0.09 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma L-II cell = 0.37 ± 0.12 (p < 0.001 vs. negative control) ^(*)	
				Tumor weight hepatoma cell = 0.22 \pm 0.1 (g) (p < 0.001 vs. negative control) $^{(*)}$ Tumor weight	

		lipids	5 g/kg per day	sarcoma S-180 cell = 0.15 ± 0.11 (g) (p < 0.001 vs. negative control) ^(*) Tumor weight sarcoma L-II cell = 0.23 ± 0.1 (p < 0.001 vs. negative control) ^(*)	
			25 mg/kg	A570 = 0.81 \pm 0.13 (p < 0.01 vs. control) ^(*)	The polycochoride
		PSGL-I-1A	50 mg/kg	A570 = 0.95 \pm 0.15 (p < 0.001 vs. control) ^(*)	PSGL-I-1A showed a
Bao et al., (2002)	Immunological		25 mg/kg	A570 = 0.7 ± 0.08 (p < 0.05 vs. control) ^(*)	significantly enhancing effect on Concanavalin
[48]	douvry in moo	CHC-1 (PC)	50 mg/kg	A570 = 0.78 ± 0.12 (p < 0.01 vs. control) ^(*)	A-induced T lymphocyte
		Negative control	0	A570 = 0.56 ^(*)	proliferation
		500 OH 4	25 mg/kg	A570 (T cell) = 0.99 ± 0.01 (p < 0.001 vs. control) A570 (B cell) = 0.99 ± 0.02 (p < 0.001 vs. control)	
		PSG-CM-1	50 mg/kg	A570 (T cell) = 0.87 ± 0.01 (p < 0.01 vs. control) A570 (B cell) = 1.01 ± 0.01 (p < 0.001 vs. control)	Low degree of
Bao et al.,	Immunological	DSG CM 2	25 mg/kg	A570 (T cell) = 0.97 \pm 0.03 (p < 0.01 vs. control) A570 (B cell) = 0.83 \pm 0.01	carboxymethylated (1- 3)-β-D-glucan
(2001) [49]	activity in mice (n =7)	P3G-CM-2	50 mg/kg	A570 (T cell) = 0.97 \pm 0.01 (p < 0.01 vs. control) A570 (B cell) = 0.88 \pm 0.03 (p < 0.05 vs. control)	significantly increased T and B lymphocyte proliferation, antibody
			25 mg/kg	A570 (T cell) = 0.71 \pm 0.02 A570 (B cell) = 0.8 \pm 0.04	production, and spleen tissue mass
		rəG-∪M-3	50 mg/kg	A570 (T cell) = 0.84 \pm 0.01 (p < 0.05 vs. control) A570 (B cell) = 0.82 \pm 0.01	
		Negative control	0	A570 (T cell) = 0.68 ± 0.01 A570 (B cell) = 0.82 ± 0.01	
	Immunological		25 mg/kg	$\begin{array}{l} A520 = 0.21 \pm 0.14 \; (p < 0.001 \; vs. \; control)^{(^{*})} \\ A570 \; (T \; cell) = 0.81 \pm 0.16 \; (p < 0.001 \; vs. \; control)^{(^{*})} \; A570 \; (B \; cell) = 0.79 \pm 0.11 \; (p < 0.05 \; vs. \; control)^{(^{*})} \end{array}$	The polysaccharide
Bao et al., (2001) [56]	activity in mice (n =8) Immunological activity in mice (n =8)	PGL	50 mg/kg	$ \begin{array}{l} A520 = 0.2 \pm 0.14 \ (p < 0.001 \ vs. \ control)^{(*)} \\ A570 \ (T \ cell) = 0.59 \pm 0.16 \ (p < 0.001 \ vs. \\ control)^{(*)} \ A570 \ (B \ cell) = 0.56 \pm 0.11 \ (p < 0.01 \ vs. \\ control)^{(*)} \end{array} $	lower Concanavalin A or LPS-induced lymphocyte proliferation and antibody production
		Negative control	0	A520 = 0.38 \pm 0.07 ^(*) A570 (T cell) = 1.09 \pm 0.08 ^(*) A570 (B cell) = 0.89 \pm 0.07 ^(*)	
		SP		$\begin{array}{l} A520=1.23\pm0.06\ A570\ (T\ cell)=0.84\pm0.06\\ (p<0.05\ vs.\ control)\ A570\ (B\ cell)=0.93\pm0.02\\ (p<0.01\ vs.\ control)\ IgG=18.9\pm2\ C-3=2.42\pm0.12\ (p<0.05\ vs.\ control)\end{array}$	The degraded glucan had immunological activities in view of the
Bao et al., (2001) [57]	Immunological activity in mice (n =7)	SP-1		$\begin{array}{l} A520 = 1.21 \pm 0.02 \ A570 \ (T \ cell) = 0.95 \pm 0.02 \\ (p < 0.001 \ vs. \ control) \ A570 \ (B \ cell) = 0.94 \pm \\ 0.01 \ (p < 0.01 \ vs. \ control) \ IgG = 19.7 \pm 2.3 \ C-3 = \\ 2.1 \pm 0.36 \end{array}$	lymphocyte proliferation (T and B cells) and the production of antibodies against
		Control		A520 = 1.11 ± 0.02 A570 (T cell) = 0.55 ± 0.02 A570 (B cell) = 0.6 ± 0.04 lgG = 17.3 ± 1.5 C-3 = 2.08 ± 0.35	sheep red blood cells (SRBC) in mice
		BGLS	22 (mcg/mL)	The number of neutrophils = 107.24 \pm 3.76 (p < 0.05 vs. model) $^{(1)}$ Neutrophil recovery rate = 42.13 \pm 5.95 (%) $^{(1)}$ The number of macrophage that phagocytized ACNP = 9.91 \pm 1.2 $^{(1)}$ Macrophage formation efficiency = 0.67 \pm 3.22 (%) $^{(1)}$ Macrophage phagocytosis efficiency = 17.8 \pm 5.58 (%) $^{(1)}$	
Li et al., (2020) [61]	Immunological activity in zebrafish (n = 10)	RGLS	33 (mcg/mL)	The number of neutrophils = 117.05 ± 8.06 (p < 0.01 vs. model) ⁽¹⁾ Neutrophil recovery rate = 54.04 ± 11.91 (%) ⁽¹⁾ The number of macrophage that phagocytized ACNP = 11.4 ± 0.53 (p < 0.01 vs. model) ⁽¹⁾ Macrophage formation efficiency = 34.74 ± 6.61 (%) (p < 0.01) ⁽¹⁾ Macrophage phagocytosis efficiency = 36.1 ± 3.05 (%) (p < 0.01) ⁽¹⁾	The triterpenes from G. <i>lucidum</i> increased immunomodulation and induced cell death to suppress lung cancer growth
			1000 (mcg/mL)	The number of macrophage that phagocytized ACNP = 12.29 \pm 0.5 (p < 0.001 vs. model) ⁽¹⁾ Macrophage formation efficiency = 29.66 \pm 4.07 (%) (p < 0.01) ⁽¹⁾ Macrophage phagocytosis efficiency = 44.23 \pm 4.58 (%) (p < 0.001) ⁽¹⁾	
		Control		The number of neutrophils = 135.63 \pm 4.12 $^{(*)}$	
		Model		The number of neutrophils = 73.59 \pm 3.41 $^{(*)}$ The number of macrophage that phagocytized ACNP = 8.34 \pm 0.3 $^{(*)}$	
			5 ma/ka por		

		Control (water)	dav	HC ₅₀ = 240.6 ± 11.8	
		Model (CTX)	5 mg/kg per day	HC ₅₀ = 155.54 ± 4.9 (p < 0.001 vs. control) ^(*)	
Liu et al., (2021)	Immunological activity in mice (n	GLSB50	300 mg/kg per day	HC _{50} = 207.45 \pm 5.9 (p < 0.01 vs. control; p < 0.05 vs. model) (*)	GLSB50 and GLSB70 showed a significant increase in the HC50
[59]	=10)	GLSB70	300 mg/kg per day	$\label{eq:HC50} \begin{split} &HC_{50} = 200 \pm 5.9 \; (p < 0.05 \; \text{vs control} \; ; \; p < 0.01 \\ &\text{vs. model}) \; ^{(^{\prime})} \end{split}$	value as well as the positive lentinan group
		Lentinan	300 mg/kg per day	$\label{eq:HC50} \begin{split} &HC_{50} = 207.92 \pm 10.9 \; (p < 0.01 \; vs \; control \; ; p < \\ &0.05 \; vs. \; model) \; (^{\circ}) \end{split}$	
		Normal		Thymus coeficiency = 0.12 ± 0.01 NK cell's tumor-killing ability = 47.76 ± 2.24	
Su et al.,	Immunological	LNT		Thymus coeficiency = 0.12 ± 0.007 NK cell's tumor-killing ability = 40.29 ± 3.73	Both CGLP and RPGS inhibited spleenocyte proliferative activity in
(2021) [58]	activity in mice (n =8-10)	CGLP		Thymus coeficiency = 0.11 \pm 0.002 (p < 0.05) (p < 0.05) NK cell's tumor-killing ability = 76.86 \pm 7.44 (p < 0.01)	response to mitogen, however only CGLP enhanced NK cell tumor-killing capacity
		RPGS		Thymus coeficiency = 0.11 ± 0.015 NK cell's tumor-killing ability = 46.26 ± 2.99	
		Control group		Ear swelling = 6.6 \pm 1.5 (mg) Weight of the right ear = 14.7 \pm 1.4 (mg) Weight of the left ear = 8.1 \pm 0.7 (mg)	
		Model group		Ear swelling = 2.9 ± 1.2 (mg) (p < 0.01 vs. control group) Weight of the right ear = 10.7 ± 1.4 (mg) (p < 0.01 vs. control group) Weight of the left ear = 7.7 ± 0.6 (mg)	
Wang et	Immunological	Lentinan	150 mg/kg	Ear swelling = 4.4 ± 0.8 (mg) (p < 0.05 vs. control group) Weight of the right ear = 11.7 ± 1.6 (mg) Weight of the left ear = 7.6 ± 1.1 (mg)	GLSWA-I (300 mg/kg) administration
al., (2017) [62]	activity in mice (n =10)	Low-dose GLSWA-I	75 mg/kg	Ear swelling = 4.2 \pm 1.6 (mg) Weight of the right ear = 12.1 \pm 1.6 (mg) Weight of the left ear = 7.9 \pm 0.9 (mg)	decreasing of ear swelling of model group
		Medium-dose GLSWA-I	150 mg/kg	Ear swelling = $4.6 \pm 2.1 \text{ (mg)} \text{ (p} < 0.05 \text{ vs.}$ control group) Weight of the right ear = $12.5 \pm 2.4 \text{ (mg)}$ Weight of the left ear = $7.8 \pm 0.8 \text{ (mg)}$	
		High-dose GLSWA-I	300 mg/kg	Ear swelling = 4.8 \pm 1.7 (mg) (p< 0.05 levels compared with the model group) Weight of the right ear = 12.4 \pm 1.8 (mg) (p< 0.05 levels compared with the model group) Weight of the left ear = 7.6 \pm 0.8 (mg)	
		Control		$ \begin{array}{l} \label{eq:second} Serum henolysin level = 490.44 \pm 18.38 (HC_{50}) \\ \end{tabular} \end{tabular} \\ \end{tabular} ta$	
Wu et al., (2020) [60]	Immunological activity in mice (n = 6)	GLSO_H	800 mg/kg	$ \begin{array}{l} \label{eq:second} Serum henolysin level = 468.38 \pm 84.56 (HC_{50}) \\ \end{tabular} \end{tabular} \\ \end{tabular} ta$	GLSO (at 800 mg/kg) improved the phagocytosis of macrophages and the cytotoxicity of NK cells in mice.
		GLSO_L	400 mg/kg	$ \begin{array}{l} \label{eq:second} Serum henolysin level = 442.65 \pm 91.91 \ (HC_{50}) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
		Control	0.9% NaCl	Thymus weight = 141 \pm 19 Con-A induced lymphocyte proliferation = 0.44 \pm 0.14	
Ma et al.,	., Immunological activity in mice (n = 12)	Су	20 mg/kg/day	Thymus weight = 52 \pm 24 (p < 0.01 vs. control) Con-A induced lymphocyte proliferation = 0.13 \pm 0.07 (p < 0.01 vs. control)	Thymus weight of mice treated with BSGP and
(2009) [63]		GL-SP	50 mg/kg/day	Thymus weight = 117 \pm 18 Con-A induced lymphocyte proliferation = 0.45 \pm 0.14	Cy combined was significantly higher than with Cy alone
		Cy+GL-SP	20 mg/kg/day+50 mg/kg/day	Thymus weight = 75 ± 37 (p < 0.05 vs. control; p < 0.05 vs. Cy-treated group) Con-A induced lymphocyte proliferation = 0.18 ± 0.09 (p < 0.01 vs. control; p < 0.05 vs. Cy-treated group)	
		HFD-fed donors (control)		Body weight gain = 6.9 ± 0.97 (g)	
		HFD BSGP	300 mg/kg	Body weight gain = 4.77 \pm 0.36 (g) (p < 0.05 vs. control)	
Sang et	Anti-inflormation	Control		$ \begin{array}{l} TC \;(mmol/L) = 6 \pm 0.23 \; LDL \;(mmol/L) = 1.18 \pm \\ 0.22 \; TNF\text{-}\alpha \;(ng/L) = 1714.28 \pm 95.23 \; IL\text{-}1\beta \\ (ng/L) = 135.71 \pm 4.76 \end{array} $	BSGP reduced the obesity, hyperlipidemia,
al., (2021) [66]	anti-obesity (n = 6)	BSGP	100 mg/kg	$\begin{split} & TC \;(mmol/L) = 5.36 \pm 0.27 \;(p < 0.05 \;vs.\;control) \\ & LDL \;(mmol/L) = 0.7 \pm 0.05 \;(p < 0.01 \;vs.\;control) \\ & TNF-\alpha \;(ng/L) = 1190.48 \pm 47.62 \;(p < 0.001 \;vs.\;control) \\ & L-1\beta \;(ng/L) = 95.23 \pm 9.52 \;(p < 0.001 \;vs.\;control) \\ \end{split}$	inflammation, and fat accumulation that caused by HFD in C57BL/6 J mice

