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Abstract 
This study is aimed to explore the performance of texture-based machine learning and image-based deep-learning for enhancing 
detection of Transitional-zone prostate cancer (TZPCa) in the background of benign prostatic hyperplasia (BPH), using a one-
to-one correlation between prostatectomy-based pathologically proven lesion and MRI. Seventy patients confirmed as TZPCa 
and twenty-nine patients confirmed as BPH without TZPCa by radical prostatectomy. For texture analysis, a radiologist drew 
the region of interest (ROI) for the pathologically correlated TZPCa and the surrounding BPH on T2WI. Significant features were 
selected using Least Absolute Shrinkage and Selection Operator (LASSO), trained by 3 types of machine learning algorithms 
(logistic regression [LR], support vector machine [SVM], and random forest [RF]) and validated by the leave-one-out method. For 
image-based machine learning, both TZPCa and BPH without TZPCa images were trained using convolutional neural network 
(CNN) and underwent 10-fold cross validation. Sensitivity, specificity, positive and negative predictive values were presented for 
each method. The diagnostic performances presented and compared using an ROC curve and AUC value. All the 3 Texture-
based machine learning algorithms showed similar AUC (0.854–0.861)among them with generally high specificity (0.710–0.775). 
The Image-based deep learning showed high sensitivity (0.946) with good AUC (0.802) and moderate specificity (0.643). Texture 
-based machine learning can be expected to serve as a support tool for diagnosis of human-suspected TZ lesions with high AUC 
values. Image-based deep learning could serve as a screening tool for detecting suspicious TZ lesions in the context of clinically 
suspected TZPCa, on the basis of the high sensitivity.

Abbreviations: AI = artificial intelligence, BPH = benign prostatic hyperplasia, CNN = convolutional neural network, DWI = 
diffusion-weighted imaging, GLCM = gray level co-occurrence matrix, LASSO = Least Absolute Shrinkage and Selection Operator, 
LR = logistic regression, PCa = prostate cancer, PZ = peripheral zone, SVM = support vector machine, T2WI = T2-weighted 
imaging, TZ = transitional zone.

Keywords: artificial intelligence, diagnostic performance, texture analysis, transitional zone prostate cancer

1. Introduction
Transitional zone prostate cancer (TZPCa) accounts for 20% 
to 30% of all prostate cancers.[1] However, TZPCa is not easily 
detected in digital rectal examinations because of its location.[2] 
Moreover, since the biopsy specimen in the standard prostate 
biopsy technique does not fully cover the transitional zone (TZ), 
the rate of detection of prostate cancer (PCa) in the initial biopsy 
is very low (2%–4%).[3] Therefore, detection and localization of 

TZPCa through imaging is important for the development of an 
appropriate treatment plan.

Magnetic resonance imaging (MRI) is widely used for detec-
tion and localization of PCa because of its high soft-tissue 
contrast and the availability of function-based imaging tech-
niques, such as diffusion-weighted imaging (DWI) or dynamic 
contrast-enhanced (DCE) imaging. The Prostate Imaging 
Reporting and Data System (PI-RADS), which was introduced 
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in 2012 and revised to version 2.1 in 2019, aims to reduce 
variability in MRI interpretation and improve detection, 
localization, and characterization of PCa lesions. Although 
T2-weighted imaging (T2WI) is generally accepted as the most 
important technique in the detection of TZPCa and is there-
fore designated as the primary sequence in PI-RADS for TZ 
lesions, accurate visualization of TZPCa in T2WI is often dif-
ficult, especially when TZPCa coexists with benign prostatic 
hyperplasia (BPH).[4] Since BPH shows a heterogeneous signal 
intensity (SI) with lower SI components, similar to PCa, it is 
often misdiagnosed as TZPCa on T2WI.[5] Several studies have 
reported the added value of DWI for detection of TZPCa; how-
ever, its final accuracy varies among the studies and observers 
(68%–98%).[6,7]

