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Parkinson’s disease (PD) is a complex syndrome with many elements, such as chronic infammation, oxidative stress, mito-
chondrial dysfunction, loss of dopaminergic neurons, build-up of alpha-synuclein (α-syn) in cells, and energy depletion in
neurons, that drive the disease. We and others have shown that treatment with mimetics of the growth factor glucagon-like
peptide 1 (GLP-1) can normalize energy utilization, neuronal survival, and dopamine levels and reduce infammation. Liraglutide
is a GLP-1 analogue that recently showed protective efects in phase 2 clinical trials in PD patients and in Alzheimer disease
patients. We have developed a novel dual GLP-1/GIP receptor agonist that can cross the blood-brain barrier and showed good
protective efects in animal models of PD. Here, we test liraglutide against the dual GLP-1/GIP agonist DA5-CH (KP405) in the
A53T tg mouse model of PD which expresses a human-mutated gene of α-synuclein. Drug treatment reduced impairments in
three diferent motor tests, reduced levels of α-syn in the substantia nigra, reduced the infammation response and proin-
fammatory cytokine levels in the substantia nigra and striatum, and normalized biomarker levels of autophagy andmitochondrial
activities in A53Tmice. DA5-CHwas superior in almost all parameters measured and therefore may be a better drug treatment for
PD than liraglutide.

1. Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative
disorder that is clinically identifed by typical motor
symptoms (rigor, tremor, and akinesis) and characterized by
progressive dopaminergic neuronal loss in the substantia
nigra pars compacta (SNpc), which leads to loss of striatal
dopaminergic synaptic transmission [1, 2]. A key patho-
logical feature is the aggregation of the peptide alpha-
synuclein (α-syn) and the development of chronic in-
fammation in the CNS that leads to the release of proin-
fammatory cytokines and neurodegeneration [3–5]. Tis
can lead to impairment of growth factor signalling, mito-
chondrial dysfunction, and insulin desensitization [6–9].
Glucagon-like peptide 1 (GLP-1) is a peptide hormone that
can resensitize insulin signalling, and GLP-1 mimetics are

widely used in treating type 2 diabetes [10–12]. GLP-1 re-
ceptor agonists have shown good efects in animal models of
PD [13]. Importantly, the GLP-1 receptor agonist exendin-4
(Exenatide, Byetta, Bydureon) has shown impressive pro-
tective efects in a phase II trial in PD patients by halting
disease progression [14, 15] and resensitized insulin sig-
nalling in the brain [16]. Liraglutide is a long-lasting GLP-1
analogue and is available in the market to treat type 2 di-
abetes [17]. It previously showed good neuroprotective ef-
fects in animal models of PD [18–20]. In a phase II clinical
trial in PD patients, liraglutide showed clear improvements.
Disease progression was much reduced and motor con-
trolled, and the quality of life assessment was improved [21].
Glucose-dependent insulinotropic polypeptide (GIP) is
a peptide hormone from the same family as GLP-1 [22]. GIP
receptor agonists have shown good protective efects in
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animal models of PD [23, 24]. GIP acts in synergy with GLP-
1, and dual GLP-1/GIP receptors have been developed that
show good efects in animal models of PD [13, 25, 26]. We
have developed dual agonists that have been modifed to
cross the blood-brain barrier (BBB) at an enhanced rate.
Tese dual agonists have shown superior neuroprotective
efects in animal models of PD [13, 26–30]. BBB penetration
is essential for a drug to be efective in treating PD. A recent
phase II trial that tested a PEGylated version of exendin-4 in
PD did not show any efects [31]. Te drug called NLY01
does not cross the BBB readily and therefore shows only
limited efects in the clinic [32]. α-Synuclein is a peptide that
is a biomarker for PD and is seen as one of the drivers of the
disease [33–35]. Mutations of the human α-synuclein gene
can lead to early onset PD [36, 37]. A standard animal model
for PD is the A53T-mutated human α-synuclein gene ex-
pression model [38, 39]. Tis mouse model expresses the
human A53T-mutated α-synuclein gene and is a standard
animal model of synucleinopathy in the brain. We, there-
fore, tested the novel dual GLP-1/GIP receptor agonist DA5-
CH that previously showed good efects in the MPTP mouse
model and the 6-OHDA rat model of PD [29, 32, 40] in the
transgenic A53T mouse model of PD and compared the
efects with those of liraglutide.