				vs. control)		
		BSGP	300 mg/kg	$ \begin{array}{l} {\sf TC} \; ({\sf mmol/L}) = 5.72 \pm 0.18 \; {\sf LDL} \; ({\sf mmol/L}) = 0.67 \\ \pm \; 0.03 \; ({\sf p} < 0.01 \; {\sf vs.} \; {\sf control}) \; {\sf TNF-\alpha} \; ({\sf ng/L}) = \\ 133.3 \pm 47.62 \; ({\sf p} < 0.01 \; {\sf vs.} \; {\sf control}) \; {\sf IL-1\beta} \\ ({\sf ng/L}) = 78.57 \pm 9.52 \; ({\sf p} < 0.001 \; {\sf vs.} \; {\sf control}) \\ \end{array} $		
		Control		Bladder weight = 1.8 ± 0.2 (mg) Compliance = 0.5 ± 0.05 (cm H20/ 20% capacity)		
Levin et	Protection of bladder function	Control GL		$\begin{array}{l} Bladder \mbox{ weight = } 1,6 \pm 0,2 \mbox{ (mg) Compliance = } \\ 0,4 \pm 0,05 \mbox{ (cm H20/20% capacity) (significantly different from control, significantly different from control + I/R; p < 0.05) \end{array}$	These findings show that GLS provided superior bladder	
[72]	following oxidative stress	I/R		Bladder weight = $2,4 \pm 0,2$ (mg) (p < 0.05 of control) Compliance = $4,5 \pm 0,5$ (cm H20/20% capacity) (significantly different from control)	function protection following I/R (oxidative stress)	
		I/R + GL		Bladder weight = $2,3 \pm 0,2$ (mg) Compliance = 1,2 $\pm 0,3$ (cm H20/ 20% capacity) (significantly different from control + I/R; p < 0.05)		
		Control		Mean life span (female) = 50.1 \pm 0.55 (d) Maximum life span (female) = 61.93 \pm 0.19 (d) Maximum life span (male) = 60.41 \pm 0.2 (d) Mean life span (male) = 48.93 \pm 0.44 (d) Mean life span (female) = 21.46 \pm 0.58 (h) Maximum life span (female) = 32.2 \pm 0.69 (h) Mean life span (male) = 21.14 \pm 0.63 (h) Maximum life span (male) = 32.3 \pm 0.92 (h)		
		GLSO	0.3125 mg/ml	Mean life span (female) = 50.85 ± 0.53 (d) Maximum life span (female) = 63.87 ± 0.2 (d) (p < 0.001 vs. control) Mean life span (male) = 50.45 ± 0.52 (d) (p < 0.05 vs. control) Maximum life span (male) = 61.53 ± 0.17 (d) (p < 0.01 vs. control) Mean life span (female) = 22 ± 0.53 (h) Maximum life span (female) = 22 ± 0.69 (h) Mean life span (male) = 21.8 ± 0.61 (h) Maximum life span (male) = 34 ± 1.07 (h)		
Zhang et al., (2021) [73]	Antioxidant activity		0.625 mg/ml	Mean life span (female) = 53.01 ± 0.49 (d) (p < 0.01 vs. control) Maximum life span (female) = 63.87 ± 0.2 (d) (p < 0.001 vs. control) Mean life span (male) = 52.01 ± 0.59 (d) (p < 0.001 vs. control) Maximum life span (male) = 62.53 ± 0.27 (d) (p < 0.001 vs. control) Mean life span (female) = 22.82 ± 0.6 (h) (p < 0.05 vs. control) Maximum life span (female) = 33.6 ± 1.02 (h) Maximum life span (male) = 24.24 ± 0.64 (h) Maximum life span (male) = 34.2 ± 1.34 (h)	GLSO increases the average lifespan of Drosophila melanogaster	
			1.25 mg/ml			
		Control		LogCFU week 5 (lung) = 0.6 ± 0.42 LogCFU week 5 (spleen) = 3.73 ± 0.14	A little amount of host defense against	
Zhan et al., (2016) [87]	Antimicrobial activity (n = 3)	G. lucidum extract (therapy)	15 mg of GLS and 15 mg spore lipids	LogCFU week 5 (lung) = 1.38 ± 0.64 (p < 0.05 vs. control) LogCFU week 5 (spleen) = 3.54 ± 0.09 (p < 0.01 vs. control)	bacterial proliferation may be provided by G. lucidum extract when used before M. tuberculosis infection	
		NC		Blood glucose concentration (4W) = 6.2 ± 0.5 TG = 0.285 ± 0.0 HDL-C = 2.79 ± 0.1	EGLS significantly	
Jiang et al., (2021) [88]	Glucose/lipid metabolism and gut microbiota in mice	MC		$\begin{split} & \text{Blood glucose concentration (4W) = 32.2 \pm 1.7} \\ & (\rho < 0.05) \ \text{TG} = 2.915 \pm 1.2 \ (p < 0.05 \ \text{vs. control}) \\ & \text{HDL-C} = 2.79 \pm 0.1 \ (p < 0.05 \ \text{vs. control}) \end{split}$	enhanced glycometabolism and lipometabolism parameters in	
	(n = 8)	EGLS	10.5 g/kgbw/day	$\label{eq:Blood glucose concentration (4W) = 24.6 \pm 2.8} \\ (p < 0.05) \mbox{ TG = } 0.644 \pm 1.7 \ (p < 0.05 \ vs. \ model) \\ \mbox{HDL-C = } 2.79 \pm 0.1 \ (p < 0.05 \ vs. \ model) \\ \end{tabular}$	type 2 diabetic mellitus rats	
		Control		TC/HDL-C ratio (week 4) = 2.5 ± 0.33 Hepatocyte steatosis (score) = 0 ± 0 (p < 0.05 vs. model)		
		Model		TC/HDL-C ratio (week 4) = 5.13 ± 0.7 Hepatocyte steatosis (score) = 3.6 ± 0.5	EEG has lipid-lowering and anti-	
Lai et al., (2020)	Lipid-lowering and anti-atherosclerotic effects in rabbit (n =	EEG-L		TC/HDL-C ratio (week 4) = 5.14 \pm 0.7 (p < 0.05 vs. model) Hepatocyte steatosis (score) = 3.7 \pm 0.5	atherosclerotic effects through increasing the expression of genes related to reverse	
[91]	9)	EEG-M		TC/HDL-C ratio (week 4) = 4.3 \pm 0.86 (p < 0.05 vs. model) Hepatocyte steatosis (score) = 2.5 \pm 0.5 (p < 0.05 vs. model)	cholesterol transport and metabolism, including LXRa and downstream genes	

		EEG-H		vs. model) Hepatocyte steatosis (score) = 0.8 ± 0.6 (n < 0.05 vs. model)	
		Atorvastatin		TC/HDL-C ratio (week 4) = 6.69 ± 1.47	
		Control	5 mL/kg	Body weight = 416 ± 22.46 (g) Blood glucose =	
Shaher et al., (2020)	Hyperglycemia- mediated cardiomyopathy	STZ	saline 50 mg/kg streptozotocin	6.91 ± 0.34 HbA1C = 1.7 ± 0.13 Body weight = 308 ± 12.81 (g) (p < 0.01 vs. control) Blood glucose = 30.08 ± 1.34 (p < 0.01 vs. control) HbA1C = 2.16 ± 0.21 (p < 0.01 vs. control)	When compared to the diabetic group without treatment, GLS
[89]	protection in mice (n = 8)	STZ + GLS	50 mg/kg streptozotocin (i.p.) and 300 mg/kg GLS (p.o.)	Body weight = 334 ± 27.4 (g) (p < 0.01 vs. control) Blood glucose = 23.98 ± 1.28 (p < 0.01 vs. STZ) HbA1C = 2.03 ± 0.19 (p < 0.05)	significantly lowered glucose levels
		Normal (control)		Blood glucose level 4 weeks = 6.2 ± 0.52 (mmol/L) TG = 0.29 ± 0 (mmol/L) TC = 2.92 ± 0.07 (mmol/L) HDL-C = 2.90 ± 0.07 (mmol/L)	
Wang et al., (2015) [90]	Glucose and lipid metabolisms in mice (n = 8)	Model		$\begin{split} Blood glucose level 4 weeks = 32.22 \pm 1.71 \\ (mmol/L) (p < 0.05 vs. control) TG = 2.96 \pm 0.27 \\ (mmol/L) (p < 0.05 vs. control) TC = 5.57 \pm 0.47 \\ (mmol/L) (p < 0.05 vs. control) HDL-C = 1.32 \pm 0.45 (mmol/L) (p < 0.05 vs. control) \end{split}$	When compared to the model control group, the diabetic rats in the GLSP group's level of lipids decreased
		GLSP		$\label{eq:boost} \begin{array}{l} Blood glucose level 4 weeks = 24.31 \pm 1.17 \\ (mmol/L) (p < 0.05 vs. model) TG = 1.49 \pm 0.55 \\ (mmol/L) (p < 0.05 vs. model) TC = 4.58 \pm 0.09 \\ (mmol/L) (p < 0.05 vs. model) HDL-C = 2.57 \pm 0.29 \\ (mmol/L) (p < 0.05 vs. model) \end{array}$	significantly after 4 weeks
Gao et	Inhibiting N- methyl-N-	Ganoderma spore lipid	2 ml/kg, once a day, 3 days before	$ \begin{array}{l} \label{eq:2.1} \mbox{Apoptotic index (0h) = 0 \pm 0 (\%) Apoptotic index (1d) = 9.78 \pm 1.26 (\%) (p < 0.01 vs. NC, 0h) \\ \mbox{Apoptotic index (3d) = 21.88 \pm 2.95 (\%) (p < 0.01 vs. NC, 0h) Apoptotic index (7d) = 0.17 \pm 0.05 (\%) (p < 0.01 vs. 0h) Apoptotic index (1d) \\ \mbox{= } 0.5 (\%) (p < 0.01 vs. 0h) Apoptotic index (1d) \\ \mbox{= } 0 \pm 0 (\%) \end{array} $	By regulating the suppression of mouse photoreceptor cell
al., (2010) [74]	nitrosourea-induced rat photoreceptor cell apoptosis	PBS (Negative control)	receiving 40 mg/kg dose of MNU	$ \begin{array}{l} \label{eq:approx_star} Apoptotic index (0h) = 0 \pm 0 \ (\%) \ Apoptotic index (1d) = 18.30 \pm 2.4 \ (\%) \ (p < 0.01 \ vs. 0h) \\ Apoptotic index (3d) = 60.63 \pm 5.38 \ (\%) \ (p < 0.01 \ vs. 0h) \ Apoptotic index (7d) = 0.25 \pm 0.11 \ (\%) \ (p < 0.01 \ vs. 0h) \ Apoptotic index (10d) = 0 \pm 0 \ (\%) \end{array} $	death caused by MNU, G. lucidum spore lipids could protect retinal function
		Cd	3.7 mg/kg	Liver and body weight ratios = 58.53 ± 1.97 (mg/g) (p < 0.05 vs. control) serum ALT = 520.98 ± 38.04 (U/L) (p < 0.05 vs. control) serum AST = 1052.05 ± 76.71 (U/L) (p < 0.05 vs. control) Hepatic MT protein = 20.98 ± 0.98 (µg/g) (p < 0.05 vs. control)	
	Protect effectf on		0.1 g/kg	Liver and body weight ratios = 57.03 ± 0.97 (mg/g) serum ALT = 450.73 ± 8.77 (U/L) serum AST = 947.95 ± 49.30 (U/L) Hepatic MT protein = 22.62 ± 2.29 (µg/g)	
Jin et al., (2013) [78]	cadmium hepatotoxicity (n = 8)	GL	0.5 g/kg	Liver and body weight ratios = 53.97 ± 1.04 (mg/g) (p < 0.05 vs. Cd alone) serum ALT = 377.56 ± 11.71 (U/L) (p < 0.05 vs. Cd alone) serum AST = 805.48 ± 10.96 (U/L) (p < 0.05 vs. Cd alone) Hepatic MT protein = 31.15 ± 1.96 (µg/g) (p < 0.05 vs. Cd alone)	The GLS effectively prevents hepatotoxicity brought on by Cd(II)
			1.0 g/kg	Liver and body weight ratios = 52.06 ± 0.93 (mg/g) (p < 0.05 vs. Cd alone) serum ALT = 330.73 ± 5.85 (U/L) (p < 0.05 vs. Cd alone) serum AST = 745.21 ± 16.42 (U/L) (p < 0.05 vs. Cd alone) Hepatic MT protein = 41.97 ± 6.88 (µg/g) (p < 0.05 vs. Cd alone)	
		Control		Cardiac output = 22.36 \pm 1.54 (ml/mm) $^{(*)}$	WE are to the t
Liu et al.,	Protective effect in trimethylamine-N-	Model		Cardiac output = $12.72 \pm 0.88 \text{ (ml/mm)}^{(*)}$	AF can maintain the metabolic balance and
(2021) [76]	(2021) oxide induced [76] cardiac dysfunction (n = 6)	DT	50 mg/kg/day	Cardiac output = 23.68 \pm 1.1 (ml/mm) ^(*)	and DT can reduce the
		XF	50 mg/kg/day	Cardiac output = 25.43 ± 1.32 (ml/mm) (*)	diseases
		ZF	50 mg/kg/day	Cardiac output = 20.17 ± 1.33 (ml/mm) (*)	
		Sham		LVEF = 65.23 (%) LVFS = 35.75 (%) Left ventricular end diastolic diameter = 3.83 (LV Trace, mm) Cardiac output = 20.37 (ml/min)	
Xie et al., (2016)	Cardiovascular	TAC + vegetable oil		LVEF = 43.26 (%) LVFS = 21.7 (%) Left ventricular end diastolic diameter = 4.63 (LV Trace, mm) Cardiac output = 20.28 (ml/min)	The ganoderma therapy restored the ejection fraction to
[77]	protective effect	TAC + hypertesion drugs		LVEF = 53.27 (%) LVFS = 27.34 (%) Left ventricular end diastolic diameter = 4.21 (LV Trace, mm) Cardiac output = 21.3 (ml/min)	normal and reversed the TAC-induced fractional shortening
		TAC + Ganoderma oil		LVEF = 66.02 (%) LVFS = 36.75 (%) Left ventricular end diastolic diameter = 4.01 (LV Trace, mm) Cardiac output = 24.1 (ml/min)	

