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Plant phenomics aims to perform high-throughput, rapid, and accurate measurement of plant traits, 
facilitating the identification of desirable traits and optimal genotypes for crop breeding. Salvia 
miltiorrhiza (Danshen) roots possess remarkable therapeutic effect on cardiovascular diseases, with 
huge market demands. Although great advances have been made in metabolic studies of the bioactive 
metabolites, investigation for S. miltiorrhiza roots on other physiological aspects is poor. Here, we 
developed a framework that utilizes image feature extraction software for in-depth phenotyping of 
S. miltiorrhiza roots. By employing multiple software programs, S. miltiorrhiza roots were described 
from 3 aspects: agronomic traits, anatomy traits, and root system architecture. Through K-means 
clustering based on the diameter ranges of each root branch, all roots were categorized into 3 groups, 
with primary root-associated key traits. As a proof of concept, we examined the phenotypic components 
in a series of randomly collected S. miltiorrhiza roots, demonstrating that the total surface of root was 
the best parameter for the biomass prediction with high linear regression correlation (R2 = 0.8312), 
which was sufficient for subsequently estimating the production of bioactive metabolites without 
content determination. This study provides an important approach for further grading of medicinal 
materials and breeding practices.

Introduction

The advancement of image recognition technology and the 
progress of algorithms have led to the emergence of plant 
phenomics as a new discipline for comprehending plant phe-
notypes [1]. This discipline is poised to accelerate the research 
on plant physiology, genetics, and breeding [2]. Among var-
ious physiological aspects such as genome, transcriptome, 
and metabolism, plant phenotyping poses a significant bottle-
neck in achieving a comprehensive understanding of plant phys-
iology. Traditional plant phenotyping heavily relies on manual 
observations and measurements, which are labor-intensive, 
tedious, time-consuming, and costly, and have lower throughput. 

Over the past decade, plant phenomics has made significant 
advancements facilitated by automated phenotypic systems, 
imaging techniques, and algorithm-based machine learning 
(ML) methods [3]. Plant phenomics refers to the nondestruc-
tive and accurate acquisition of high-dimensional phenotypic 
data on an organism-wide scale across plant developmental 
stages, from an individual plant to field scale [1]. Generally, 
plant phenotyping includes 2 major investigation aspects. The 
first is phenotypic data assessment, including high-throughput 
image acquisition, image processing, and feature extraction. 
Subsequently, diverse data mining strategies are derived to 
comprehensively investigate the collected phenotypic data for 
different purposes [4].
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Based on a series of optical sensors, plant species, and study 
purposes, various phenotyping pipelines have been devel-
oped, which enable data acquisition at different scales from 
different levels, including cellular, organ, whole plant, and 
field [5]. Currently, plant phenomics primarily supports breed-
ing research in major crops such as rice, wheat, and maize [6]. 
The focus lies in identifying desirable crop traits by analyzing 
phenotypic variations, throughout the growth and develop-
ment stages, considering biotic and abiotic stress factors, as 
well as various nutritional conditions [4,7–9]. Combined with 
the high-throughput genomics technology and algorithms, 
plant phenomics can further assist in bridging the gaps bet
ween genotype and phenotype, which would help to hasten 
crop breeding.

Besides crops, medicinal plants represent another exten-
sively cultivated plant category with significant therapeutic and 
economic values. Presently, investigations on medicinal plants 
are mainly focused on the active metabolites and their biosyn-
thesis. To this end, integrated omics studies have been accom-
plished, in order to pave a way for standardized authentication 
of the plant materials and bioengineering of the metabolic 
pathways in medicinal plants [10]. Nevertheless, in compar-
ison to other research aspects (i.e., genomics, transcriptom-
ics, proteomics, and metabolomics), the progress of phenomics 
for medicinal plants is obviously insufficient, which may be 
related to the diversity of medicinal plant species. Moreover, 
owing to the accumulation of particular beneficial metabolites, 
the root plays a crucial role in obtaining the active ingredients 
in various medicinal plants. However, as the hidden half of the 
plant, phenotyping of the root system presents greater difficul-
ties compared to that of the aerial part, making it a challenging 
subject in the field of plant phenomics [11]. For the estimation 
of biomass and agronomic parameters of roots, a high-throughput 
and high-resolution root scanning system, graphic processing, 
and data extraction are required [12]. Additionally, the char-
acterization of root system architecture (RSA) is another impor-
tant aspect of root phenotyping. RSA is a multifaceted concept 
shaped by parameters, density, and topology of the root system 
[13,14]. Therefore, a comprehensive perspective is necessary 
to fully characterize RSA.