2. Materials and Methods

2.1. Peptides and Chemicals. Te peptides DA5 and lir-
aglutide were synthetized by ChinaPeptides Co., Ltd.
(Shanghai, China) with 95% purity. Te sequence of DA5 is
YXEGTFTSDYSIYLDKQAAXEFVNWLLAGGPSSGAPPP
SKRRQRRKKRGY-NH2 (X� aminoisobutyric acid). Te
purity of the peptide was analyzed by reversed-phase high
HPLC and characterized using matrix-assisted laser de-
sorption/ionisation time of fight (MALDI-TOF) mass
spectrometry.

2.2. Animals. We used A53T transgenic mice (Jackson
Laboratories, USA). Animals were kept in SPF conditions,
and the cage temperature was maintained at 20–24°C, with
relative humidity 45%–60% and 12 h light/12 h dark cycle.
All the animals had feed and water ad-lib. Mouse DNA was
extracted and genotyped using the K9053 kit (Nantome
Biotech Co. Ltd.,), see Jackson Lab website protocol for
details (https://www.jax.org/strain/004479). Homozygous
mice were selected and mated [38]. Te Animal Care and
Use Committee of Henan University of Chinese Medicine
(no: DWLL201903076) approved all procedures.

Both male and female A53T transgenic homozygous
mice were used in this study and divided into three groups of
12 mice each. Animals were at 13-14months of age, and age-
, sex-, and A53Tgenotype-matched negative littermates were
used as a control group.Te N control group included A53T
(−) mice and intraperitoneal injection of saline; the A53T
group included A53T (+) mice, and saline administration;
the CCK group included A53T (+) mice and intraperitoneal
injection of DA5-CH; the Lira group included A53T (+)
mice and intraperitoneal injection of liraglutide. DA5 was

injected daily intraperitoneally at 25 nmol/kg or with lir-
aglutide injection at 50 nmol/kg. All drugs and saline were
administered for 14 consecutive days, injecting once daily,
see Figure 1 for details.

2.3. Behavioral Tests

2.3.1. Rotarod Test. Te mice were familiarized with the
apparatus (RWD Life Technology, Shenzhen, China) daily
for 3 days before the test and trained for 3minutes daily with
a speed at 20 rpm. In the testing condition, the speed was set
to 20 for 20 seconds and then accelerated to 30 for
30 seconds. Te latency to fall of the rotating rod was
recorded. Mice were tested 6 times.

2.3.2. Open Field Test. To assess the motor activity and
spontaneous exploratory activity of PDmice, open feld tests
were conducted. Te open feld consisted of a square arena
(45× 45 cm) with 25 cm high opaque walls. Te foor was
divided into 9 equal squares. Te central square was defned
as the central square (15×15 cm). Mice were placed in the
center of the apparatus. Te number of line crossings and
rearing was recorded after 5min (Smart 3.0, RWD Life
Technology, Shenzhen, China), see [41–43] for details. Te
apparatus was cleaned with 75% alcohol and dried between
trials. Te experiment was repeated 3 times for each animal.

2.3.3. Pole Test. Te pole test can measure the degree of
bradykinesia and ability to balance the movement of ani-
mals. Mice were placed head up near the top of a wooden
pole (2.5 cm in diameter and 55 cm in height). Te latency
until mice turned completely downward was recorded
(defned as turn time, T-turn), and the time taken to reach
the foor (locomotor activity time, T-LA) was recorded.
Every mouse was tested 3 times.