		Normal control		Neuron number = 2392.75 \pm 90.63 (*)		
		Model control		Neuron number = 1314.2 ± 81.57 (significant difference vs. normal control) (*)	Pre-administration of	
Zhou et al., (2012)	Neuroprotective effect in mice	H-GLS	8.0 g/kg	Neuron number = 2419.94 \pm 72.51 (significant difference vs. model control) ^(*)	H-GLS and M-GLS significantly reversed the number of	
[00]		M-GLS	4.0 g/kg	Neuron number = 2320.24 \pm 81.57 (significant difference vs. model control) ^(*)	neurons, same as control group	
		L-GLS	2.0 g/kg	Neuron number = 1450.15 ± 72.51 (*)		
		Vehicle control		BDNF = 98.71 ± 6.41 (%) TrkB = 99.99 ± 2.57 (%) pTrkB = 99.13 ± 7.83 (%) pTrkB /TrkB = 97.83 ± 9.13 (%)		
		STZ model		$\begin{array}{l} \text{BDNF}=53.85\pm6.41\ (\%)\ (p<0.001\ vs.\ control)\\ \text{TrkB}=48.72\pm11.54\ (\%)\ (p<0.001\ vs.\ control)\\ \text{pTrkB}=23.48\pm6.52\ (\%)\ (p<0.001\ vs.\ control)\\ \text{pTrkB/TrkB}=43.04\pm6.52\ (\%)\ (p<0.001\ vs.\ control)\\ \end{array}$	Treatment with RGLS	
Zhao et al., (2021)	Efficiency on Alzheimer disease in mice (n = 8)	STZ + RGLS	180 mg/kg	BDNF = 69.23 ± 14.1 (%) TrkB = 64.1 ± 11.54 (%) pTrkB = 37.82 ± 11.75 (%) pTrkB/TrkB = 56.08 ± 9.13 (%)	induced reductions in neurotrophic factors, including as BDNF,	
		STZ + RGLS	360 mg/kg	BDNF = 85.89 ± 11.55 (%) TrkB = 85.89 ± 8.98 (%) (p < 0.05 vs. STZ model) pTrkB = 60 ± 7.83 (%) (p < 0.01 vs. STZ model) pTrkB/TrkB = 73.04 ± 10.44 (%)	TrkB, and TrkB phosphorylation at Tyr 816	
		STZ + RGLS	720 mg/kg	$\begin{array}{l} {\sf BDNF}=116.66\pm15.39~(\%)~(p<0.01~vs.~STZ\\ {\sf model})~TrkB=94.87~42.57~(\%)~(p<0.01~vs.\\ {\sf STZ}~{\sf model})~pTrkB=86.08\pm6.52~(\%)~(p<0.001~vs.~STZ~{\sf model})~pTrkBTrkBT+RB=89.99\pm14.36~(\%)~(p<0.05~vs.~STZ~{\sf model}) \end{array}$		
		GLSO@P188/PEG400 NS	3 ml/kg	$\begin{split} \label{eq:constraint} \begin{split} Fibrosis area \; (Heart) &= 11.49 \pm 2.64 \; (\%) \; (p < 0.01 \; vs. \; X-rays \; group) \; ^{(1)} Neorosis \; area \; (Ear) &= \\ 0.96 \pm 0.23 \; (\%) \; (p < 0.05 \; vs. \; X-rays \; group) \; ^{(1)} \\ Neorosis \; area \; (Tail) &= 1.52 \pm 1.2 \; (\%) \; (p < 0.01 \\ vs. \; X-rays \; group) \; ^{(1)} \end{split}$		
Dai et al., (2019) [75]	ai et al., (D19) beart disease in mice (n = 5)	Baseline group		Fibrosis area (Heart) = $1.17 \pm 0.36 {\%}{'}^{(r)}$ Neorosis area (Ear) = $0.22 \pm 0.20 {\%}{'}^{(r)}$ Neorosis area (Tail) = $0.92 \pm 0.63 {\%}{'}^{(r)}$	pre- and post- treatment with GLSO@P188/PEG400 NS may protect the heart against X-rays	
		Sole X-rays (20 Gy) group		$\begin{split} & \mbox{Fibrosis area (Heart)} = 29.7 \pm 2.64 \ (\%) \ (p < $$0.001 vs. baseline group) $$^{(1)}$ Neorosis area (Ear) $$= 5.41 \pm 0.63 (\%) (p < 0.05 vs. baseline group) $$^{(1)}$ Neorosis area (Tail) = 16.52 \pm 2.43 (\%) (p < $$0.01 vs. baseline group) $$^{(1)}$ \end{split}$	neart against X-rays	
Jiao et al., (2020) [94]	Wound healing	GLSO		Collagen volume fraction (day 5) = 26.87 \pm 7.87 (p < 0.01 vs. control)	GLSO significantly accelerated the healing of skin wounds compared to antibacterial therapy	
Ge et al., (2009)	Effects on sialoadenitis in mice	High-dose GLS	1.0 g/kg/day	$\begin{array}{l} CD3+T=74.56\pm7.56\ CD4+/CD8+=2.83\pm\\ 0.69\ (p<0.05\ vs\ control)\ CD4+T\ apoptosis=\\ 31.12\pm6.37\ (p<0.05\ vs\ control)\ CD19+B\\ apoposis=9.21\pm4.19\ (p<0.05\ vs\ control)\]gG\\ =162.59\pm43.35\ (\mu g/ml)\ (p<0.05\ vs\ control)\end{array}$	The ratio of CD4+/CD8+ T lymphocytes and the serum IgG levels of NOD mice dramatically	
[67]	(n = 8)	Normal saline (NS) control	0.2 ml	$CD3+T=68.81\pm 12.57\ CD4+/CD8+=5.44\pm 0.4\ CD4+T\ apoptosis=36.08\pm 14.58\ IgG=200.76\pm 38.15\ (\mug/ml)\ CD19+B\ apoptosis=10.04\pm 3.46$	reduced after pretreatment with H- GLS prior to the start of sialoadenitis	
Clinical trial						
Deng et al., (2021) [64]	Immunological activity in post-operative breast and lung cancer patients	GLS powder (n = 63)		$\begin{array}{l} CD3+=72\pm6\ (p<0.01\ vs.\ control)\ CD3+\ CD4+\\ =42\pm6.4\ (p<0.05\ vs.\ control)\ CD3+\ CD16+\\ CD56+=12.5\pm6\ (p<0.01\ vs.\ control)\ CD3+\\ CD25+=8.4\pm3.5\ (p<0.01\ vs.\ control)\ CD3+\\ HLADR=1.7\pm1\ (p<0.01\ vs.\ control)\ CD3+\\ HLADR=1.7\pm1\ (p<0.01\ vs.\ control)\ CD4+\\ HLADR=1.9\pm1\ (p<0.01\ vs.\ control)\ CD4+\\ HLADR=4.9\pm1.9\pm6.8\ (p<0.01\ vs.\ control)\ CD4+\\ HLADR=2.01\ vs.\ control)\ CD4+\\ HLADR=2.2\pm2.2\pm6.8\ (p<0.05\ vs.\ control)\ CD3+\\ CD5+\ HLADR=2.8.2\pm6.8\ (p<0.05\ vs.\ control)\ CD5+\\ HLADR=2.8.2\pm6.8\ (p<0.05\ vs.\ control)\ control\ contro$	Patients who are most likely to benefit from the immunological improvements brought on by G. lucidum therapy may be identified through T lymphocyte subsets in combination with	
		Control (n = 57)		$\begin{array}{l} {\rm CD3+=66.4\pm10.6\ CD3+CD4+=37.7\pm10.5}\\ {\rm CD3+CD16+CD56+=16.9\pm11.0\ CD4+}\\ {\rm CD25+=10.0\pm4.0\ CD3+HLADR+=9.7\pm6.5}\\ {\rm CD3+HLADR=56.3\pm12.5\ CD4+HLADR+=}\\ {\rm 3.5\pm2.4\ CD4+HLADR=37.0\pm10.8\ CD8+}\\ {\rm HLADR+=5.3\pm5.0\ CD8+HLADR==24.9\pm}\\ {\rm 8.0} \end{array}$	pertinent cytokines and AGR/NLR inflammatory predictors	
		Before treatment		Weekly seizure frequency = 3.1 ± 0.8 QOLIE-31 = 55.8 ± 7.5 Each seizure episode = 12.8 ± 5.1		

Wang et al., (2018) [99]	Epilepsy treatment in patient (n = 18)	After treatment (GLSP, 1000 mg each time; 3 times daily for 8 weeks)	(min) Weekly seizure frequency = 2.4 ± 1.2 (p = 0.04) QOLIE-31 = 60.4 ± 9.6 (p = 0.11) Each seizure episode = 15.3 ± 4.8 (min) (p = 0.13)	GLSP may be helpful in lowering the frequency of weekly seizures
Zhao et	Improves cancer- related fatigue in	Control (n = 23)	$\label{eq:TNF-a} \begin{split} TNF-a &= 131.21 \pm 16.52 \ TNF-a \ 4 \ weeks = \\ 127.43 \pm 16.52 \ IL-6 &= 66.26 \pm 10.06 \ IL-6 \ 4 \\ weeks &= 64.05 \pm 10.31 \end{split}$	GLS powder may improve quality of life and reduce tiredness
al., (2012) [47]	breast cancer patients undergoing endocrine therapy	Experiment (G. lucidum 1000 mg three times a day for 4 weeks) (n = 25)	$\begin{split} TNF\text{-}\alpha &= 128.37 \pm 16.05 \ (p < 0.01 \ vs. \ control) \\ TNF\text{-}\alpha \ 4 \ weeks &= 71.74 \pm 15.58 \ (p < 0.01 \ vs. \ control) \\ iL-6 &= 62.09 \pm 8.58 \ (p < 0.05 \ vs. \ control) \\ iL-6 \ 4 \ weeks &= 41.47 \pm 8.1 \ (p < 0.05 \ vs. \ control) \end{split}$	associated with cancer in breast cancer patients receiving endocrine treatment

TABLE 2: Pharmacological activities of Ganodema lucidum spore

mean ± SEM (standard error of the mean)

GLS: G. lucidum spore; GLSAE: G. lucidum spore alcohol extract; SB: sporoderm broken; GLSP: G. lucidum spore polysaccharide; MTT: 3-[4,5dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide; BSG: sporoderm-broken spores of G. lucidum; BSGP: sporoderm-broken spores of G. lucidum polysaccharide; RSGP: polysaccharide of sporoderm-removed spores of G. lucidum; TGF: transforming growth factor; E/E-BSG: Ethanol/ethnol extract of sporoderm-broken spores of G. lucidum; GLSO@NE: G. lucidum; BSGP: sporoderm-broken spores of G. lucidum; BGSP: sporoderm-broken spores of G. lucidum; BSGP: sporoderm-broken spores of G. lucidum; GLSO@NE: G. lucidum; BSGP: sporoderm-broken spores of G. lucidum; BSGP: spore spores spore spores spore spores spore spores spore s

Safety

No serious side effects were reported and there were no abnormalities in liver or kidney function when *G.* lucidum spore powder was used in patients |45,47,64|. Stomach discomfort, nausea, vomiting, fatigue, dizziness, dry mouth, colitis or diarrhea, epistaxis, and sore throat are among the adverse events reported |47,64,99|.