Salvia miltiorrhiza Bge., belonging to the Lamiaceae family, 
is a commonly used Chinese herbal medicine in curing cardio-
vascular disease. The rhizome of S. miltiorrhiza is rich in diter-
penoids and phenolic acids as main active components [15]. 
Certain bioactive metabolites as tanshinones (TAs) and lithosper-
mic acid B (LAB) are abundantly accumulated in S. miltiorrhiza 
roots [16] with significant species specificities. Therefore, there 
is an increasing market demand for this herb, accompanied by a 
higher request for breeding research. Although several current 
studies that focused on the biosynthesis and regulation of active 
metabolites in S. miltiorrhiza have achieved a series of successful 
breeding in promoting these metabolites [17,18]. Limited studies 
have focused on the agronomic characters of S. miltiorrhiza 
[19], leading to a blank research field of this herb. However, 
if the genetic laws of specific phenotypes can be quantified and 
analyzed on the basis of rapid screening of key agronomic 
trait sets, the monitoring and regulation of S. miltiorrhiza 
or other herbs at different levels of cells, organs, and populations 
will inevitably improve breeding, cultivation, and agricultural 
field production.

Here, we established a workflow to capture the phenotypic 
traits of S. miltiorrhiza roots using multiple published root 

phenotyping software. Data mining of phenotypic traits was 
further carried out to classify the root samples and identify the 
key root features. As a proof of concept, we analyzed the cor-
relation between root phenotypic traits and their accumulation 
of bioactive compounds, providing a prediction model for tan-
shinone content in roots without metabolic determination.

Materials and Methods

Plant materials and root sections
All test root samples were the cultivated variety of S. miltior-
rhiza provided by Shangyao Huayu (Linyi) Traditional Chinese 
Resources Co., Ltd. Seedlings that had grown for about 10 months 
after sowing in the same nursery plot were selected and planted 
in March in a trial field (located in 117°63′E, 35°50′N, Pingyi 
County, Shandong Province, China) in a natural environment 
without human intervention. Randomly selected S. miltiorrhiza 
plants were numbered, while fresh roots were harvested intact 
during the harvesting period in October of the same year as 
the test material. The underground roots were completely exca-
vated after the aerial part was eliminated. As a medicinal mate-
rial, the main roots and the lateral roots with a diameter greater 
than a certain range will be chosen for further production of 
decoction pieces. Therefore, all absorbing roots were removed 
in this study. All roots were washed to remove soil for further 
image capture. After whole-root imaging, paraffin cross-sections 
from the primary root of each sample were produced according 
to a previous method [20], and used for further imaging and 
metabolic analysis.

Image capture and feature extraction
The roots were removed from the soil and cleaned and passed 
through a 1-mm sieve. After removing the adventitious roots, the 
roots were arranged in a Perspex tray with a shallow water film 
to avoid overlapping of the roots. For agronomic traits extraction, 
a high-resolution scanner equipped with the WinRHIZO root 
scanning system was applied for whole root scanning in both 
projection and reflection modes. These images were in the 
2D WinRhizo images (size 300 dpi, 1,200 × 1,700 pixels). This 
procedure required ∼1 min for each destructively harvested sam-
ple. The obtained images were analyzed using WinRHIZO and 
RhizoVision explorer [21,22], respectively. The data generated 
by the 2 software are highly consistent [22], but a preliminary 
analysis indicated that the WinRhizo software did not reliably 
measure the number of branches, whereas RhizoVision can 
provide more refined root ranging. Therefore, parameters pro-
duced by RhizoVision were mainly chosen for further analysis. 
To reduce false identification, parameters obtained from projec-
tion images were used for further investigations. To reduce the 
impact of root cross superposition, some large root samples were 
disassembled into simple roots for image acquisition and analysis. 
Diameter ranging was performed by RhizoVision. The ranges (in 
millimeters) were 0 to 20.00, 20.00 to 40.00, 40.00 to 60.00, and 
above 60.00.