Artificial intelligence (AI) is expected to compensate for 
human errors in diagnosis, such as misdiagnosis and inter- 
and intraobserver variability. Therefore, a series of studies 
have been conducted using AI for the detection and local-
ization of PCa on MRI. Many of these studies extracted fea-
tures merely from functional MR sequences (e.g., Ktrans from 
DCE imaging or ADC from DWI) or from first-order (histo-
gram) analysis.[8] Sidhu et al used first-order texture analysis 
for TZPCa detection, reporting an overall good diagnostic 
performance with an area under the receiver operating char-
acteristic (ROC) curve (AUC) value of 0.86.[9] However, with 
the evolution of computing power, second-order parameters 
can now be used for texture analysis.[10] Niu et al applied tex-
ture analysis for detection of PCa in both the peripheral zone 
(PZ) and TZ using the dominant sequence of each zone.[11] 
However, this approach showed limitations such as a lack 
of precise lesion allocation (random transrectal ultrasonog-
raphy guided with cognitive target biopsy) and the avail-
ability of only 6 texture parameters arbitrarily selected by 
the authors. Wang et al[12] evaluated the incremental value of 
radiomics features for improving the diagnostic performance 
of PI-RADS, although their comparison was not completely 
zone-specific (e.g., all PCa lesions vs normal PZ or normal 
TZ), and only 8 first-order parameters were included in their 
analysis. Similarly, image-based deep learning algorithms 
such as convolutional neural networks (CNNs) have been 
recently applied to the detection of PCa, although the source 
images did not meet the conditions set in PI-RADS, the crite-
ria of ground truth were not definite, and the study was not 
zone-specific.[13]

Considering these issues, in the present study, we attempted 
to explore the performance of texture feature-based machine 
learning and image-based deep learning for enhancing the detec-
tion of TZPCa in the background of BPH by using a one-to-one 
correlation between prostatectomy-based pathologically proven 
lesions and MRI.

2. Materials and methods
This retrospective study was approved by the Institutional 
Review Board, which waived the requirement for informed 
consent.

2.1. Study population

The study population in this study includes the patients who 
underwent radical prostatectomy and subsequently diagnosed 
as pathologically proven PCa. From July 2014 to October 2018, 
364 patients underwent radical prostatectomy at our institute. 
Three of these patients had no PCa detected in their postoper-
ative specimens. Thus, 361 patients were included in our study 
population at the beginning of the study.

The TZPCa patient group consisted of a total of 70 
patients. From aforementioned 361 of initial study popula-
tion, 291 patients were excluded for the following reasons: 

too many (>6) PCA lesions in the prostate gland (n = 16), a 
temporal gap of ≥3 months between MRI and surgery (n = 1), 
inappropriate preoperative MRI protocol (rectal MRI, n = 1), 
no preoperative MRI (n = 5), MRI performed in an outside 
hospital (n = 4), severe motion artifact (n = 2), loss of zonal 
anatomy due to hormone therapy before prostatectomy 
(n = 2), and pathological mapping data of the prostatec-
tomy specimen unavailable at the time of analysis (n = 70). 
A total of 189 patients who had PZ cancer or a cancer lesion 
spanning both the TZ and PZ were also excluded, since this 
study concerns the detection and localization of TZPCa from 
a non-cancerous TZ background so the authors decided to 
include TZPCa confined to the TZ. One patient was con-
firmed to have TZPCa; however, the lesion could not be visu-
alized on MRI even in a retrospective investigation by the 
authors; this case was also excluded since the purpose of this 
study was to evaluate the diagnostic value of texture analy-
sis and deep learning in facilitating assessments of suspicious 
lesions detected by radiologists.

The final study population consisted of 99 patients, since 
the authors randomly selected 29 patients as a control group 

Figure 1. Flow chart depicting the patient section process with exclusion 
criteria.
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from the excluded patients with peripheral zone prostate cancer 
(PZPCa) only, for extracting an image of benign hyperplasia of 
the TZ without a cancer focus (Fig. 1).