However, current data show that cancer patients using *G. lucidum* spore powder have abnormally elevated serum CA72-4 levels. Monitoring of CA72-4 levels may be necessary when using *G. lucidum* spore powder to monitor the decision of whether to discontinue use or not [46,101].

Risk-of-Bias of Included Studies

Among the in vitro studies, 27 studies were considered low risk of bias, nine studies had a moderate risk of bias, four studies had a high risk of bias, and none were excluded due to quality. All in vivo studies are considered to have a moderate risk of bias because many domains do not have enough detailed information reported to accurately assess the risk of bias. A retrospective study is of fair quality, a case report is of fair quality. Three clinical trials had a moderate risk of bias. See Appendix 2-7 for the details. A summarized quality assessment of all included studies is presented in Table 3.

Study	Conclusion
Fukuzawa et al., 2008 [12]	low
Gao et al., 2012 [13]	low
Xinlin et al., 1997 [37]	moderate
Lu et al., 2004 [14]	moderate
Lu et al., 2004 [15]	low
Oliveira et al., 2014 [16]	low
Sliva et al., 2002 [19]	high
Sliva et al., 2003 [20]	low
Song et al., 2021 [33]	low
Wang et al., 2019 [21]	low
Zhong et al., 2021 [40]	low
Zhu et al., 2000 [30]	high
Wu et al., 2012 [43]	low
Li et al., 2016 [32]	moderate
Chan et al., 2005 [51]	moderate
Chan et al., 2007 [52]	low
Hsu et al., 2012 [55]	low
Ma et al., 2008 [53]	moderate
Zhang et al., 2011 [50]	moderate
Cai et al., 2021 [65]	low
Saavedra Plazas et al., 2020 [69]	low
Nguyen and Nguyen, 2015 [71]	high
Shen et al., 2019 [68]	low
Heleno et al., 2012 [70]	moderate

Nayak et al., 2021 [84]	low
Nayak et al., 2015 [85]	low
Nayak et al., 2010 [83]	high
Shen et al., 2020 [18]	low
Zhu et al., 2018 [86]	low
Zhu et al., 2019 [31]	low
Yang et al., 2020 [92]	low
Wang et al., 2012 [17]	low
Wang et al., 2014 [82]	low
Pan et al., 2019 [81]	low
Weng et al., 2010 [100]	moderate
Huang et al., 2011 [95]	low
Liet al. 2013 (96)	low
Wang et al. 2013 (97)	low
Yang et al., 2016 (98)	moderate
Lietal. 2020 [79]	moderate
Chen et al. 2016 (41)	moderate
Chen et al. 2016 [36]	low
	low
	mederate
una ot al., 2020 [42]	moderate
Li ot al., 2017 [33]	mouerate
Na ci al., 2017 [20]	moderate
Sni et al., 2021 [39]	moderate
Su et al., 2018 [23]	moderate
Su et al., 2018 [28]	moderate
Zhang et al., 2019 [25]	moderate
Pan et al., 2019 [27]	moderate
Wang et al., 2012 [29]	moderate
He et al., 2020 [24]	moderate
Guo et al., 2009 [54]	moderate
Yue et al., 2008 [38]	moderate
Bao et al., 2002 [48]	moderate
Bao et al., 2001 [49]	moderate
Dai et al., 2019 [75]	moderate
Fu et al., 2019 [34]	moderate
Liu et al., 2002 [22]	moderate
Bao et al., 2001 [56]	moderate
Bao et al., 2001 [57]	moderate
Li et al., 2020 [61]	moderate
Liu et al., 2021 [59]	moderate
Su et al., 2021 [58]	moderate
Wang et al., 2017 [62]	moderate
Wu et al., 2020 [60]	moderate
Ma et al., 2009 [63]	moderate
Sang et al., 2021 [66]	moderate
Levin et al., 2017 [72]	moderate
Zhang et al., 2021 [73]	moderate
Zhan et al., 2016 [87]	moderate
Jiang et al., 2021 [88]	moderate
Lai et al., 2020 [91]	moderate
Shaher et al., 2020 [89]	moderate
Wang et al., 2015 [90]	moderate
Gao et al., 2010 [74]	moderate
Jin et al., 2013 [78]	moderate
Liu et al., 2021 [76]	moderate
Xie et al., 2016 [77]	moderate
Zhou et al., 2012 (80)	moderate
and the second	

Zhao et al., 2021 [93]	moderate
Jiao et al., 2020 [94]	moderate
Ge et al., 2009 [67]	moderate
Wang et al., 2018 [99]	moderate
Liang et al., 2013 [101]	low
Yan et al., 2014 [46]	moderate
Suprasert et al., 2013 [45]	moderate
Deng et al., 2021 [64]	moderate
Zhao et al., 2012 [47]	moderate

TABLE 3: Summarized quality assessment of all included studies

Discussion

In general, *G. lucidum* spores possess ingredients that are very similar to other parts of *G. lucidum*, although spores contain a higher concentration of some bioactive compounds [3,102]. However, to the best of our knowledge, there is no article to date comparing the efficiency between extracts of different parts thus establishing the need for such investigations to identify the benefits of *G. lucidum* spores over its other parts.

G. lucidum spores and the extract from the spores both show effective anti-tumor, immunomodulatory, antiinflammatory, and antioxidant activities in treatment and in research. The comparison between UBSC and BSG showed that the effects of BSG were greater than those of the UBSG [30,37,38]. The phytochemical experiment showed that BSG contained higher contents of total carbohydrates and amino acids than UBSG. Triterpenes and polysaccharides from *G. lucidum* were well-known for its significant anticancer activity and immunomodulation [3,102]. This could be an explanation for the stronger effects of BSG compared to UBSG. In addition, the purification of BSG extract by chromatography revealed even more remarkable anti-tumor activities. This suggested that the purified extract might possess compounds that were responsible for the effect. However, to our knowledge, no significant studies have taken place to explore ingredients in such fractions to confirm this hypothesis. We suggest further studies screening potential compounds of purified BSG extract.

Besides, our research also realized that alcohol extracts and aqueous extracts have different therapeutic effects and effects in different areas of study. Namely, BSGEE showed a stronger inhibitory effect on tumors than BSGWE, while BSGWE had a stronger efficacy on immune systems. Previously, it was estimated that BSGEE had ritrierpenes whereas BSGWE had polysaccharides as major content [5,102,103]. This could imply that triterpenes play a critical role in anti-tumor activities while polysaccarides show better modulation of the immune system. BSGEE showed its cytotoxic activity via arresting G1 phase of cell cycle meanwhile ethanol/ethanol BSG extract blocked G2/M phase [30,36]. It appeared that the ethanol/ethanol fraction possessed bioactive substances different from ethanol extract. Phytochemical experiments should be conducted in the future for clarification.

There is also evidence of antimicrobial activities of *G. lucidum* spore, even on resistant bacteria, via MIC results. Extracts were considered highly active against bacteria when MIC < 100 µg/ml [104]. Thus, BSGWE could be deemed to possess antibacterial activity against *Entercooccus faccalis* and *K. pneumoniae* as the MIC values are 2-62.5 µg/ml. Moreover, the effect on the metabolites of *G. lucidum* spore contributes to alleviating the severity of chronic diseases through hypoglycemic and hypolipidemic activities. The modulation of body metabolism is possibly activated via GS2 and GYG1 genes (involved in glycogen synthesis), Insig1 and Insig2 genes (involved in glycose homeostasis and cholesterol homeostasis), Acox1 gene (involved in lipid oxidation), and ACC and Fads1 genes (involved in lipogenesis suppression). Additionally, Lai et al. also demonstrated that *BSGEE* inhibited lipid levels via the upregulation of LXRα expression leading to the increase in downstream genes such as ABCA1 and ABCG1. Thus, cholesterol molecules were transported back to the liver resulting in a decrease in blood cholesterol.

G. lucidum spore also has a supportive effect in the treatment of Alzheimer's disease treatment, anti-aging, wound healing, proliferation enhancer, and epilepsy treatment. The A β level and Tau phosphorylation excess are known for being associated with Alzheimer's disease [105]. Therefore, the suppression of A β level and Tau phosphorylation caused by *G.* lucidum spore extract could explain its potential against Alzheimer's disease. However, the concentrations of extract used in this experiment were quite high (up to 720 mg/kg) and the difference in the number of crossings to the platform location in the Morris water maze test across groups was not significant [93]. Consequently, we suggest further studies to confirm the benefits of *G.* lucidum spore extract to clues the difference in the revention and treatment of Alzheimer's disease.

Furthermore, the safety of *G. lucidum* spore is noteworthy, as no anomalies of bodily organs have been documented. Nevertheless, caution must be exercised when administering it to cancer patients, given the lack of adequately reported selectivity index values on varied cancer cells. Moreover, rigorous monitoring of patients is vital when administering a total daily dose of 1800 mg (or taken as two separate doses of 900 mg each per day), due to the potential occurrence of adverse events associated with this dosage.

The characteristics of the included studies are given in Table 4.

Author (Year)	Study design	Intervention	Pharmacological activities	Out come
Fukuzawa et al., (2008) [12]	in vitro	Long chain fatty acids in the spores	Antitumor activity	IC_{50} (µM), TNF- α release (pg/ml), HL-60 growth (% of control)
Gao et al., (2012) [13]	in vitro	C-19 fatty acids	Antitumor activity	Apoptotic cells
Xinlin et al., (1997) [37]	in vitro	Sporoderm-broken spores of G. lucidum (BSG), sporoderm-nonbroken spores of G. lucidum (NBSG)	Antitumor activity	OD value
Lu et al., (2004) [14]	in vitro	Extraction of G. lucidum spore powder	Antitumor activity	Cell proliferation (%)

Lu et al.,	in vitro	Extraction of G. lucidum spore powder	Antitumor activity	Cell proliferation (%)
(2004) [15]				
Oliveira et al., (2014) [16]	in vitro	Phenolic extraction of G. lucidum spore	Antitumor activity	GI ₅₀ (µg/mL)
Sliva et al., (2002) [19]	in vitro	G. lucidum spores	Antitumor activity	Migration (%), relative NF-kB activity (%), relative AP-1 activity (%)
Sliva et al., (2003) [20]	in vitro	G. lucidum spores	Antitumor activity	Migration (%), relative NF-kB activity (%)
Song et al., (2021) [33]	in vitro	Ganoderma lucidum spore powder	Antitumor activity	OD, inhibiton rate (%), cell (%), apoptosis (%), TNF- α levels (pg/ml), IL-1 β levels (pg/ml), IL-6 levels (pg/ml), TGF- β 1 levels (pg/ml)
Wang et al., (2019) [21]	in vitro	Extract prepared from G lucidum spores	Mediated immunomodulation and cancer treatment	Fold change in PD -1 protein, % of PD-1 cells, fold change in CCL5 prtotein
Zhong et al., (2021) [40]	in vitro	Polysaccharides from RSGand BSG	Antitumor activity	IC ₅₀ , cell apoptosis rate (%)
Zhu et al., (2000) [30]	in vitro	Extracts from BSG	Antitumor activity	Death ratio (%), IC ₅₀
Wu et al., (2012) [43]	in vitro	Ganoderma oil	Antitumor activity	Cell number, EC_{50} , cell survival
Li et al., (2016) [32]	in vitro	Supercritical-CO2 extraction	Inhibits cholangiocarcinoma cell migration	Cell viability (%), number of cell migration
Chan et al., (2005) [51]	in vitro	Extract of . lucidum spore	Immunological activity	Relative cell proliferation (%)
Chan et al., (2007) [52]	in vitro	Crude spore polysaccharides (GL-S), pure spore polysaccharides (GL-SG)	Immunological activity	Relative cell proliferation (%), IL-10 (pg/mL)
Hsu et al., (2012) [55]	in vitro	G. lucidum spores extract	Immunological activity	Phagocytic activity of human polymorphonuclear neutrophils (mean fluorescence intensity %)
Ma et al., (2008) [53]	in vitro	Polysaccharides from Ganoderma lucidum spores	Immunological activity	Cell proliferation (fold of control), IL-2 production, TNF- α production
Zhang et al., (2011) [50]	in vitro	Water-soluble polysaccharide of Ganoderma lucidum spores	Immunological activity	Murine lymphocyte proliferation index (A570)
Cai et al., (2021) [65]	in vitro	Water extract, alcohol extract of sporoderm-removed Ganoderma lucidum spores (SR-GLS)	Anti-inflammatory	Indicator A (acetic acid - propionic acid - butyric acid)/total short-chain fatty acids; indicator B (isobutyric acid + isovaleric acid)
Saavedra Plazas et al., (2020) [69]	in vitro	RM, BR, MBR1	Antioxidant activity	% inhibition DPPH (%)
Nguyen and Nguyen (2015) [71]	in vitro	G. lucidum spore powder	Antioxidant activity	Antioxidant activity
Shen et al., (2019) [68]	in vitro	Ganoderma lucidum spore powder	Antioxidant activity, improves glucose consumption in insulin- resistant HepG2 cells	% inhibition DPPH (%), glucose consumption (mmol/L)
Heleno et al., (2012) [70]	in vitro	Phenolic and polysaccharidic extracts	Antioxidant activity	DPPH scavenging activity (mg/ml), reducing power (mg/ml), β -carotene bleaching inhibition (mg/ml), EC ₅₀ (mg/ml)
Nayak et al., (2021) [84]	in vitro	Ganoderma lucidum spores	Antimicrobial activity	Minimum inhibitory concentration value (mcg/ml)
Nayak et al., (2015) [85]	in vitro	Spore of Ganoderma lucidum	Antimicrobial activity	Percentage of sensitive (%), percentage of resistant (%)
Nayak et al., (2010) [83]	in vitro	Spore of Ganoderma lucidum	Antimicrobial activity	Minimum inhibitory concentration value (mcg/ml)
Shen et al., (2020) [18]	in vitro	Triterpenoid extracts from Ganoderma lucidum spore powder	Antibacterial, antioxidant and anti- cancer	Average inhibition zone diameter (mm), DPPH radical-scavenging activities (%), cell viability (%)
Zhu et al., (2018) [86]	in vitro	Chitosan from Ganoderma lucidum spore powder	Antimicrobial activity	Average inhibition zone diameter (mm)
Zhu et al., (2019) [31]	in vitro	Proteoglycan from cracked (proteoglycan-C) and uncracked Ganoderma lucidum spore powder (proteoglycan-UC)	Antimicrobial, hyperglycemic, antitumor and antioxidant	Average inhibition zone diameter (mm), DPPH radical-scavenging activities (%), cell viability (%), glucose concentration (mmol/L)