Paraffin cross-sections from the primary root of each sample 
were used to obtain the anatomy traits of S. miltiorrhiza root. 
The sections were scanned by a slide scanner system (Panno
ramic 250 FLASH, Sysmex, Germany) and then analyzed using 
RootScan to obtain information on tissue distributions [23] 
(Fig. S2). The cell layers of cortex, stele, and xylem tissues were 
distinguished semi-manually, and their area and proportion 
were estimated.
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The landmark method RootScape was used to characterize the 
skeleton of root system [24]. A 9-landmark set was designed to 
mainly describe the occupation of primary root and first-order 
lateral roots. They were the start and end of the primary root, the 
first lateral root on the main root, and the widest points of the 
whole root system (Fig. 3A). A matrix was then generated includ-
ing the position information of each landmark for each sample. 
The distance between each landmark pair was calculated by the 
following formula: sqrt((x2 − x1)2 + (y2 − y1)2), according to 
which, principal component analysis (PCA) and hierarchical clus-
tering methods were performed to cluster the root samples.

Statistical analysis
Statistical analysis and graphic generation were performed by 
linear regression, K-means clustering, and normal distribution 
in R language. Several ML methods were performed to eval-
uate the accuracy of classification using unsupervised models 
according to algorithms reported by Xu et al. [25], with super-
vised ML models (random forest [RF], Gaussian naïve Bayes 
[GB], Bernoulli NB, and multinomial NB) and deep learning 
(artificial neural network [ANN]). To predict the importance 
of parameters under different classifications, an RF model 
was performed. The detailed information on R packages above 
was supplied as File S1.

Metabolic analysis
Chemical standards including sodium danshensu, rosmarinic 
acid (RA), lithospermic acid A (LAA), LAB, dihydrotanshinone 
(DHDST), cryptotanshinone (CTSN), tanshinone I (TSN-I), 
and tanshinone IIA (TSN-IIA) were purchased from YUANYE 
Co., Ltd (Shanghai, China). All chemicals used in this study 
were of analytical or high-performance liquid chromatography 
(HPLC) grade.

All samples were dried at room temperature for some days 
until they reached a constant dry weight and milled to a homo-
geneous size that could be sieved through No. 100 mesh. 
Extraction and quantitation of active compounds were per-
formed following a previously reported method [26]. Briefly, 
0.1 mg of each sample was extracted in 10 ml of methanol under 
sonication for 30 min and the weight loss was supplemented 
with methanol after cooling. Then, 100 μl of the extract was 
evaporated with a rotovap at 35 °C, redissolved in 10 volumes, 
and centrifuged at 4 °C for 10 min. The supernatant was sub-
jected to high-performance liquid chromatography-tandem 
triple quadrupole mass spectrometry (HPLC-MS/MS) anal-
ysis by an Agilent 1200-6410 LC/MS with the chromatographic 
column of Waters XSELECT CST-C18 (2.5 μm, 2.1 mm × 50 mm) 
at 35 °C, the flow rate was controlled at 0.3 ml/min, and the injec-
tion volume was 5 μl. The mobile phase was composed of ace-
tonitrile (as phase A) and water containing 2 mmol/L ammonium 
acetate and 0.1% formic acid (phase B), and the elution method 
was as follows: 0 min (7% A)/2 min (7% A)/3 min (95% A)/ 
8 min (95% A), and a final 6.5 min of equilibration post-run 
time. Quantitation was performed using multiple-reaction mon-
itoring (MRM) mode; the MRM parameters are shown in Table 
S1. Data analysis was carried out by the Agilent Mass Hunter 
Workstation software. The quantitative results of each metabolite 
from each sample are listed in Table S2.