2.2. MRI protocol

MRI was performed with a 3-Tesla MR scanner (Achieva 
3T, Philips Healthcare, Best, The Netherlands). Before 
MRI acquisition, 20 mg of butyl scopolamine (Buscopan; 
Boehringer-Ingelheim, Ingelheim, Germany) was injected 
intravenously for suppression of bowel peristalsis. Our pros-
tate MRI protocol generally meets the recommendation of 
PI-RADS v2[1]: multiplanar T2-weighted image (T2WI) in 4 
planes (axial, coronal, sagittal, and oblique axial); oblique 
axial T1-weighted image (T1WI); oblique axial, fat-satu-
rated, single-shot echo-planar DWI with b values of 0 and 
1000 s/mm2, with generation of apparent diffusion coeffi-
cient maps on a voxel-wise basis; dynamic contrast-enhanced 
MRI (DCE-MRI) after intravenous injection of 0.1 mmol/kg 
of Dotarem (Guerbet, Villepinte, France) at a rate of 2 mL/s 
with an automatic injector (Spectris Solaris EP; Medrad, 
Warrendale, PA) in the oblique axial plane using a 3-dimen-
sional, T1-weighted, spoiled gradient-echo sequence. We used 
an axial oblique reference plane perpendicular to the rectal 
surface of the prostate, similar to the sectioning plane of pros-
tatectomy specimens.[14] Additional DWI with an ADC map 
using an ultra-high b-value of 1400 s/mm2 has been included 
in our institutional protocol since August 2017. Although 
PI-RADS recommended not to have a slice gap in the axial 
sequences, but our institute applied a 1mm interslice gap to 
reduce exam time and image noise. Detailed MRI parameters 
of each sequence are described in Table 1.

2.3. Creation of a pathologic mapping sheet

For pathologic evaluation, the prostate specimen was coated 
with India ink and fixed in 4% buffered formalin. After the 
distal 5-mm portion of the apex was amputated and coned, the 
prostate was sliced from the base to the apex along the longi-
tudinal axis at 4-mm intervals, followed by paraffin embed-
ding. Subsequently, microslices were placed on glass slides and 
stained with hematoxylin-eosin. All slices, including cancer 
foci, were transferred to a pathologic mapping sheet, and a 
genitourinary pathologist (J.H.P with 11 years of experience 
in pathology) recorded the Gleason score (GS) and presence of 
extraprostatic extension for every detectable PCa lesion on the 
mapping sheet. Cases with 6 or more PCa lesions in 1 prostate 
specimen were excluded from the pathologic analysis, as men-
tioned above.

2.4. Pathology-matched image segmentation

Two genitourinary subspecialized radiologists (M.S.L 
with 13 years and M.H.M with 25 years of experience in 
radiology) and the genitourinary pathologist mentioned 
above performed one-to-one correlation of each TZPCa on 
the pathologic map with TZ lesions in MR oblique axial 
T2WI, since the dominant sequence for the TZ in PI-RADS 
is T2WI.[15] One of the radiologists (M.S.L) manually drew 
the region of interest (ROI) for the pathologically correlated 
TZPCa lesion and the surrounding BPH on oblique axial 
T2WI (Fig. 2). One hundred 7 ROIs of TZPCa were extracted 
from the 70 TZPCa patients.

Due to its limited throughput in daily practice, prostate ade-
noma (also known as a benign prostatic hyperplasia “nodule”) 
could not be delineated pathologically, and thus, a one-to-one 
correlation could not be performed. Thus, the authors decided 
to draw the ROI upon lesions that showed circumscribed 
hypointense or heterogeneous encapsulated features on T2WI, 
as mentioned in the MRI features of BPH nodules in PI-RADS 
version 2[1] (Fig. 3). Three or less ROIs of BPH nodules were 
extracted from each patient with TZPCa. In addition, in order 
to minimize the effects of tiny nests of cancer cells inside the 
BPH nodule that remained undetected despite pathological con-
firmation and image-pathology correlation, the authors selected 
an additional 29 patients without TZPCa and extracted the 
ROIs of normal transitional zones and BPH nodules. Finally, 
177 ROIs of usual BPH were extracted from patients with and 
without TZPCa.