Yang et al., (2020)	in vitro	Oligosaccharide from spores of Ganoderma lucidum	Prebiotic effects	Growth rate of Lactobacillus acidophilus
[92] Li et al., (2020) [79]	in vitro	Sporoderm-broken spore of G. lucidum	Induced intestinal barrier injury	Apoptosis (%)
Wang et al., (2012) [17]	in vitro	Ganoderma lucidum spores	Induced apoptosis in human leukemia THP-1 cells	Apotosis rate (%)
Wang et al., (2014) [82]	in vitro	Ganoderma lucidum spores	Inhibitive effect on apoptosis	Apoptotic rate (TUNEL) (%), splenic index (mg/g)
Pan et al., (2019) [81]	in vitro	Ganoderma spore lipid	Protects bone marrow mesenchymal stem cells and hematopoiesis	Apoptosis rate, erythrocyte colony forming unit (CFU-E), erythroid burst-forming units (BFU-E), granulocyte macrophage colony-forming units (CFU-GM)
Huang et al., (2011) [95]	in vitro	Ganoderma lucidum spore lipid	Induced the activity of $PPAR\alpha$	PPARa fold induction
Li et al., (2013) [96]	in vitro	Ganoderma lucidum spore	Enhance of embryonic stem cells	Specific growth rate (%)
Wang et al., (2013) [97]	in vitro	Ganoderma lucidum spore	Anti-epileptic effects	Fluorescent intensity values, the expression level of NT-4, the expression level of N-cadherin
Yang et al., (2016) [98]	in vitro	Ganoderma lucidum spore	Anti-epileptic effects	BDNF fluorescence intensity, TRPC3 fluorescence intensity, apoptosis rate
Chen et al., (2016) [41]	in vitro, in vivo	Ganoderma spores oil	Antitumor effect	Half maximal inhibitory concentration (IC $_{\rm 50}),$ inhibitory rate (%)
Chen et al., (2016) [36]	in vitro, in vivo	E/E-SBGS (Ethanol/ethanol extract () from SBGS (Ganoderma lucidum sporoderm-broken spores) ()	Antitumor effect	Migration of lung cancer cells (H441 cells) (% of control), colony number (% of control), tumor volume (mm ³), tumor weight (g)
Dai et al., (2021) [44]	in vitro, in vivo	G.lucidum spore oil (GLSO) nanosystems (GLSO@NEs)	Antitumor effect	Half maximal inhibitory concentration (IC $_{50}),$ apoptosis analysis (MGC803 cells) (%), migrated cell (% of control), invaded cell (% of control), tumor volume (mm ³), tumor weight (g)
Jiao et al., (2020) [42]	in vitro, in vivo	G. lucidum spore oil	Antitumor effect	Fold change of control, % apoptosis area
Li et al., (2017) [35]	in vitro, in vivo	Ethanol extracts of BSGLEE (G. lucidum sporoderm-broken spores)()	Antitumor effect	Cell viability (% of control), cell cycle distribution (%), apoptosis (%), average migration cells, tumor weight (g), liver weight (g)
Na et al., (2017) [26]	in vitro, in vivo	G. lucidum sporoderm-broken spores water extract (BSGLWE)	Anticarcinogenic effects	Cell viability (%), tumor weight (g)
Shi et al., (2021) [39]	in vitro, in vivo	Ganoderma lucidum spore (GLS), wall- broken Ganoderma lucidum powder (BGLSP) and wall-removed Ganoderma lucidum powder (RGLSP)	Antitumor effect	IC_{50} , inhibition rate (%)
Su et al., (2018) [23]	in vitro, in vivo	Sporoderm-breaking spores of G. lucidum	Antitumor effect	Cell viability (%), tumor volume (mm ³), tumor weight (g)
Su et al., (2018) [28]	in vitro, in vivo	BSGLP (polysaccharide of the G. lucidum sporoderm-breaking spores)	Antitumor effect	Tumor, IOD/10 ⁶ pixel
Zhang et al., (2019) [25]	in vitro, in vivo	BSGLWE (Water extract of Ganoderma lucidum sporoderm-broken spores)	Antitumor effect	Cell viability (%), apoptotic cells (%), tumor volume $(mm^3), tumor \mbox{ weight } (g)$
Pan et al., (2019) [27]	in vitro, in vivo	Polysaccharides from Ganoderma lucidum sporoderm-broken spores	Antitumor effect	Cell viability (%), tumor volume (mm ³), tumor weight (g)
Wang et al., (2012) [29]	in vitro, in vivo	BSGLP (Polysaccharides from Ganoderma lucidum broken-spore)	Immunological activity, antitumor effect	Inhibitory ratio, proliferation ratio, CD4+/CD8+
He et al., (2020) [24]	in vitro, in vivo	BSGLWE (Water extract of Ganoderma lucidum sporoderm-broken spores)	Immunological activity, antitumor effect	Apoptosis rate (%), STAT3, pho-STAT3, tumor volume (mm 3)
Guo et al., (2009) [54]	in vitro, in vivo	G. lucidum spore polysaccharide	Immunological activity, antitumor effect	TNF- α and IL-6 secretion (pg/mL), Tumor weight (g)
Yue et al., (2008) [38]	in vitro, in vivo	sporoderm-broken Ganoderma spores and sporoderm -unbroken Ganoderma spores	Immunological activity, antitumor effect	TNF- α and IL-6 secretion (pg/mL), cell proliferation (%), tumor weight (g)
Bao et al., (2002) [48]	in vitro, in vivo	PSGL-I-1A	Immunological activity	T lymphocytes proliferation index (A570)
Bao et al., (2001) [49]	in vitro, in	G. lucidum spore polysaccharide (PSG)	Immunological activity	B and T lymphocytes proliferation index (A570)
	VIVO			

Fu et al., (2019) [34]	in vivo	GLSP (Polysaccharide from Ganoderma	Antitumor effect	Tumor weight (g)
Liu et al., (2002) [22]	in vivo	Sporoderm-broken germinating Ganoderma lucidum spores	Antitumor effect	Tumor weight (g)
Bao et al., (2001) [56]	in vivo	Glucans from spore G. lucidum (PGL)	Immunological activity	B and T lymphocytes proliferation index (A570), antibody production (A520)
Bao et al., (2001) [57]	in vivo	Native polysaccharide (SP) and the Smith-degraded polymer of the SP (SP- 1)	Immunological activity	B and T lymphocytes proliferation index (A570), antibody production (A520), serum IgG, complement (C-3) levels
Li et al., (2020) [61]	in vivo	Sporoderm-broken of Ganoderma lucidum spores (BGLS), sporoderm- removed Ganoderma lucidum spores Ganoderma lucidum spores (RGLS)	Immunological activity	The number of neutrophils, neutrophil recovery rate (%), the number of macrophage that phagocytized ACNP, macrophage formation efficiency, macrophage phagocytosis efficiency
Liu et al., (2021) [59]	in vivo	Water extracts from unbroken spores of Ganoderma lucidum	Immunological activity	Serum half-hemolytic value (HC ₅₀)
Su et al., (2021) [58]	in vivo	Polysaccharide of spores of G. lucidum	Immunological activity	Thymus coeficiency, NK cell's tumor-killing ability
Wang et al., (2017) [62]	in vivo	Water soluble β-glucan (GLSWA-I)	Immunological activity	Ear swelling (mg)
Wu et al., (2020) [60]	in vivo	Spore oil of G. lucidum (GLSO)	Immunological activity	Phagocytic index, NK activity
Ma et al., (2009) [63]	in vivo	Ganoderma lucidum spore polysaccharides	Immunological activity, against cyclophosphamide (Cy) toxicity	Thymus weight (mg), Con-A induced lymphocyte proliferation
Sang et al., (2021) [66]	in vivo	BGLSP (Polysaccharide of Ganoderma lucidum sporoderm-broken spore)	Anti-inflammatory, anti- obesity	Body weight gain (g), TC (mmol/L), LDL (mmol/L), TG (mmol/L), HDL (mmol/L), NEFA (mmol/L), TNF- α (ng/L), IL-1 β (ng/L), IL-6 (ng/L), MCP-1 (ng/L), Positive area (%)
Levin et al., (2017) [72]	in vivo	G. lucidum broken spore shell extracts	Protection of bladder function following oxidative stress	Bladder weight (mg), Compliance (cm $H_2O/20\%$ capacity)
Zhang et al., (2021) [73]	in vivo	Ganoderma lucidum spore oil (GLSO)	Antioxidant activity	Life span in the condition of oxidative stress
Zhan et al., (2016) [87]	in vivo	Ganoderma lucidum extract (spores andspores lipid)	Antimicrobial activity	LogCFU
Jiang et al., (2021) [88]	in vivo	Resistant starch encapsulated Ganoderma lucidum spores (EGLS)	Glucose/lipid metabolism and gut microbiota	Blood glucose concentration, total cholesterol (TC), triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) levels
Lai et al., (2020) [91]	in vivo	Ganoderma lucidum spore ethanol extract (EEG)	Lipid-lowering and anti- atherosclerotic effects	Total cholesterol/high-density lipoprotein cholesterol (TC/HDL-C) ratio, aterial intima/medium thickness (I/M), hepatocyte steatosis (score)
Shaher et al., (2020) [89]	in vivo	Ganoderma lucidum spores (GLS)	Hyperglycemia- mediated cardiomyopathy protection	Body weight (g), blood glucose, HbA1C, BNP/GAPDH, TNF-α/GAPDH, IL-1β/GAPDH, Caspase-3/GAPDH
Wang et al., (2015) [90]	in vivo	Ganoderma lucidum spores powder (GLSP)	Glucose and lipid metabolisms	Blood glucose level (mmol/L), TG (mmol/L), HDL-C (mmol/L)
Gao et al., (2010) [74]	in vivo	Ganoderma spore lipid	Protecting retinal function against N- methyl-N-nitrosourea	Apoptotic index (%)
Jin et al., (2013) [78]	in vivo	Ganoderma lucidum spores	Protect effectf on cadmium hepatotoxicity	Liver and body weight ratios (mg/g), serum ALT (U/L), serum AST (U/L), hepatic MDA (nmol/g liver), hepatic MT protein (µg/g)
Liu et al., (2021) [76]	in vivo	Extract from spores of Ganoderma lucidum	Protective effect in trimethylamine-N-oxide induced cardiac dysfunction	Ejection fraction, fractional shortening, cardiac output, content of TMAO
Xie et al., (2016) [77]	in vivo	Ganoderma spore oil	Cardiovascular protective effect	Left ventricular ejection fraction - LVEF (%), left ventricular fractional shortening - LVFS (%), left ventricular end diastolic diameter (LV Trace, mm), cardiac output (ml/min)
Zhou et al., (2012) [80]	in vivo	Ganoderma lucidum spores	Neuroprotective effect	GSH index (mg/g pr), GR index (U/g Pr), MDA index (nmol/mg.PR), CytOx (U/mcg min), ATP (mcg/ml), neuron number
Zhao et al., (2021) [93]	in vivo	Sporoderm-deficient Ganoderma lucidum spores (RGLS)	Efficiency on Alzheimer disease	BDNF (%), TrkB (%), pTrkB (%), pTrkB/TrkB (%)
Jiao et al., (2020) [94]	in vivo	Ganoderma lucidum spore oil	Wound healing	Collagen volume fraction, area fraction (CD4), area fraction (CD8), area fraction (CD45), area fraction (IFN- γ), fold change of control (IL-4)
Ge et al., (2009) [67]	in vivo	Ganoderma lucidum spores	Effects on sialoadenitis	Incidence (µm ²), Area, CD3+T, CD4+/CD8+, CD4+T apoptosis, CD8+T apoptosis, CD19+B,

				CD19+B apoposis, IgG (µg/ml)
Deng et al., (2021) [64]	Clinical trial	G. lucidum spore powder	Immunological activity	Detection results of T cell subsets
Wang et al., (2018) [99]	Retrospective study	Ganoderma lucidum spore powder (GLSP)	Epilepsy treatment	Weekly seizure frequency after, QOLIE-31, each seizure episode (min)
Liang et al., (2013) [101]	Case report	Ganoderma lucidum spore powder (GLSP)	Safety	CA72-4 levels
Weng et al., (2010) [100]	in vitro	Ganodermasides A and B	anti-aging	Cell viability (%)
Suprasert et al., (2013) [45]	Randomized double blind controlled trial	Spores lingzhi	Effect in cancer patients	Clinical characteristics
Yan et al., (2014) [46]	Case report	Spore of Ganoderma lucidum (GLS)	Induced CA72-4 elevation in gastrointestinal cancer	CA72-4 Values
Zhao et al., (2012) [47]	A pilot clinical trial	Spore powder of Ganoderma lucidum	Improves cancer- related fatigue in breast cancer patients undergoing endocrine therapy	TNF-a, IL-6

TABLE 4: Baseline characteristics of included studies

Limitations

Our limitation in this review was the language criteria. There are many reports on the biological effects of *G. lucidum* spore written in Chinese. The exclusion of these articles may cause certain shortcomings when compiling information about the therapeutic capabilities of *G. lucidum* spore. Nevertheless, our study included a large number of relevant articles, thus, the review appeared to relatively sufficiently summerize bioactivities of *G. lucidum* spore. In addition, unique compounds of *G. lucidum* spores have not been studied for their pharmacological effects yet. Therefore, we recommend further studies conducting experiments on these compounds. This could contribute to a deeper understanding of the pharmacological characteristics of *G. lucidum* spore, which will help in developing new materials for treating diseases.