Mass spectrometry imaging (MSI) was carried out using the 
AP-SMALDI10 high-resolution matrix-assisted laser desorption/
ionization tandem mass spectrometry (MALDI-MS) imaging 
ion source (TransMIT GmbH), which was operated at atmospheric 

pressure and coupled to a Q-Exactive Orbitrap mass spectrom-
eter (Thermo Fisher). For root sections, a 2,5-dihydroxybenzoic 
acid matrix solution at a concentration of 30 mg∙ml−1 in acetone/
water (0.1% trifluoroacetic acid) 1:1 v/v was treated first. All data 
were recorded on a 9.4-T MALDI FT-ICR (Fourier transform ion 
cyclotron resonance) MS equipped with a 355-nm Nd:YAG 
Smartbeam II laser (Bruker Daltonics, Billerica, MA). Mass spec-
tra were acquired over the m/z range of 150 to 2,000 in both pos-
itive and negative ion modes with a mass resolution of 100,000 
at m/z 400. For MSI experiments, tissue sections were analyzed 
with a spatial resolution of 75 μm, and a full-scan mass spectrum 
at 200 laser shots per pixel was acquired. Data were analyzed in 
Data Analysis version 4.0 and flexImaging software (version 
4.1) (Bruker Daltonics, Billerica, MA). Metabolites were identi-
fied according to their mass spectrometry.

Prediction of biomass and chemical contents  
using AlexNet
We utilized the AlexNet network to analyze images of S. milti-
orrhiza roots. The feature extractor within AlexNet was respon-
sible for extracting features from the input images. By applying 
convolutional and pooling layers, the information contained 
in the images was compressed into an n-dimensional feature 
vector containing all the relevant feature information of the 
input images. The predictor was employed to select and discard 
the extracted feature vector, ultimately condensing it into a pre-
diction value. Subsequently, based on the discrepancy between 
the prediction value and the true labels, the network's weight 
parameters were continuously adjusted to progressively align 
the prediction value with the true labels.

Results

Workflow for the extraction and analysis of root 
phenotypic traits from imaging data
The phenotypic landscape of plant is highly complex and multi-
dimensional [27]. In this study, adopting multiple root image 
analyzing tools, a framework for root phenotyping of S. miltior-
rhiza was established at the levels of individual root branches and 
the entire root system, including agronomic features, anatomical 
traits, and RSA (Fig. 1A). WinRHIZO and RhizoVision Explorer, 
which both display morphology, topology, and architecture meas-
urements from root images [22,28], were chosen to extract agro-
nomic features from scanning graphics of S. miltiorrhiza roots 
(Fig. 1B). Rootscan, an imaging software codifying anatomical 
features of root cross-sections from microscope digital image 
[23], was employed to dissect the distribution of root tissues (Fig. 
1C). Then, we used a landmark-based approach to describe the 
RSA of S. miltiorrhiza. The landmark model and morphospace 
were created by RootScape [24], and the corresponding S. milti-
orrhiza roots were clustered into different RSA groups (Fig. 1D).

We also carried out the metabolic profiling of bioactive com-
pounds in each root sample and their distributions in root 
tissues (Fig. 1E). Furthermore, we investigated the correlations 
between phenotypic traits and accumulation levels of metab-
olites in S. miltiorrhiza roots.

Phenotyping of agronomic traits from scanning 
images of S. miltiorrhiza roots
To capture agronomic traits, S. miltiorrhiza roots at the har-
vesting period were collected. Because the absorbing root is 
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not used in the manufacturing of medicinal materials, it was 
discarded, and the main roots and lateral roots were kept for 
analyses. After washing, images of the whole root for each indi-
vidual plant were obtained using a high-resolution scanner with 
both transmission and reflection modes. Using WinRHIZO 
and RhizoVision, a total of 81 parameters were obtained from 
102 root images (Table S2). With consideration for the soft-
ware's adaptability for S. miltiorrhiza roots and research objectives, 
we specifically selected parameters capable of characterizing 
biomass and root classes generated by RhizoVision (Fig. 2A and 
Table 1). In order to acquire parameters that reliably predict 
biomass, 3 parameters (Total Length, Total Surface Area, and 
Total Volume) were investigated. The normal distributions 
of these parameters were first analyzed separately (Fig. 2B). 
Consistently, the 3 parameters showed positive skewness dis-
tribution, whereas Total Surface displayed uniform distribu-
tion similar to that of the actual biomass (Fresh weight [FW] 
and Dry weight [DW]). We then examined the linear corre-
lation between the actual biomass and digital biomasses (Fig. 
2C). Both FW and DW exhibited a strong correlation with the 
predicted traits, with the highest correlation of Total Surface 
Area (R2 = 0.8312 for FW, and R2 = 0.7680 for DW), suggesting 