2.5. MR texture analysis

Texture feature-based machine learning was performed using 
the previously mentioned 107 ROIs of TZPCa and 177 ROIs 
of usual BPH drawn on MR T2W images. After normalizing the 
MR images using min-max scales, a total of 75 features were 
extracted using statistics-based first-order (histogram) and sec-
ond-order (gray level co-occurrence matrix [GLCM] and gray 
level run length matrix) texture parameters with an in-house 
program. First-order features were extracted from both original 
images and 8-bit (256 gray color) converted images on the basis 
of the window width and length described in DICOM data of 
the original images (marked as _uc). The initially extracted fea-
tures are listed in Table 2.

Significant features were selected using Least Absolute 
Shrinkage and Selection Operator (LASSO), and subsequently 
trained by 3 types of machine learning algorithms: logistic 
regression (LR), support vector machine (SVM), and random 
forest (RF) (Fig. 4). The final model was validated by the leave-
one-out method.

Table 1 

MR imaging sequences and parameters.

Sequence TR/TE (mSec) Matrix (mm) FoV (mm) NEX ST/ gap(mm) FA (degree) 

True FISP Localizer       
T2 TSE Sagittal Pelvis 3457/100 316 × 310 222 × 222 2.0 3.0/ 0.3 90
T2 TSE Oblique Axial 3457/100 300 × 291 200 × 200 3.0 3.0/ 1.0 90
T2 TSE Coronal 3457/100 316 × 310 220 × 220 2.0 3.0/ 0.3 90
T1 TSE Oblique Axial 497.4/10 284 × 279 200 × 200 2.0 3.0/ 1.0 90
Diffusion Weighted Echo Planar 2D Axial

(b = 0, 1000, 1400) and ADC Map

4495.4/62.8 168 × 168 250 × 250 4.0 3.0/ 1.0 90

Dynamic contrast T1 FS VIBE axial

(25 phases)

7.0/4.5 244 × 246 220 × 220 2.0 4.0/ no gap 10

Subtraction Image 1st phase was digitally subtracted from the other phases based on dynamic contrast image.
T1 FS SPIR Oblique Axial 713.9/10 284 × 275 200 × 200 2.0 3.0/ 1.0 90
T2 TSE True Axial 3320/90 312 × 300 250 × 250 2.0 5.0/ 1.0 90

FA = flip angle, FoV = field of view, FS = fat suppression, NEX = number of excitation, SPIR = spectral presaturation with inversion recovery, ST = slice thickness, TE = echo time, TR = relaxation time, True 
FISP = true fast imaging with steady state free precession, TSE = turbo spin echo, VIBE = volume interpolated breath hold examination.
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2.6. Image-based deep learning

A total of 93 cancer-containing T2W image slices were selected 
from the aforementioned 70 TZPCa patients, and 42 slices of 
usual BPH were selected from the aforementioned 29 patients 
without TZPCa. Image-based deep learning was performed using 
these 135 images. A total of 123 images (86 and 37 images for 
cancer and BPH, respectively) were assigned to the training set, 
and the remaining 12 images (7 and 5 images for cancer and 
BPH, respectively) were assigned to the test set. In the training 
set, the number of images was augmented to 5477 (2748 and 
2729 images for cancer and BPH, respectively) based on rota-
tion, zoom, and translation to compensate for the small number 
of images. Then, the images were resampled to 224 × 224 pixels, 
and 12-bit pixel values were discretized into 8-bit pixel values. 
Deep learning was performed using an application programming 
interface based on Tensorflow in an Ubuntu system. The learning 
model was based on the ResNet-50 architecture and was trained 
for the classification of cancer and BPH with 35 batch sizes and 
70 epochs (Fig. 5). The trained deep-learning model was validated 
by 10-fold cross validation, which maintained the best compro-
mise between computational cost and reliable estimates.[16]

2.7. Statistical analysis

Sensitivity, specificity, and positive and negative predictive values 
were calculated for each machine learning algorithm for texture 
analysis and image-based deep learning. The diagnostic perfor-
mance of each texture feature-based machine learning algorithm 
and image-based deep learning was presented using an ROC curve 
and the AUC value. Comparisons between the AUC of each machine 
learning algorithm for texture analysis and the AUC of deep learn-
ing were performed using a previously reported method.[17]

3. Results

3.1. Patient demographics

The mean age of the TZPCa patients was 71.0 years. The 
median PSA and PSA densities were 10.0 ng/dL and 0.30 ng/dL/
mL. Among the aforementioned 107 TZPCa lesions, 17 lesions 
showed a GS of 6; 41 showed a GS of 7 (3 + 4); 25 showed a GS 
of 7 (4 + 3); and 24 showed GS of 8 or higher. The detailed data 
are provided in Table 3.