Conclusions

G. lucidum spore and its extracts have a lot of pharmacological potentials which may yield new approaches to treatments. Anti-tumor, immunomodulatory, anti-inflammatory, and antioxidant activities are the main effects of *G. lucidum* spore extracts. Sporoderm breaking technique could contribute to the production of extracts with more effective prevention and treatment of diseases. In addition, the potential of *G. lucidum* spore extract on Alzheimer's disease should be tested. High doses of *G. lucidum* spore extract must be used with caution as there was a concern about the increase in cancer antigens.

Appendices

Appendix 1

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes	6

process		for obtaining and confirming data from investigators.	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	N/A
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	N/A
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., l^2) for each meta-analysis.	N/A
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	N/A
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	N/A
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	6
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	7-9
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	N/A
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	N/A
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	10
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	12
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	10-12
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	N/A

TABLE 5: PRISMA Checklist

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Appendix 2

Study	Abstract	Scientific background and explanation of rationale?	Specific objectives and/or hypotheses?	Intervention	Outcomes	Sample size	Randomization - Sequence generation	Randomization - Allocation concealment mechanism	Randomization - Implementation	Randomization - Blinding	Statistical methods	Outcomes and estimation	Limita
Fukuzawa et al., (2008) [12]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Gao et al., (2012) [13]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	1
Xinlin et al., (1997) [37]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	0
Lu et al., (2004) [14]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	0
Lu et al., (2004) [15]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Oliveira et al., (2014) [16]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Sliva et al., (2002) [19]	1	1	1	1	0	0	N/A	N/A	N/A	N/A	0	1	0
Sliva et al., (2003) [20]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1

Song et al., (2021) [33]	1	1	1	1	0	1	N/A	N/A	N/A	N/A	1	1	1
Wang et al., (2019) [21]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Zhong et al., (2021) [40]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	1
Zhu et al., (2000) [30]	1	1	1	1	0	0	N/A	N/A	N/A	N/A	0	1	1
Wu et al., (2012) [43]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	1
Li et al., (2016) [32]	1	1	1	1	0	0	N/A	N/A	N/A	N/A	1	1	1
Chan et al., (2005) [51]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	0
Chan et al., (2007) [52]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Hsu et al., (2012) [55]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	1
Ma et al., (2008) [53]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	0
Zhang et al., (2011) [50]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	0
Cai et al., (2021) [65]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Saavedra Plazas et al., (2020) [69]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Nguyen and Nguyen (2015) [71]	1	1	1	1	0	0	N/A	N/A	N/A	N/A	0	1	0
Shen et al., (2019) [68]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Heleno et al., (2012) [70]	1	1	1	1	0	0	N/A	N/A	N/A	N/A	1	1	1
Nayak et al., (2021) [84]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Nayak et al., (2015) [85]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	1
Nayak et al., (2010) [83]	1	1	1	1	0	0	N/A	N/A	N/A	N/A	0	1	1
Shen et al., (2020) [18]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	1
Zhu et al., (2018) [86]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Zhu et al., (2019) [31]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Yang et al., (2020) [92]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Li et al., (2020) [79]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Wang et al., (2012) [17]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Wang et al., (2014) [82]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	1
Pan et al., (2019) [81]	1	1	1	1	1	1	N/A	N/A	N/A	N/A	1	1	1
Weng et al., (2010) [100]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Huang et al., (2011) [95]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1
Li et al., (2013) [96]	1	1	1	1	1	0	N/A	N/A	N/A	N/A	1	1	1

(2016) [98]	[97] Yang et al.,	1	1	1	1	0	0	N/A	N/A	N/A	N/A	1	1	1
	(2016) [98]	1	I	i	i.	U	U	IN/A	IN/M	IN/A	IN/A	i	I	I

TABLE 6: Quality assessment of in vitro studies according to the items of the Modified CONSORT checklist

CONSORT: Consolidated Standards of Reporting Trials

Appendix 3	
------------	--

Study	1) Was the allocation sequence adequately generated and applied?	2) Were the groups similar at baseline or were they adjusted for confounders in the analysis?	3) Was the allocation to the different groups adequately concealed during?	4) Were the animals randomly housed during the experiment?	5) Were the caregivers and/or investigators blinded from knowledge which intervention each animal received during the experiment?	6) Were animals selected at random for outcome assessment?	7) Was the outcome assessor blinded?	8) Were incomplete outcome data adequately addressed?	9) Are reports of the study free of selective outcome reporting?	10) Was the study apparently free of other problems that could result in high risk of bias?
Chen et al., (2016) [41]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Chen et al., (2016) [36]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Dai et al., (2021) [44]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Jiao et al., (2020) [42]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Li et al., (2017) [35]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Na et al., (2017) [26]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Shi et al., (2021) [39]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Su et al., (2018) [23]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Su et al., (2018) [28]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Zhang et al., (2019) [25]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Pan et al., (2019) [27]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Wang et al., (2012) [29]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
He et al., (2020) [24]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Guo et al., (2009) [54]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes

Yue et al., (2008) [38]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Bao et al., (2002) [48]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Bao et al., (2001) [49]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Dai et al., (2019) [75]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Fu et al., (2019) [34]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Liu et al., (2002) [22]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Bao et al., (2001) [56]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Bao et al., (2001) [57]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Li et al., (2020) [61]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Liu et al., (2021) [59]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Su et al., (2021) [58]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Wang et al., (2017) [62]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Wu et al., (2020) [60]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Ma et al., (2009) [63]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Sang et al., (2021) [66]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Levin et al., (2017) [72]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Zhang et al., (2021) [73]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Zhan et al., (2016) [87]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Jiang et al., (2021) [88]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Lai et al., (2020) [91]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes

Shaher et al., (2020) [89]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Wang et al., (2015) [90]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Gao et al., (2010) [74]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Jin et al., (2013) [78]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Liu et al., (2021) [76]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Xie et al., (2016) [77]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Zhou et al., (2012) [80]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Zhao et al., (2021) [93]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Jiao et al., (2020) [94]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes
Ge et al., (2009) [67]	Unclear	Yes	Unclear	Unclear	Unclear	Unclear	Unclear	Yes	Yes	Yes

TABLE 7: Quality assessment of in vivo studies according to the items of the SYRCLE's tool

Appendix 4

Article	Que	stion													Overall
Article	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Overall
Wang et al., (2018) [98]		1	1	1	0	1	NA	0	1	0	1	0	1	1	Fair

TABLE 8: Quality assessment of retrospective study using the Study Quality Assessment Tools (SQAT)

Question 1. Was the research question or objective in this paper clearly stated? Question 2. Was the study population clearly specified and defined? Question 3. Was the participation rate of eligible persons at least 50%? Question 3. Was the participation rate of eligible persons at least 50%? Question 4. Were all the subjects selected or recruited from the same or similar populations (including the same time periods)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants? Question 5. Was a sample size justification, power description, or variance and effect estimates provided? Question 6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? Question 7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed? Question 7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed? Question 7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)? Question 10. Were the exposure(s) assessed more than once over time? Question 10. Was the exposure(s) assessed more than once over time? Question 11. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants? Question 12. Were the outcome assessors blinded to the exposure status of participants? Question 13. Was to so to follow-up after baseline 20% or less? Question 13. Ware two potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?

Appendix 5

Asticle	Questi		Quant							
Article	1	2	3	4	5	6	7	8	9	Overall
Liang et al., 2013 [99]	1	1	1	1	1	1	1	0	1	Good
Yan et al., 2014 [45]	1	1	0	1	1	1	1	0	1	Fair

TABLE 9: Quality assessment of case reports using the Study Quality Assessment Tools (SQAT)

- Was the study question or objective clearly stated?
 Was the study population clearly and fully described, including a case definition?
 Were the subjects comparable?
 Was the intervention clearly described?
 Was the intervention clearly described?
 Was the intervention clearly defined, valid, reliable, and implemented consistently across all study participants?
 Was the length of follow-up adequate?
 Were the statistical methods well-described?
 Were the results well-described?

Appendix 6

Study	Domain 1: Risk of bias arising from the randomization process	Domain 2: Risk of bias due to deviations from the intended interventions (effect of assignment to intervention)	Domain 2: Risk of bias due to deviations from the intended interventions (effect of adhering to intervention)	Domain 3: Missing outcome data	Domain 4: Risk of bias in measurement of the outcome	Domain 5: Risk of bias in selection of the reported result	Domain 6: Overall bias
Suprasert et al., (2013) [45]	Low	Low	Some concerns	Low	Low	Low	Some concerns (moderate risk of bias)

TABLE 10: Quality assessment for RCT using ROB2 from Cochrane

Annondix 7

RCT: randomized control trial; ROB2: risk-of-bias tool for randomized trials

		Appen						
Study	1. Bias due to confounding	2. Bias in selection of participants into the study	3. Bias in classification of interventions	4. Bias due to deviations from intended interventions	5. Bias due to missing data	6. Bias in measurement of outcomes	7. Bias in selection of the reported result	8. Overall bias
Deng et al., (2021) [64]	Low	Low	Low	Low	Low	Moderate	Moderate	Moderate
Zhao et al., (2012) [47]	Low	Low	Low	Low	Low	Moderate	Moderate	Moderate

TABLE 11: Quality assessment for non-RCT using ROB2 from Cochrane

RCT: randomized control trial; ROB2: risk-of-bias tool for randomized tria

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: Dr. Nguyen Huu Lac Thuy received funding support from the Department of Science and Technology in Ho Chi Minh City, Vietnam (under grant number 888/QD-SKHCN) for this project. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

- 1. Wang L, Li JQ, Zhang J, Li ZM, Liu HG, Wang YZ: Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: a review. RSC Adv. 2020, 10:42084-97. 10.1039/d0ra07219b
- 2. Lin Z: Ganoderma (Lingzhi) in traditional Chinese medicine and Chinese culture , Ganoderma and Health. Advances in Experimental Medicine and Biology. Lin Z, Yang B (ed): Springer, Singapore; 2019. 1181:1-13. 10.1007/978-981-13-9867-4_1
- Xu J, Li P: Researches and application of Ganoderma spores powder. Ganoderma and Health. Advances in Experimental Medicine and Biology. Lin Z, Yang B (ed): Springer, Singapore; 2019. 1181:157-86. 10.1007/978-981-13-9867
- 4. Liu MT, Chen LX, Zhao J, Li SP: Ganoderma spore powder contains little triterpenoids . Chin Med. 2020, 15:111. 10.1186/s13020-020-00391-1
- Wang J, Ke R, Zhang S: Breaking the sporoderm of Ganoderma lucidum spores by combining chemical reaction with physical actuation. Nat Prod Res. 2017, 51:2428-54, 10.1080/14786419.2017.315294
 Chen TQ, Wu YB, Wu JG, Wang HY, Mao FH, Wu JZ: Fatty acids, essential oils, and squalene in the spor-lipids of Ganoderma lucidum by GC-MS and GC-FID. Chem Nat Compd. 2013, 49:145-4. 10.1007/s10600-
- 7. Liberati A, Altman DG, Tetzlaff J, et al.: The PRISMA statement for reporting systematic reviews and meta-