that the surface trait is a suitable image derived trait for esti-
mation of root biomass.

Besides, parameters produced by RhizoVision could be uti-
lized to describe RSA [25]. Here, we conducted a root diameter 
classification analysis by selecting a range of root diameters. 
Based on the estimated diameter, each individual root branch 
was divided into 4 ranges as shown in Fig. S2 (Root length range 
1 to 4, Surface area range 1 to 4, and Volume range 1 to 4), and 
their relative proportion in the whole root system was obtained 
additionally. The absorptive roots in range 1 were removed from 
statistical analysis. Applying the above data, all roots were clus-
tered into 3 significantly distinguished groups using K-means 
clustering. As the root models showed, the roots in different 
sizes and biomass were grouped accordingly, providing a basis 
for the further study of their phenotypic or metabolic differ-
ences. Subsequently, based on the K-means clustering, RF was 
performed to figure out the most significant features (Fig. 2E). 
The mean decrease accuracy denotes the importance of the 
parameters or traits. Our result identified the Volume Range 
4, Total Volume, and Surface Range 4 as the top 3 features, 
indicating their importance for the classification of S. miltior-
rhiza roots.

Chemistry

Root morphology

Anatomy

UHPLC Q-TOF

MS-imaging

Diameters

Density

Color

RAS

Biomass

Layer thickness

Tissue proportion

A B Root parameter extraction

Image
extraction
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Image extraction Parameters

D Root architecture structure
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E Rosmarinic acid Tanshinone IIA

Fig. 1.  The workflow for the phenomics study of S. miltiorrhiza roots. (A) Map of trait categories included in this root phenotyping for S. miltiorrhiza. (B) Schematic presentations 
for image process, feature extraction, and analysis for agronomic traits using WinRHIZO and RhizoVision. (C) Schematic presentations for anatomy traits analyses using 
sections of S. miltiorrhiza roots. (D) Schematic presentations for modeling of root architecture structure using landmark method. (E) Schematic presentations for metabolic 
profiles on the section of S. miltiorrhiza roots using mass spectrometry imaging.
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RSA construction using the landmark method
As described above, the root classification can characterize 
RSA in terms of morphology (Fig. 2D). However, RSA can be 
defined in various ways, such as morphology, topology, distri-
bution, and architecture to address the diverse physiological 
concerns of plant roots [7]. RootScape, a landmark-based tech-
nique, was employed for comprehensive RSA description [24]. 
A 9-point landmark model was created to capture the RSA of 
S. miltiorrhiza, describing the distances between landmarks that 
were defined by the primary root (points 1 and 2), the outer-
most lateral roots (points 2, 3, 5, 6, 7, and 8), and the depth of 
the root system (point 9) (Fig. 3A). Following the same prin-
ciple, each root was assigned with labels, and then a distance 
matrix between each pair of landmarks was generated (Table 
S3). As a result, the root samples were clustered into 10 groups 
(Fig. 3B), which generally belonged to 3 categories (Fig. 3C). 
Based on such classification, we further identified key features 
using RF modeling, which again represented Volume Range 4, 
Total volume, and Surface Range 4 as the most important traits.