3.2. Diagnostic performances of texture feature-based 
machine learning

Four first-order texture features (“Entropy,” “Mean,” “Min,” 
“Stdev”) and 2 second-order texture features (“GLCM_
Entropy_0” and “GLCM_Homogeneity_135”) were finally 

selected through LASSO. With these features, all 3 machine 
learning algorithms (LR, SVM, and RF) showed similar accu-
racy (0.782–0.789) and diagnostic performance (AUC = 0.854–
0.861) for differentiating the selected ROI as a cancerous lesion 
or not. As a diagnostic decision support tool for human-detected 
suspicious cancerous lesions, the positive likelihood ratios (LR+) 
of the methods ranged from 3.813 to 4.335 (Table 4) (Fig. 6).

3.3. Diagnostic performance of image-based deep learning

The image-based deep learning model showed accuracy and 
AUC values of 0.852 and 0.802, respectively for detecting image 
containing TZPCa (Table 5) (Fig. 6).

4. Discussion
In this study, we present the diagnostic performance of texture 
feature-based machine learning with 3 different algorithms as a 
classifier of TZPCa or BPH for lesions suspected by humans. We 
also evaluated the performance of image-based deep learning 
powered by CNN for detecting TZPCa in the background of 
BPH as well as for classifying non-cancerous hypertrophied TZ 
on a non-cancerous image. The 2 approaches mentioned above 
differ in that the former is based on a human-drawn lesion ROI, 
while the latter uses images with and without lesions as sources 
of analysis. Therefore, although the same image of the same 
patient is used, the 2 algorithms have slightly different con-
cern: the texture-based machine learning determines whether 
the lesion where the observer placed the ROI is cancer or BPH, 
whereas deep learning determines whether the given image con-
tains cancer. Moreover, the 2 approaches use different number 
of data for analysis, and thus there is a difference in the preva-
lence between the 2 approaches. Thus, one-to-one comparison 
of the positive and negative predictive values of the 2 analyses is 
difficult. For radiologists, the former approach simulates a situ-
ation in which the radiologist diagnoses a lesion as a TZPCa- or 
BPH-related change when the lesion is found in the TZ, while 
the latter simulates a situation in which radiologists look for TZ 
lesions suspected to be TZPCa that show heterogenicity due to 
BPH-related changes.

In studies before the advent of PI-RADS, MR T2WI showed 
sensitivity and specificity of 64% to 80% and 44% to 87% 
and AUC values of 0.61 to 0.75 from the perspective of per-
patient-base identification of TZPCa.[4,6] Using PI-RADS ver-
sion 2 with T2WI as the primary sequence, the sensitivity and 
specificity were 68.5% to 68.8% and 77.8.90.2%, with an AUC 
value of 0.786 to 0.788[18–20] for detecting TZPCa. The PI-RADS 
approach is a system in which the detection and differentiation 
of lesions are performed at the same time, and it is thought that 

Figure 2. Example ROI drawing in a 57-year-old patient with transitional zone prostate cancer. A yellowish focal lesion suggestive of cancer is present in the left 
transitional zone (A). After prostatectomy, a genitourinary pathologist draws the boundary of the cancer in the pathologic map (B). Two genitourinary radiologists 
and the pathologist arrive at a consensus for the cancerous part on the MR image on the basis of the pathologic map, and one of the radiologists subsequently 
draws the ROI on the T2-weighted oblique axial image using an in-house program (C). ROI = region of interest.
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a simple comparison with the 2 algorithms of our study will be 
meaningful to some extent. Our results for the 3 texture-based 
and image-based algorithms showed comparable specificity 
and slightly better AUCs and sensitivity in comparison with 
the T2WI-based findings. Thus, we can conclude that AI-based 
algorithms that use texture feature-based machine learning 

and image-based deep learning using the CNN architecture for 
detecting TZPCa could improve diagnostic performance and 
sensitivity, which is important for screening serious diseases 
such as cancer.

