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Selenium as Inducer of Glutathione Peroxidase in Low-CO2-
Grown Chlamydomonas reinhardtiil
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ABSTRACT

Culture of the green alga Chlamydomonas reinhardtii in the medium
containing sodium selenite caused the activity of ascorbate peroxidase to
disappear and the appearance of glutathione peroxidase. The induced
maximum activity of glutathione peroxidase reached 350 micromole (milli-
gram chlorophyll hour) - ' under assay conditions used. The enzymic prop-
erties of the selenite-induced glutathione peroxidase closely resembled
those of animal glutathione peroxidase that contains selenium.

Living matter contains catalase, AsA-POD,2 and GSH-POD,
enzymes which all decompose one of the toxic form of oxygen,
H202 (6). Catalase is found only in peroxisomes, has a low af-
finity for H202, and cannot decompose the organic hydroperox-
ides. Thus, AsA- and GSH-PODs detoxify such active oxygens
in energy-generating organelles (6, 17).

In photosynthetic organisms, light energy is directed to 0,

reduction when the amount of CO2 available for photosynthesis
is limiting (4, 6). Oxygen is also reduced during the induction
period that takes place when dark-adapted photosynthetic or-

ganisms are transferred to lighted conditions (7, 11). In addition,
green algae, grown in low concentrations of CO2 (as in the air)
constantly form H202 in pseudocyclic electron transport to pro-
duce ATP. The ATP is used to concentrate CO2 or HCO3- in
the cells or chloroplasts from the surrounding medium (15, 19).
The rate of formation of H202 is 100 to 150 t,mol (mg Chl h)- '
(15, 19). It is not known what enzyme detoxifies H,20 which is
synthesized at such high rates. We report here induction of GSH-
POD in Chlamydomonas reinhardtii by a small amount of sodium
selenite in the culture medium.

MATERIALS AND METHODS

Chlamydomonas reinhardtii Dangeard was grown aseptically
in Allen's medium (1) with or without sodium selenite (3 mg

L- '). The culture was bubbled with sterile air or air containing
5% CO2 and was illuminated 55 to 80 ,E m-2 s-1 or at 240,E
m-2 -1.

The algal cells were collected by centrifugation at 3,000g for

Supported in part by a grant-in-aid (No. 60129043) from the Ministry
of Education, Science, and Culture of Japan.

2 Abbreviations: AsA-POD, ascorbic acid peroxidase; GSH-POD,
glutathione peroxidase.

5 min and suspended in 100 mM Tris-HCI buffer (pH 8.3) con-
taining 300 mm sucrose. The cells were disintegrated by twice
passing them through a cooled French pressure cell at 400 kg
cm -, and then the cell homogenate was centrifuged at 10,000g
for 20 min. The obtained supernatant was used as the enzyme
solution.
The activity of GSH-POD was assayed spectrophotometrically

(18). The assay mixture consisted of 100 mm Tris-HCl (pH 8.3),
1.0 mM glutathione, 0.1 mM H202, 0.2 mm NADPH, 2 units of
glutathione reductase, 0.1 mM NaN3 and enzyme solution. The
activity of AsA-POD was determined as described previously
(12).

Chl (19) and protein (3) were determined by the methods
described in cited references.

RESULTS AND DISCUSSION

GSH-POD, which decomposes H202 and organic hydrope-
roxides in mammals and birds, is a selenium-containing protein
(13, 17). We have now studied the possibility that selenium added
to the growth medium of a green alga would induce an animal-
type GSH-POD. C. reinhardtii was first cultured in the light (55-
80,uE m-2 S-') in the culture medium that contains no selenium
compounds. The cells contained AsA-POD corresponding to the
activity of 15 to 20 ,umol (mg Chl h) - 1, but no GSH-POD activity.
The cells was transferred to a medium containing 3 mg of sodium
selenite per liter and illuminated at 240 AE m-2 s '. The culture
was bubbled with sterile air. The change in the activity of GSH-
POD under these conditions is shown in Figure 1, together with
the Chl concentration in the culture medium. The enzyme activity
increased to 350 ,umol (mg Chl h)- 1 (equivalent to 4.4 ,umol [mg
protein min]- 1) at the growth stage corresponding to 3 to 4 ,ug
of Chi ml '. Thereafter, the activity decreased. When the culture
was illuminated at 55 ILE m -2 , the activity of GSH-POD was
only one-fifth that at 240 ,uE m-2 s-'. This suggests that the
decrease in the activitv after d 4 (Fig. 1) was due to a decrease
in the light intensitv At the cell surface in the culture which was
:i,e hy that timei. Sodium selenite was effective only if added