Classification evaluation using ML algorithms
ML algorithms are expected to provide more accurate classifica-
tion of plant roots according to RSA features [25]. We conducted 
tests with various ML algorithms to identify the most suitable 
model, including unsupervised algorithm, supervised algorithm 
(RF, GB, Bernoulli NB, and multinomial NB), and deep learning 
model (ANN). Based on the clustering result of K-means (all 
samples in 3 clusters, Fig. 2D) and the landmark method (all 
samples in 10 clusters, Fig. 3B), the prediction accuracy for 
each ML model was evaluated (Table 2). As a result, K-meaning 
clustering showed high accuracy at 1.00 with the accuracy 

coefficient of 2 supervised algorithms (RF and GB). However, 
when assessed using all algorithms, the accuracy according to 
the landmark categories was poor. These findings indicate that 
RF and GB are the most effective models for S. miltiorrhiza 
root classification, and K-means clustering was superior to the 
landmark method using the current landmark placements.

Correlation between bioactive metabolites and 
phenotypic traits
Phenolic acids and tanshinones are the primary active compo-
nents of S. miltiorrhiza. Among them, danshensu, LAB, and 
tanshinone are synthesized in specific S. miltiorrhiza species 
or organs [16]. To understand the correlation between bioactive 
metabolites and phenotypic traits, MSI was conducted to profile 
the distribution of these metabolites in the root. Using an AP 
(atmospheric pressure)-MALDI MS imaging system, a total 
of 12 bioactive metabolites were identified. Phenolic acids 
such as danshensu (m/z 197.0455, [M-H]−), caffeic acid (m/z 
179.0350, [M-H]−), RA (m/z 359.0772, [M-H]−), LAA (m/z 
537.1036, [M-H]−), and LAB (m/z 717.1461, [M-H]−) were 
identified according to their accurate mass in negative mode. 
The image of the S. miltiorrhiza root sections showed that they 
were distributed in almost all root tissues. In positive mode, 
tanshinone metabolites as Danshenxinkun A (m/z 297.1121, 
[M+H]+), TSN-IIA (m/z 295.1329, [M+H]+), TSN-I (m/z 
299.0679, [M+Na]+), and DHDST I (m/z 301.0835, [M+Na]+) 
were identified, which were only or highly accumulated in the 
periderm layer (Fig. 4A). Subsequently, we performed accu-
rate quantification of 7 major active metabolites in different 
root tissues using the HPLC-MS/MS - method (Fig. 4B and 
Table S4). Since the cambium cells could not be individually 

Table 1. List of features extracted and selected for analysis of S. miltiorrhiza root images.

Software Features extracted Type Description

RhizoVision/WinRHIZO Total root length; average, median, 
and maximum diameter; volume; 
surface area; length; surface area; 

and volume histograms

Agronomic traits The sum of the Euclidean distances between 
the connected skeletal pixels in the entire 

root topology

The average, median, and maximum 
diameters that are computed across all root 

skeleton

Volume and surface area are calculated as 
the sum of values from all skeletal pixels

Length, surface area, and volume computed 
according to the diameter ranges

RootScan Root cross-sectional area (RXSA) Anatomical traits All components of the cross-section

Total cortical area (TCA) All components inside RXSA but outside the 
stele

Total stele area (TSA) All areas of stele

Xylem vessel area (VSA) Total cross-sectional area of all metaxylem 
vessels

Stele/cross-section Proportion of cross-section occupied by stele

Stele/cortex Relative tissue allocation to stele and cortex

RootScape Landmark placement defined by 
user

RSA Defined landmarks that characterize the root 
system architecture
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distinguished and separated, this tissue was examined together 
with the phloem layers. Consequently, the root tissues were 
manually separated into 3 parts, periderm, phloem, and xylem. 
Consistent with the MS-imaging results, phenolic acids (LAA, 
LAB, and RA) were relatively highly accumulated in the inner 
tissues (phloem, cambium, and xylem), and had a very low 
content in the periderm. On the contrary, TAs (Danshenxinkun 
A, TSN-IIA, TSN-I, and DHDST) were only detected in the 
periderm (Fig. 4B). Besides the separated tissues, the content 
of each metabolite in the whole root segments was also detected, 

and they were all similar to that of inner tissues. Given the 
different distributions of these 2 classes of metabolites in the 
root, we infer that the TA content of S. miltiorrhiza roots may 
be associated with the phenotypic characteristics of the peri-
derm. The correlation between metabolites and phenotypic 
traits was then established using Pearson correlation analysis 
(Table S5). According to the correlation network, there were 
substantial associations between the accumulation level of 
CTSN or LAB and several phenotypic features, including 
Volume Range 4, Length Range 4, and Total Surface. These 
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Table 2. Prediction of accuracy evaluations for different machine learning models.