- Faggion CM Jr: Guidelines for reporting pre-clinical in vitro studies on dental materials . J Evid Based Dent 8. Pract. 2012, 12:182-9. 10.1016/j.jebdp.2012.10.001
- Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW: SYRCLE's risk of bias tool for animal studies, BMC Med Res Methodol, 2014, 14:43, 10,1186/1471-2288-14-4 Study Quality Assessment Tools. (2014). Accessed: February 2, 2021: https://www.nhlbi.nih.gov/health-10.
- topics/study-quality-assessment-tools. 11.
- topicsystuay-quality-assessment-tools. Higgins JP, Altman DG, Gøtzsche PC, et al.: The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ, 2011, 545:d5928. 10.1136/bmj.d5928 Fukuzawa M, Yamaguchi R, Hide I, et al.: Possible involvement of long chain fatty acids in the spores of Ganoderma lucidum (Reishi Houshi) to its anti-tumor activity. Biol Pharm Bull. 2008, 51:1953-7. 12.
- 10 1248/hph 31 193
- Gao P, Hirano T, Chen Z, Yasuhara T, Nakata Y, Sugimoto A: Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom). Fitoterapia. 2012, 13. 83:490-9, 10,1016/j.fitote,2011.12.014
- 14. Lu QY, Jin YS, Zhang Q, et al.: Ganoderma lucidum extracts inhibit growth and induce actin polymerization in bladder cancer cells in vitro, Cancer Lett, 2004, 216:9-20, 10,1016/j.canlet.2
- Lu QY, Sartippour MR, Brooks MN, et al.: Ganoderma lucidum spore extract inhibits endothelial and breast cancer cells in vitro. Oncol Rep. 2004, 12:659-62. 10.3892/or.12.3.659 15. 16
- Oliveira M, Reis FS, Sousa D, et al.: A methanolic extract of Ganoderma lucidum fruiting body inhibits the growth of a gastric cancer cell line and affects cellular autophagy and cell cycle. Food Funct. 2014, 5:138 94 10 10
- Wang H, Zhou Y, Zhang M, Kan L, He P: Active lipids of Ganoderma lucidum spores-induced apoptosis in human leukemia THP-1 cells via MAPK and PI3K pathways. J Ethnopharmacol. 2012, 139:582-9. 17. 2011 11 05
- 18. Shen SF, Zhu LF, Wu Z, Wang G, Ahmad Z, Chang MW: Extraction of triterpenoid comp Ganoderma lucidum spore powder through a dual-mode sonication process. Drug Dev Ind Pharm. 2020, 46:963-74, 10,1080/0 639045 2020 176
- Sliva D, Labarrere C, Slivova V, Sedlak M, Lloyd Jr FP, Ho NW: Ganoderma lucidum suppresses motility of 19. highly invasive breast and prostate cancer cells. Biochem Biophys Res Commun. 2002, 298:603-12.
- 20. Sliva D. Sedlak M. Slivova V. Valachovicova T. Llovd FP Ir. Ho NW: Biologic activity of spores and dried vder from Ganoderma lucidum for the inhibition of highly invasive human breast and prostate cancer cells. J Altern Complement Med. 2003, 9:491-7. 10.1089/107555303322284776
- Wang G, Wang L, Zhou J, Xu X: The possible role of PD-1 protein in Ganoderma lucidum-mediated 21. omodulation and cancer treatment. Integrative cancer therapies. Integr Cancer Ther. 2019. 18:1534735419880275, 10.1177/1534735419880275
- Liu X, Yuan JP, Chung CK, Chen XJ: Antitumor activity of the sporoderm-broken germinating spores of 22. Ganoderma lucidum. Cancer Lett. 2002, 182:155-61. 10.1016/S0304-3835(02)0
- Su J, Su L, Li D, et al.: Antitumor activity of extract from the sporoderm-breaking spore of Ganoderma lucidum: restoration on exhausted cytotoxic T cell with gut microbiota remodeling. Front Immunol. 2018, 9:1765, 10.3389/fimmu.2018.01765
- 24. He J, Zhang W, Di T, et al.: Water extract of sporoderm-broken spores of Ganoderma lucidum enhanced pd-11 antibody efficiency through downregulation and relieved complications of pd-11 monoclonal antibody Biomed Pharmacother. 2020, 131:110541. 10.1016/j.biopha.2020.110541 Zhang W, Lei Z, Meng J, Li G, Zhang Y, He J, Yan W: Water extract of sporoderm-broken spores of
- 25. Ganoderma lucidum induces osteosarcoma apoptosis and restricts autophagic flux. Onco Targets Ther. 2019, 12:11651-65. 10.2147/OTT.S226850
- Na K, Li K, Sang T, Wu K, Wang Y, Wang X: Anticarcinogenic effects of water extract of sporoderm-broken 26. spores of Ganoderma lucidum on colorectal cancer in vitro and in vivo. Int J Oncol. 2017, 50:1541-54.
- Pan H, Wang Y, Na K, et al.: Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation. Cell Death Dis. 2019, 10:456. 27.
- Su J, Li D, Chen Q, et al.: Anti-breast cancer enhancement of a polysaccharide from spore of Ganoderma lucidum with paclitaxel: suppression on tumor metabolism with gut microbiota reshaping. Front Microbiol. 2018. 9:3099. 10.3389/fmich.2018.03099
- Wang PY, Zhu XL, Lin ZB: Antitumor and immunomodulatory effects of polysaccharides from broken-spore 29. of Ganoderma lucidum, Front Pharmacol, 2012, 3:135, 10,3389/fphar, 2012,00135
- Zhu HS, Yang XL, Wang LB, Zhao DX, Chen L: Effects of extracts from sporoderm-broken spores o 30.
- Ganoderma lucidum on HeLa cells. Cell Biol Toxicol. 2000, 16:201-6. 10.1023/a:1007 Zhu LF, Yao Y, Ahmad Z, Chang MW: Development of Ganoderma lucidum spore powder based proteoglycan and its application in hyperglycemic, antitumor and antioxidant function. Process Biochem . 31.
- 2019. 84:103-11. 10.1016/j.prochio.2019.05.025 Li L, Guo HJ, Zhu LY, Zheng L, Liu X: A supercritical-CO2 extract of Ganoderma lucidum spores inhibits
- cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition. Phytomedicine 2016, 23:491-7, 10,1016/j.phymed,2016.02.019 33. Song M, Li ZH, Gu HS, et al.: Ganoderma lucidum spore polysaccharide inhibits the growth of hepatocellular
- arcinoma cells by altering macrophage polarity and induction of apoptosis. J Immu 021:6696606. 10.1155/2021/6696606 ol Res 2021
- 34. Fu Y. Shi L. Ding K: Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of ma lucidum (Fr.) Karst. Int J Biol Macromol. 2019, 141:693-9. 10.1016/
- 35. Li K, Na K, Sang T, Wu K, Wang Y, Wang X: The ethanol extracts of sporoderm-broken spores of Ganoderma lucidum inhibit colorectal cancer in vitro and in vivo. Oncol Rep. 2017, 38:2803-13. 10.3892/or.2017.6010 Chen Y, Lv J, Li K, Xu J, Li M, Zhang W, Pang X: Sporoderm-broken spores of Ganoderma lucidum inhibit 36.
- the growth of lung cancer: involvement of the Akt/mTOR signaling pathway. Nutr Cancer. 2016, 68:1151-60. 10.1080/01635581.2016.1208832 Xinlin Y, Hesun Z, Jianlan X, Qun K: Antitumor activity of the Ganoderma lucidum spore alcohol extract in
- 37. vitro. J Beijing Inst Technol. 1997, 6:336-40. Yue GG, Fung KP, Leung PC, Lau CB: Comparative studies on the immunomodulatory and antitumo
- 38. activities of the different parts of fruiting body of Ganoderma lucidum and Ganoderma spores. Phytother Res. 2008, 22:1282-91. 10.1002/ptr
- Shi YI, Zheng HX, Hong ZP, Wang HB, Wang Y, Li MY, Li ZH: Antitumor effects of different Ganoderma 39. lucidum spore powder in cell- and zebrafish-based bioassays. J Integr Med. 2021, 19:177-84.
- 40. Zhong J. Fang L. Chen R. et al.: Polysaccharides from sporoderm-removed spores of Ganoderma lucidum induce apoptosis in human gastric cancer cells via disruption of autophagic flux. Oncol Lett. 2021, 21:425. 10 3892 .2021.1268
- Chen C, Li P, Li Y, Yao G, Xu JH: Antitumor effects and mechanisms of Ganoderma extracts and spores oil 41. Oncol Lett. 2016, 12:3571-8. 10.3892/ol.2016.5059
- 42. liao C, Chen W. Tan X, et al.: Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9. J Ethnopharmacol. 2020, 247:112256.
- Wu QP, Xie YZ, Deng Z, et al.: Ergosterol peroxide isolated from Ganoderma lucidu 43. n abolishes microRNA miR-378-mediated tumor cells on chemoresistance. PLoS One. 2012, 7:e44579. 004457
- Dai C, Tang Z, Li X, Chen T: High-pressure homogenization and tailoring of size-tunable Ga lucidum spore oil nanosystem for enhanced anticancer therapy. J Chem Eng. 2021, 406:127125. ei 2020 127125
- Suprasert P, Apichartpiyakul C, Sakonwasun C, Nitisuwanraksa P, Phuackchantuck R: Clinical characteristics 45. of gynecologic cancer patients who respond to salvage treatment with Lingzhi. Asian Pac J Cancer Prev. 2014, 15:4193-6. 10.7314/apjcp.2014.15.10.4193
- Yan B, Meng X, Shi J, Qin Z, Wei P, Lao L: Ganoderma lucidum spore induced CA72-4 elevation in 46 gastrointestinal cancer: a five-case report. Integr Cancer Ther. 2014, 13:161-6. 10.1177/15.