Previous studies using texture-based machine learning for detect-
ing TZPCa also showed similar results as our studies: sensitivity  

Figure 3. Representative ROI drawings of benign prostate hyperplasia according to the MRI features of benign prostate hyperplasia nodules in PI-RADS version 
2; a circumscribed hypointense nodule (A) or heterogeneous encapsulated nodule (B). PI-RADS = Prostate Imaging Reporting and Data System, ROI = region 
of interest.
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of 83.6%, specificity of 81.3%, and AUC value of 0.83 to 0.87 
for LR[9,11]; sensitivity of 88.8%, specificity of 86.4%, and an 
AUC value of 0.955 for SVM[12]; and sensitivity of 92%, spec-
ificity of 53%, and AUC value of 0.88 on a per-lesion basis 
for RF as a learning algorithm.[21] Our results showed slightly 
lower sensitivity and specificity, possibly due to differences in 
the types and selection methods of the hyperparameters from 
initially extracted texture features. However, the accuracies and 
AUC values in our results were comparable to those of previ-
ous studies.[9,11,12,21] On the basis of these findings, texture-based 
machine learning can be considered to show excellent diag-
nostic performance (AUC value > 0.8) without any significant 
difference between the learning algorithms, so this approach 
should provide incremental value for MRI-based classification 
of TZPCa and the BPH background.

Both texture feature-based machine learning (LR, SVM, and 
RF) and image-based deep learning showed excellent AUC val-
ues. Characteristically, the texture-based machine learning algo-
rithm seems to focus on improving specificity relatively, while 
the image-based deep learning is thought to aim to achieve rel-
atively high sensitivity. The major application of deep learning 
represented by CNN in radiology is focused on the detection 
and classification of cancer or suspected cancer lesions in the 
breast, lung, or prostate.[22] Therefore, most architectures based 
on CNN are presumed to be designed to increase diagnostic sen-
sitivity, and the high sensitivity and comparable AUC value of 
image-based deep learning in our result could also be attributed 
to the CNN-based architecture. In the same vein, texture analy-
sis has evolved to characterize tumors primarily in the oncology 
domain, taking over some of the role of biopsy.[23] The relatively 

high specificity of texture-based machine learning is thought to 
be due to this circumstance.

Development of high-quality machine learning algorithms 
requires tens of thousands of image data (rubbish in, rubbish 
out).[24] However, for uncommon diseases such as cancer and 
infrequently obtained images such as MR images, acquisition of 
such a large amount of image data may be difficult. Therefore, 
with a proper augmentation technique, it is essential to ensure 
that the image data are of good quality.[25,26] The prostate MR 
data at our institute matched the pathological findings 1:1; thus, 
our imaging database could be considered to contain patholog-
ically verified information, which can improve the reliability of 
the aforementioned results.

In summary, texture feature-based machine learning would 
be suitable for application in diagnostic support tools that add 
confidence to assessments showing whether a human-found 
transitional zone lesion is a cancer or not. Image-based deep 
learning with a CNN architecture may be appropriate for 
screening of TZPCa suspected on the basis of clinical examina-
tions or other modalities (e.g., ultrasonography) before radiol-
ogists’ interpretation, reducing the risk of missed lesions by 
radiologists and improving their diagnostic performance. To 
improve this approach, more studies on radiomics and deep 
learning based on larger patient populations and better-quality 
images are needed.

Our study has several limitations. First, in comparison with 
plain radiography or CT, fewer patients undergo MRI, making 
it very difficult to collect sufficient high-quality MR data for 
use in machine learning. In particular, in this study, it was diffi-
cult to avoid the limitation of the small sample size because we 

Table 2

The 75 initially extracted texture features.