Model
Unsupervised Supervised

Artificial neural 
networkK-means Random forest

Gaussian naïve 
Bayes

Bernoulli NB Multinomial NB

K-means clustering 0.765 1.000 1.000 0.655 0.483 0.241

Landmark model 0.129 0.161 0.129 0.194 0.129 0.194
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results indicate that the production of these metabolites is 
probably determined by the roots in range 4, the main root 
parts of the S. miltiorrhiza root system. RF was also performed 
to figure out the most significant metabolic traits that were 
influenced by phenotypic features (Fig. 4C). However, yields 
and content of tanshinones, not phenolic acids, seemed to be 
the most important metabolic traits based on the K-means 
classification (Fig. 2D), probably due to the different accumu-
lation patterns between tanshinones and phenolic acids.

Owing to the correlation between accumulation patterns of 
metabolites and phenotypic features, we hypothesized that the 
phenotypic features could be used to characterize the production 
of bioactive compounds in roots of S. miltiorrhiza population. 
For this purpose, we examined the linear regression relationship 

between metabolite contents and biomass traits. Because the 
Total Surface had the highest correlation to actual biomass, it 
was chosen for analysis. As a result, among all the tested metab-
olites, the production of LAB (R2 = 0.4083 and P < 0.0001) and 
TSN-IIA (R2 = 0.1725 and P < 0.0001) in root was well corre-
lated with their digital biomass based on Total Surface (Fig. 4D 
and E), implying that the content of these bioactive chemicals 
could be measured according to their digital biomass without 
quantitative detection using the traditional chemical method.

Discussion
The aim of this study was to establish a workflow for character-
izing the phenotypic traits of S. miltiorrhiza roots. The phenotypic 
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data were further used for valid biomass estimation, root clas-
sification, and prediction of bioactive metabolites in the root.

Different from previous root phenotyping studies, we tried 
to conduct a multi-dimensional characterization of S. miltio-
rrhiza root, which requires different analyzing platforms 
for various categories [29]. Apparently, there is no readily 
available root phenotyping tool to meet these requirements 
simultaneously. Therefore, we chose different ready-made root 
analysis tools to extract phenotypic traits in different catego-
ries (morphology, architecture, anatomy, and chemistry), which 
were further combined together. Since these tools were not 
specially designed for S. miltiorrhiza roots, some particular traits 
were not utilized here. For example, root tips can be recog-
nized and counted by RhizoVision or WinRhizo. Such infor-
mation is meaningful for small root systems in Arabidopsis 
and wheat [30]; however, it may have no impact on the bio-
mass estimation of mature S. miltiorrhiza. For anatomical 
traits, we chose RootScan, which was designed for maize [23], to 
obtain the proportion of different root tissues in the primary 
root. However, RootScan is unable to collect key characteristics 
for which we are more concerned, such as the proportion of 
periderm. Thus, the above disadvantages of using nonspe-
cific root image analysis software indicate that it is necessary 
to further establish a species-specific phenotypic analysis soft-
ware for S. miltiorrhiza.

RSA is a complex concept and can be described from dif
ferent perspectives. There is still no simple definition to distin-
guish the key features of RSA. Most research on RSA is based on 
overall parameters through root scanning [25] or 3-dimensional 
modeling [31,32]. Here, we suggest that the landmark method 
can potentially simplify the description of RSA. Because land-
mark topology can be adapted to different plant species and 
organs, the investigators can define placement according to a 
certain purpose. Landmark topology has been successfully 
employed to evaluate the morphology of floral organs, such as 
style and petal [33,34]. However, it is not frequently used in root 
phenotyping [24], which is probably hindered by root imaging 
technology. In this work, we created a 9-landmark model mainly 
to characterize the primary root and the skeleton of S. miltior-
rhiza roots. Although the accuracy assessment by ML algorithms 
did not provide strong support for the landmark-mediated roots 
classification, it does not mean that the landmark method is not 
suitable for studies on RSA, which might require a different or 
more detailed set of landmarks.