- Zhao H, Zhang Q, Zhao L, Huang X, Wang J, Kang X: Spore powder of Ganoderma lucidum improves cancerrelated fatigue in breast cancer patients undergoing endocrine therapy: a pilot clinical trial. Evid Based Complement Alternat Med. 2012, 2012:896614. (d):1552012/809614
- Bao XF, Zhen Y, Ruan L, Fang JN: Purification, characterization, and modification of T lymphocytestimulating polysaccharide from spores of Ganoderma lucidum. Chem Pharm Bull (Tokyo). 2002, 50:623-9. 10.1248/ept 50.603
- Bao X, Duan J, Fang X, Fang J: Chemical modifications of the (1-->3)-alpha-D-glucan from spores of Ganoderma lucidum and investigation of their physicochemical properties and immunological activity. Carbohydr Res. 2001, 336:127-40. 10.1016/s0008-6215(01)00238-5
 Zhang L, Zhang Y: Structure and immunological activity of a novel polysaccharide from the spores of
- Zhang L, Zhang Y: Structure and immunological activity of a novel polysaccharide from the spores of Ganoderma lucidum. Afr J Biotechnol.. 2011, 10:10923-9. 10.5897/AJB11.2847
- Chan WK, Lam DT, Law HK, et al.: Ganoderma lucidum mycelium and spore extracts as natural adjuvants for immunotherapy. J Altern Complement Med. 2005, 11:1047-57, 10.1089/acm.2005.11.1047
 Chan WK. Law HK. Jin ZH. Law JK. Chan GC: Response of human dendritic cells to different
- Chan WK, Law HK, Lin ZB, Lau YL, Chan GC: Response of human dendritic cells to different immunomodulatory polyaccharides derived from mushroom and barley. Int Immunol. 2007, 19:891-9. 10.1095/intimm/dxm061
- Ma C, Guan SH, Yang M, Liu X, Guo DA: Differential protein expression in mouse splenic mononuclear cells treated with polysaccharides from spores of Ganoderma lucidum. Phytomedicine. 2008, 15:268-76.
 10.1016/j. https://doi.org/10.15
- Guo L, Xie J, Ruan Y, et al.: Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int Immunopharmacol. 2009, 9:1175-82. 10.1016/j.intimp.2009.06.005
 Hsu PY, Chern JL, Chen HY, Yang SH: Extract of sporoderm-broken germinating spores of ganoderma
- Hsu PY, Chern JL, Chen HY, Yang SH: Extract of sporoderm-broken germinating spores of ganoderma lucidum activates human polymorphonuclear neutrophils via the P38 mitogen-activated protein kinase pathway. Chang Gung Med J. 2012, 35:140-7. 10.4103/2319-4170.106158
 Bao X, Fang J, Li X: Structural characterization and immunomodulating activity of a complex glucan from
- Bao X, Fang J, Li X: Structural characterization and immunomodulating activity of a complex glucan from spores of Ganoderma lucidum. Biosci Biotechnol Biochem. 2001, 65:2384-91. 10.1271/bbb.65.2384
 Bao X, Liu C, Fang J, Li X: Structural and immunological studies of a major polysaccharide from spores of
- Bao A, Lu C, Fang J, Li X: Structural and immunological studies of a major polysaccharled rrom spores o Ganoderma lucidum (Fr.) Karst. Carbohydr Res. 2001, 332:67-74. 10.1016/s0008-6215(01)00075-1
 Su L Li D. Su I, et al.: Polysaccharles of sporoderm-broken spore of Ganoderma lucidum modulate
- Su L, Li D, Su J, et al.: Polysaccharides of sporoderm-broken spore of Ganoderma lucidum modulate adaptive immune function via gut microbiota regulation. Evid Based Complement Alternat Med. 2021, 2021:8842062. 10.1155/2021/8842062
- Liu Y, Wang Y, Zhou S, Yan M, Tang Q, Zhang J: Structure and chain conformation of bioactive β-D-glucan purified from water extracts of Ganoderma lucidum unbroken spores. Int J Biol Macromol. 2021, 180:484-93. 10.1016/j.ijbiomac.2021.03.003
- Wu X, Cao J, Li M, et al.: An integrated microbiome and metabolomic analysis identifies immunoenhancing features of Ganoderma lucidum spores oil in mice. Pharmacol Res. 2020, 158:104937.
 In 10/C (et al.: 2020) 104/077.
- Li Z, Shi Y, Zhang X, Xu J, Wang H, Zhao L, Wang Y: Screening immunoactive compounds of Ganoderma lucidum spores by mass spectrometry molecular networking combined with in vivo zebrafish assays. Front Pharmacol. 2020, 11:287.10.5389/phar.2020.00287
- Wang Y, Liu Y, Yu H, et al.: Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum. Carbohydr Polym. 2017, 167:357-44. 10.016/j.carbpol.2017.03.016
- Ma C, Yue QX, Guan SH, et al.: Proteomic analysis of possible target-related proteins of cyclophosphamide in mice thymus. Food Chem Toxicol. 2009, 47:1841-7. 10.1016/j.fct.2009.04.041
- Deng Y, Ma J, Tang D, Zhang Q: Dynamic biomarkers indicate the immunological benefits provided by Ganoderma spore powder in post-operative breast and lung cancer patients. Clin Transl Oncol. 2021, 23:1481-90. 10.1007/s12094-020-02547-9
- Cai M, Mu H, Xing H, et al.: In vitro gastrointestinal digestion and fermentation properties of Ganoderma lucidum spore powders and their extracts. LWT. 2021, 135:110235. 10.1016/j.lwt.2020.110235
- Sang T, Guo C, Guo D, et al.: Suppression of obesity and inflammation by polysaccharide from sporodermbroken spore of Ganoderma lucidum via gut microbiota regulation. Carbohydr Polym. 2021, 256:117594. 10.016/scarbob.12020.117594
- Qi G, Hua H, Gao Y, Lin Q, Yu GY: Effects of Ganoderma lucidum spores on sialoadenitis of nonobese diabetic mice [Article in Chinese]. Chin Med J. 2009, 122:556–60. 10.3760/cma.j.issn.0366-6999.2009.05.013
- Shen SF, Zhu LF, Wu Z, Wang G, Ahmad Z, Chang MW: Production of triterpenoid compounds from Ganoderma lucidum spore powder using ultrasound-assisted extraction. Prep Biochem Biotechnol. 2020, 50:302-15. 10.1080/10826068.2019.1692218
- Saavedra Plazas DC, Soccol CR, Noseda MD, et al.: A comparative study of extraction techniques for maximum recovery of bioactive compounds from Ganoderna lucidum spores [Article in Spanish]. Rev colomb ciencias quim farm. 2020, 49:70-88. 10.15446/rcciquifa.v49n1.84456
- Heleno SA, Barros L, Martins A, Queiroz MJR, Santos-Buelga C, Ferreira IC: Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from northeast Portugal: a comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Int Food Res J. 2012, 46:135-40. 10.1016/6.foodres.2011.12.009
- Nguyen MT, Nguyen TM: Extraction of bioactive compounds and spore powder collection from Ganoderma lucidum. Can Tho Univ J Sci. 2015, 53-60. 10.22144/ctu.jen.2015.001
- Levin RM, Xia L, Wei W, Schuler C, Leggett RE, Lin AD: Effects of Ganoderma Lucidum shell-broken spore on oxidative stress of the rabbit urinary bladder using an in vivo model of ischemia/reperfusion. Mol Cell Biochem 2017, 453-255 10.1007/J.2015.4.
- Zhang Y, Cai H, Tao Z, et al.: Ganoderma lucidum spore oil (GLSO), a novel antioxidant, extends the average life span in Drosophila melanogaster. Food Sci Hum Wellness. 2021, 10:38-44. 10.1016/j.fshw.2020.05.011
- Gao Y, Deng XG, Sun QN, Zhong ZQ: Ganoderma spore lipid inhibits N-methyl-N-nitrosourea-induced retinal photoreceptor apoptosis in vivo. Exp Eye Res. 2010, 90:597-404. 10.1016/j.exer.2009.11017
 Dai C, He L, Ma B, Chen T: Facile nanolization strategy for therapeutic Ganoderma lucidum spore oil to achieve enhanced protection against radiation-induced heart disease. Small. 2019, 15:e1902642.
- achieve enhanced protection against radiation-induced heart disease. Small. 2019, 15:e1902642. 10.1002/smll.201902642 76. Liu Y, Lai G, Guo Y, et al.: Protective effect of Ganoderma lucidum spore extract in trimethylamine-N-
- Lu Y, La G, Guo Y, et al.: Protective effect of Ganoderma lucidum spore extract in trimethylamine-Noxide-induced cardiac dysfunction in rats. J Food Sci. 2021, 86:546-62. 10.1111/1750-3841.15575
 Xie YZ Yang F. Tan W. Li X. Iao C. Huang B. Yang RB: The anti-cancer components of Ganoderma luc
- Xie YZ, Yang F, Tan W, Li X, Jiao C, Huang R, Yang BB: The anti-cancer components of Ganoderma lucidum possesses cardiovascular protective effect by regulating circular RNA expression. Oncoscience. 2016, 3:203-7. 10.18632/oncoscience.316
- Jin H, Jin F, Jin JX, Xu J, Tao TT, Liu J, Huang HJ: Protective effects of Ganoderma lucidum spore on cadmium hepatotoxicity in mice. Food Chem Toxicol. 2013. 52:171-5. 10.1016/j.fct.2012.05.040
- Li D, Gao L, Li M, et al.: Polysaccharide from spore of Ganoderna lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomed Pharmacother. 2020, 130:110539. 10.1016/j.biopha.2020.110559
- Zhou Y, Qu ZQ, Zeng YS, et al.: Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus. Exp Toxicol Pathol. 2012, 64:673-80. 10.1016/j.etp.2010.12.011
- Pan Y, Zhao A, Zhong Z, Pan X, Cai S: Ganoderma spore lipid protects mouse bone marrow mesenchymal stem cells and hematopoiesis from the cytotoxicity of the chemotherapeutic agent. Biotechnol Prog. 2019, 35:e2869. 10.1002/btpr.2869
- Wang Q, Huang Y, Wu B, Mei J, Zhang H, Qi B: Inhibitive effect on apoptosis in splenic lymphocytes of mice pretreated with lingzhi (Ganoderma lucidum) spores. Tradit Chin Med . 2014, 34:173-7. 10.1016/S0254-6272(14)60074-1
- Nayak RN, Nayak A, Bhat K: Antimicrobial activity of aqueous extract of spore powder of Ganoderma lucidum-an in vitro study. Unt Oral Health. 2010. 2:68-74.
- lucidum-an in vitro study. J Int Oral Health. 2010, 2:68-74.
 Nayak A, Dixitraj P, Nayak RN, Bhat KG: Comparison of antimicrobial activity of mycelium and spore of Ganoderma lucidum on Prevotella intermedia isolated from chronic periodontitis patients. Chrismed J Health Res. 2021, 8:35.
- Nayak RN, Dixitraj PT, Nayak A, Bhat K: Evaluation of anti-microbial activity of spore powder of Ganoderma lucidum on clinical isolates of Prevotella intermedia: A pilot study. Contemp Clin Dent. 2015, 6:S248-52. 10.4103/0976-237X.166834
- Zhu LF, Yao ZC, Ahmad Z, Li JS, Chang MW: Synthesis and evaluation of herbal chitosan from Ganoderma lucidum spore powder for biomedical applications. Sci Rep. 2018, 8:14608. 10.1038/s41598-018-33088-5

- Zhan L, Tang J, Lin S, Xu Y, Xu Y, Qin C: Prophylactic use of Ganoderma lucidum extract may inhibit mycobacterium tuberculosis replication in a new mouse model of spontaneous latent tuberculosis infection Front Microbiol. 2015, 6:1490. 10.3589/micb.2015.01490
- Jiang Y, Zhang N, Zhou Y, Zhou Z, Bai Y, Strappe P, Blanchard C: Manipulations of glucose/lipid metabolism and gut microbiota of resistant starch encapsulated Ganoderma lucidum spores in T2DM rats. Food Sci Biotechnol. 2021. 30:755-64. 10.1079;10068-021-00908-w
- Shaher F, Wang S, Qiu H, et al.: Effect and mechanism of Ganoderma lucidum spores on alleviation of diabetic cardiomyopathy in a pilot in vivo study. Diabetes Metab Syndr Obes. 2020, 13:4809-22. 10.2147/DMSO.S281527
- Wang F, Zhou Z, Ren X, Wang Y, Yang R, Luo J, Strappe P: Effect of Ganoderma lucidum spores intervention on glucose and lipid metabolism gene expression profiles in type 2 diabetic rats. Lipids Health Dis. 2015, 14:49. 10.118/s/12944-015-0045-y
- Lai P, Cao X, Xu Q, Liu Y, Li R, Zhang J, Zhang M: Ganoderma lucidum spore ethanol extract attenuates atherosclerosis by regulating lipid metabolism via upregulation of liver X receptor alpha. Pharm Biol. 2020, 58:760–70. 10.1080/15882092.0202.1798471
- Yang K, Zhang Y, Cai M, Guan R, Neng J, Pi X, Sun P: In vitro prebiotic activities of oligosaccharides from the by-products in Ganoderma lucidum spore polysaccharide extraction. RSC Adv. 2020, 10:14794-802. 10.1039/c9ra10798
- Zhao HL, Cui SY, Qin Y, et al.: Prophylactic effects of sporoderm-removed Ganoderma lucidum spores in a rat model of streptozotocin-induced sporadic Alzheimer's disease. J Ethnopharmacol. 2021, 269:113725. 10.1016/j.ieo.2020.113725
- Jiao C, Xie Y, Yun H, et al.: The effect of Ganodermalucidum spore oil in early skin wound healing: interactions of skin microbiota and inflammation. Aging (Albany NY). 2020, 12:14125-40. 10.1865/2/aeine.105412
- Huang Z, Fang F, Wong CW: Ganoderma lucidum spore lipid induces peroxisome proliferator-activated receptor alpha activity. J Food Biochem . 2011, 35:1508-13. 10.1111/j.1745-4514.2010.00472.x
 Li D, Isherwood S, Motz A, Zang R, Yang ST, Wang J, Wang X: Cell-based screening of traditional Chine
- Li D, Isherwood S, Motz A, Zang R, Yang ST, Wang J, Wang X: Cell-based screening of traditional Chinese medicines for proliferation enhancers of mouse embryonic stem cells. Biotechnol Prog. 2013, 29:738-44. 10.1002/btpr.1731
- Wang SQ, Li XJ, Zhou S, et al.: Intervention effects of ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of neurotrophin-4 and N-cadherin. PLoS One. 2013, 8:e61687. 10.1371/journal.pone.0061687
- Yang ZW, Wu F, Zhang SL: Effects of ganoderic acids on epileptiform discharge hippocampal neurons: insights from alterations of BDNF, TRPC3 and apoptosis. Pharmazie. 2016, 71:540-4. (0.1691/ph.2016.5889)
 Wang CH, Li X, Cao WH, Li J, Wang LH: A retrospective study of Ganoderma lucidum spore powder for
- Wang CH, Li X, Gao WH, Li J, Wang LH: A refrospective study of canoterina fuctualiti spote power for patients with epilepsy. Medicine (Baltimore). 2018, 97:e10941. 10.1097/MD.00000000000010941
 Weng Y, Xiang L, Matsuura A, Zhang Y, Huang Q, Qi J: Ganodermasides A and B, two novel anti-aging
- ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorg Med Chem. 2010, 18:999-1002. 10.1016/j.bmc.2009.12.070 10. Liang Y, He M, Fan X, Ye W, Yang Z, Zhong R: An abnormal elevation of serum CA72-4 by ganoderma
- Liang Y, He M, Fan X, Ye W, Yang Z, Zhong K: An abnormal elevation of serum CA /2-4 by ganoderma lucidum spore powder. Ann Clin Lab Sci . 2013, 45:337-40.
 Wachtel-Galor S, Yuen J, Buswell JA, Benzie IF: Ganoderma lucidum (lingzhi or reishi): a medicinal
- Wachtel-Galor S, Yuen J, Buswell JA, Benzie IF: Ganoderma lucidum (lingzhi or reishi): a medicinal mushroom. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd edition. Benzie IF, Wachtel-Galor S (ed): CRC Press/Taylor & Francis, Boca Raton (FL); 157-86.
- Wu GS, Guo JJ, Bao JL, Li XW, Chen XP, Lu JJ, Wang YT: Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum - a review. Expert Opin Investig Drugs. 2015, 22:981-92. 10.1517/17545784-2015.805202
- Antonio MS, Ricardo HC, Risonildo PC, et al.: In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). Afr J Pharm Pharmacol. 2011, 5:1724-31. 10.5897/AIPP11.428
- Lloret A, Badia MC, Giraldo E, et al.: Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer's disease. J Alzheimers Dis. 2011, 27:701-9. 10.3233/JAD-2011-110890