to the culture medium, as is true for the induction of formate
dehydrogenase in Escherichia coli (10) and glycine reductase in
Clostridium sticklandii (16), both enzymnes, containing selenium
(14). GSH-POD in C. reinhardtii was inlduccd only when the
culture was bubbled with air (340 ppm CO ). Cells grown in a
5% CO2 atmosphere, in which the organism does not develop
the mechanism for concentrating CO2 (2, 19), contained an ac-
tivity of 36 ,umol (mg Chi h) - I at the growth stage corresponding
to 5 ,ug of Chl ml- '. GSH-POD was totally absent in cells grown
in the absence of sodium selenite.
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FIG. 1. Changes of the activity of GSH-POD (0) during the growth

of C. reinhartdii in the presence of 3 mg of sodium selenite per liter; (0)
concentration of Chl in the culture medium. The initial Chl concentration
was 0.3 Aig ml-'.
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FIG. 2. Changes in the activities of GSH- (0) and AsA- (0) PODs

with various concentrations of potassium cyanide. The activities of GSH-
and AsA-PODs were 350 and 19 ,mol (mg Chl h) 1, respectively, in
the absence of KCN.

The reaction medium for the assay of GSH-POD contained
0.1 mM NaN3. Further addition of KCN up to 1 mm did not
inhibit the activity of GSH-POD, but AsA-POD from C. rein-
hardtii grown without selenium at 55 ,uE m-2 S-1 was inhibited
completely by this concentration of KCN (Fig. 2), as is Euglena
AsA-POD that contains heme as the prosthetic group (12). The
selenite-induced GSH-POD had an optimum pH 8.0 to 8.3 for
activity; the activity was almost negligible at pH 7.0 and 8.9 (data
not shown). The enzyme was specific for glutathione; neither
guaiacol or pyrogallol could be used instead of glutathione. The
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FIG. 3. Double-reciprocal plots of the activity of selenium-induced
GSH-POD at different concentrations of glutathione. The concentration
of HO02 in the assay mixture was 0.1 mM.

apparent Km value for glutathione was 2.2 mm in the presence

of 0.1 mm H202 (Fig. 3). The Km value for H202 was 0.15 mM
in the presence of 1 mM glutathione (data not shown). The Vmax
of the activity was 1500 ,mol (mg Chl h) -in the presence of
0.1 mM H202 (Fig. 3). Cumene hydroperoxide and tert-butyl
hydroperoxide could substitute for H202 in the enzymatic re-
action. The ratio of the reactivities of H202, cumene hydrope-
roxide and tert-butyl hydroperoxide was 1:1.1:0.5. These enzymic
properties of the GSH-POD induced by selenium in C. reinhardtii
were similar to those of the GSH-POD that contains selenium
(17).
The results shown here contradict a widespread belief about

the distribution of peroxidase. The AsA-POD in C. reinhardtii
grown under conventional culture conditions was replaced by an

animal-type GSH-POD when the organism was grown in the
presence of selenium. High light intensity and low CO2 concen-
trations in the atmosphere during the culture were also needed
for the induction of the GSH-POD with high activity. In the
presence of glutathione at the concentration of 4 mm or more,
which has been found in photosynthetic organisms (6, 9), the
GSH-POD activity exhibits rates of over 700 Amol (mg Chl h)- '.
These considerations lead us to conclude that the selenium-in-
duced GSH-POD can decompose H202 formed in large amounts
when C. reinhardtii is concentrating CO2. H202 formed in the
cells without the GSH-POD must be decomposed by catalase,
since addition of H202 to these cells caused evolution of 0.,

which was inhibited by 0.1 mm sodium azide (data not shown).
Selenium should be added to the culture medium for C. rein-
hardtii to study its natural way of life. Natural fresh water con-
tains 0.2 to 2.0 Ag of selenium per liter (5, 8), so it is likely that
C. reinhardtii is originally an organism that requires selenium.
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