The main goal of root phenotyping in current studies is to 
quantify morphological and architectural root traits for root 
modeling, biomass measurement, trait correlation, and dynamic 
changes of morphological traits [35]. In this study, we success-
fully predicted the biomass of S. miltiorrhiza roots according 
to their phenotypic traits. We also tried to establish a prediction 
model for metabolite contents in roots using phenotypic traits, 
revealing that the production of metabolites could be estimated 
according to the biomass-related parameters such as Total 
Surface (Fig. 4D and E). Several recent studies have shown 
potential applications for the estimation of valuable metabolites 
using high-throughput image analyses. For example, Liu et al. 
[36] developed a visual discrimination model of buckwheat 
flavonoid content based on color code values (CMYK) of seed 
images by a neural network (AlexNet). Interestingly, the red 
color of S. miltiorrhiza roots is due to the accumulation of tan-
shinones, thus indicating the possibility of predicting tanshi-
none content by root color using computer vision technologies. 

However, although phenotypic traits can efficiently reflect the 
contents of metabolites, the accumulation of these metabolites 
is also tightly associated with their specific physiological func-
tions and varies under different conditions. Here, we only dis-
cussed the relationship between phenotypic traits and tanshinone 
contents. In reality, phenotypic studies can also address devel-
opmental processes, stress resistance, and other physiological 
phenomena. If we can integrate these diverse physiological aspects 
through phenotypic profiling studies, it may be possible to elu-
cidate the precise physiological functions of tanshinones and 
explore intriguing questions related to their specific accumula-
tion in the periderm and other physiological significance.

Currently, most image-based root analysis software relies on 
semi-automatic or manual graphic analyses, which is not effec-
tive for situations with large sample sizes. Deep learning of plant 
root images based on neural network algorithms is expected to 
be highly useful for high-throughput plant phenotyping [37]. 
Here, AlexNet was performed to estimate the biomass of S. mil-
tiorrhiza. The dataset used in this experiment consists of a total 
of 91 images of S. miltiorrhiza roots. After random partitioning 
and data augmentation, the training set contained 540 images 
(including 54 original images expanded through geometric trans-
formations such as rotation and translation). The validation set 
contains 180 images, which was expanded in the same way 
as the training set. The test set contains nineteen images. The 
AlexNet network structure is shown in Fig. S3A. After 200 rounds 
of training, we conducted testing on the test set. As a result, it 
was found that the predicted biomass closely approximated 
the average fresh weight, albeit with a significant discrepancy 
(51.016 g on average) from the actual fresh weight (Fig. S3B). 
Likewise, the predicted dry weight failed to accurately reflect the 
true dry weight with a discrepancy of 18.134 g in average and 
exhibited a larger deviation from the average (Fig. S3C). It can 
be observed that the biomass predictions based on neural net-
works tend to stabilize, rather than accurately reflecting the true 
differences in biomass between samples. This may be due to the 
limited number of samples in the training set.

Altogether, we established a framework for phenotyping of 
S. miltiorrhiza roots, focused on the phenotyping of mature 
roots and searching for the correlations between phenotypic 
traits and bioactive metabolites. In fact, the framework is expected 
to be used in more extensive research on the root physiology 
of S. miltiorrhiza. For example, the parameters correlated to 
biomass can be used to build dynamic models of root develop-
ment during the life cycle [4], and root responses to biotic or 
abiotic stress [38], or root variations in response to different 
nutrition conditions and environments [39]. According to the 
growth modeling and variation of key parameters, breeders 
and farmers may obtain useful information for the fine culti-
vation of this herb. On the other hand, despite the publication 
of several versions of the S. miltiorrhiza genome [40–42], there 
are still no cultivated varieties of S. miltiorrhiza with definite 
genotypes, leading to the lagging of S. miltiorrhiza breeding. 
The phenotyping and classification approach we used here may 
aid in the correct identification of S. miltiorrhiza varieties and 
the selection of critical traits, thus providing a new point for 
S. miltiorrhiza breeding.
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