Histogram Volume Min Max Mean Stdev 
Kurtosis Energy Entropy Min_uc Max_uc
Variance_uc Skewness_uc Kurtosis_uc Energy_uc Entropy_uc

GLCM GLCM_Contrast_0 GLCM_Dissimilarity_0 GLCM_Homogeneity_0 GLCM_ASM_0 GLCM_Energy_0
GLCM_Probability_max_0 GLCM_Entropy_0 GLCM_Correlation_0 GLCM_Contrast_45 GLCM_Dissimilarity_45
GLCM_Homogeneity_45 GLCM_ASM_45 GLCM_Energy_45 GLCM_Probability_max_45 GLCM_Entropy_45
GLCM_Correlation_45 GLCM_Contrast_90 GLCM_Dissimilarity_90 GLCM_Homogeneity_90 GLCM_ASM_90
GLCM_Energy_90 GLCM_Probability_max_90 GLCM_Entropy_90 GLCM_Correlation_90 GLCM_Contrast_135
GLCM_Dissimilarity_135 GLCM_Homogeneity_135 GLCM_ASM_135 GLCM_Energy_135 GLCM_Probability_max_135
GLCM_Entropy_135 GLCM_Correlation_135    

GLRLM GLRLM_LRE_0 GLRLM_GLN_0 GLRLM_RLN_0 GLRLM_RP_0 GLRLM_LGRE_0
GLRLM_HGRE_0 GLRLM_LRE_45 GLRLM_GLN_45 GLRLM_RLN_45 GLRLM_RP_45
GLRLM_LGRE_45 GLRLM_HGRE_45 GLRLM_LRE_90 GLRLM_GLN_90 GLRLM_RLN_90
GLRLM_RP_90 GLRLM_LGRE_90 GLRLM_HGRE_90 GLRLM_LRE_135 GLRLM_GLN_135
GLRLM_RLN_135 GLRLM_RP_135 GLRLM_LGRE_135 GLRLM_HGRE_135 GLRLM_RLN_135

ASM = angular second moment, GLCM = gray level co-occurrence matrix, GLN = gray level nonuniformity, GLRLM = gray level run length matrix, HGRE = high gray level run emphasis, LGRE = low gray 
level run emphasis, LRE = long runs emphasis, RLN = run length nonuniformity, RP = run percentage, uc = unsigned char.

Image Data
Feature

Extraction

Feature Data 
Normalization

MinMax scale Lasso
Ridge

Logistic 
Regression 

Support Vector 
Machine

Feature
Selection

Machine Learning Evaluate

Random Forest

Leave One Out
Cross Validation

Figure 4. Flowchart of texture feature-based machine learning.
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used data in which the imaging and pathologic findings were 
paired 1:1 based on reviews by the radiologist and the patholo-
gist. This approach can lead to overfitting.[27] We also conducted 
temporal validation using 23 TZPCa patients and 10 PZPCa 
patients without TZPCa (see Supplemental digital content 

including Supplemental text S1, http://links.lww.com/MD/J738 
Supplemental Table S1–S3, http://links.lww.com/MD/J739, 
http://links.lww.com/MD/J742, http://links.lww.com/MD/J744 
and Supplemental Figure S1, http://links.lww.com/MD/J746 
which briefly describing the process and result of temporal val-
idation). For LR and image-based deep learning, the temporal 
validation showed markedly decreased sensitivity with highly 
increased specificity in comparison with the internal validation 
result, suggestive of overfitting. However, the temporal valida-
tion results for SVM and RF showed a simultaneous decrease 
in sensitivity and specificity with a relatively even distribution 
of true/false-positive and negative results, indicating effective 
machine learning without excessive overfitting. Our results sug-
gest that machine learning using SVM or RF may be more effec-
tive in the classification of cancer when the sample size is small, 
such as in the case of prostate MR.

Second, this was a single-institution, retrospective study. 
Further multicenter, prospective studies are needed to validate 
our results. However, the findings may show reproducibility 
problems due to the lack of external validation and the manual 
drawing of ROIs by a consensus of 2 radiologists in the same 
institute. As mentioned previously, we observed a difference in 
prevalence between texture feature-based machine learning and 
image-based deep learning due to differences in the preparation 
of the analysis material. Thus, direct comparison of positive and 
negative predictive values was not possible.

Figure 5. Diagram of ResNet-50 architecture for image-based deep learning.

Table 3 

Demographic data of included transitional zone prostate cancer 
patients.

Variables Median (IQR) or n (%) 

Patient based analysis (n = 70)
Age, yr 71.0 (64.0–74.5)
PSA, ng/dL 10.0 (6.9–22.3)
PSAD, ng/dL/cm3 0.30 (0.19–0.73)
Prostate volume (cm3) 32.8 (25.4–42.9)
TZ volume (cm3) 16.7 (11.2–20.4)
Lesion based analysis (n = 107)
Gleason score (GS)  
  6 17 (15.9%)
  7(3 + 4) 41 (38.3%)
  7(4 + 3) 25 (23.4%)
  8 or more 24 (22.4%)

IQR = interquartile range, PSA = prostate-specific antigen, PSAD = PSA density, TZ = transitional 
zone.

Figure 6. ROC curves with AUC values of each machine learning algorithm 
for texture analysis and the image-based deep learning algorithm. AUC = 
area under the ROC curve, DL = image-based deep learning, LR = logis-
tic regression, RF = random forest, ROC = receiver operating characteristic, 
SVM = support vector machine.

http://links.lww.com/MD/J738
http://links.lww.com/MD/J739
http://links.lww.com/MD/J742
http://links.lww.com/MD/J744
http://links.lww.com/MD/J746
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Because many centers used true axial planes rather than 
oblique axial plane (perpendicular to prostate long axis), and 
not provided the detailed pathologic map including location 
and Gleason score/grade of each PCa focus, we cannot collect 
sufficient outside data for external validation. The authors used 
temporal validation as an alternative, but it can be a limitation 
of the study in that it can be a cause of the overfitting problem as 
data from the same institution. The authors manually outlined 
a single-slice TZ ROI; thus, volume data were not obtained. In 
addition, data regarding the shape and contour of lesions could 
not be included in the analysis because of the aforementioned 
reasons. In the image-based deep learning process, data on the 
shape or contour of the lesion may have been considered, which 
may have affected the overall diagnostic performance.

It might be not appropriate to directly compare the diagnostic 
performance of manual ROI-based texture analysis and image-
based deep learning because the former is regarding the discrim-
ination of TZPCa and BPH, whereas the latter is about the given 
image contains TZPCa in its background transitional zone or 
not. In general, the prostatic transitional zone of the elderly is 
hyperplastic and often contains a lot of BPH nodules, making 
it difficult to detect TZPCa, and even if the lesion is specified, 
it is difficult to distinguish whether it is cancer or not due to 
the imaging similarity between TZPCa and BPH nodule. The 
usability assessment, such as comparing performance enhance-
ment of users (i.e., Radiologists) with and without each learning 
methods may provide important clues as to whether radiologists 
feel it more difficult to find lesions in the BPH background pros-
tatic transitional zone, or to determine whether or not they are 
cancerous. Performing the usability assessment as a follow-up 
study will be the best way to complement the methodological 
pitfall and enforce the strength of our study. In conclusion, both 
texture feature-based machine learning using LR, SVM, or RF as 
learning algorithms and image-based machine learning powered 
by the CNN architecture provide excellent diagnostic perfor-
mance (AUC value > 0.8) with comparable sensitivity, specific-
ity, and accuracy for determining TZPCa in a BPH background 
on T2WI, which shows heterogeneous signals that make it dif-
ficult to distinguish between areas with and without cancer in 
the TZ. Texture feature-based machine learning can be expected 
to serve as a support tool for diagnosis of human-suspected TZ 
lesions with high AUC values, while image-based deep learn-
ing could serve as a screening tool for detecting suspicious TZ 
lesions in the context of clinically suspected TZPCa, on the basis 
of the high sensitivity it showed in our study. We are currently 
developing an AI diagnostic support tool that shows whether an 
ROI drawn by a radiologist on an indiscernible lesion is closer 
to a TZPCa or BPH. This study aims to develop and evaluate 
algorithms to meet this aim.
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