2.4. Western Blot. Mice were sacrifced after anesthetization
with 20% urethane. Te brains were removed rapidly, and
the substantia nigra (SN) and striatum areas were cut into
1mm coronal cross sections using a vibratome (Leica
Microsystems, Wetzlar, Germany), using a brain atlas [44].
Te tissue was cryopreserved at −80°C for storage. High
efciency RIPA cracking fuid (R0010, Solarbio, Beijing,
China) was added to protease inhibitors and phosphatase
inhibitors (P1269, Solarbio, Beijing, China) for tissue lysis.
Ten, 150 μl lysate was added to every 10mg tissue. After
30min, tissue samples were centrifuged at 14,000 rpm for
10min at 4°C. Te protein concentration was quantifed by
the BCA protein assay (PC0020, Solarbio, Beijing, China).
Loading bufer was added to tissue lysates and boiled for
10min. Equivalent amounts of protein were separated on
10% SDS-polyacrylamide gel and transferred to poly-
vinylidene difuoride membranes that were blocked with 5%
nonfat milk in TBST and then incubated overnight at 4°C
with the primary antibody β-actin (1 : 2000), Mfn2 (1 :1000),
OPA1 (1 :1000), Drp1 (1 :1000), Nrf2 (1 :1000), (pSer129,
SPC-742S, Canada), TNF-α (Abcam, ab1793), and HO-1 (1 :
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1000). Tis was followed by incubation for 2 h at room
temperature with goat anti-rabbit IgG HRP (1 : 5000) and
goat anti-mouse IgG HRP (1 : 5000). Te bands were visu-
alized by ECL-enhanced chemiluminescence (Beyotime
Institute of Biotechnology, Shanghai, China) according to
the manufacturer’s instructions. Western blot gels were
analyzed with a chemiluminescence imaging system
(Termo Fisher Scientifc Inc., Massachusetts, USA) and
quantifed using ImageJ v1.51 (National Institutes of Health,
Bethesda, MD, USA).

2.5. Transmission Electron Microscopy (TEM). Mice were
randomly taken from each group. Brain tissues were taken
after rapid decapitation after isofurane anesthesia, fxed in
2.5% glutaraldehyde solution and rinsed, and then placed
in 1% osmic acid for fxation. Tis was followed by alcohol
and acetone gradient dehydration, embedding, and im-
mersion polymerization. Ultrathin sectioning was done on
a microtome (Leica EMUC7) into 70 nm thick sections and
stained with uranyl acetate-lead citrate. Te ultrastructure
of sections was imaged on a TEM (JEM-1400; JEOL Ltd.,
Tokyo, Japan) at 60 KV. Five neuropils under 30,000-fold
visual felds were photographed, and the average number of
synapses was estimated. Te thickness of synaptic cleft and
postsynaptic membranes density (PSD95 thickness) was
evaluated. Data were analyzed by ImageJ v1.51 software
(National Institutes of Health, Bethesda, Maryland).

2.6. Statistical Analysis. GraphPad Prism 9 software was
used for the statistical analysis. Te data were analyzed by
one-way ANOVA and Tukey post hoc tests. Data are shown
as M± SEM. P< 0.05 was considered as signifcant.

3. Results

3.1. Rotarod Motor Assessment. In the rotarod motor co-
ordination assessment, an overall signifcance in a one-way
ANOVA was found (P< 0.001). In post hoc tests, the A53T
sal group was diferent from the sal control group (P< 0.01),
and both liraglutide group and DA5-CH group were better
than the A53T sal group (P< 0.05), N= 12 per group, see
Figure 2.

3.2. Pole Test. In the T-turn assessment, an overall signif-
cance in a one-way ANOVA was found (P< 0.001). In post
hoc tests, the A53T sal group was diferent from the sal
control group (P< 0.001), and both liraglutide group and
DA5-CH group were better than the A53T sal group
(P< 0.01) and the DA5-CH group was better than the lir-
aglutide group (P<<0.05). In the T-LA evaluation, an
overall signifcance in a one-way ANOVAwas found. In post
hoc tests, the A53T sal group was diferent from the sal
control group (P< 0.01), and the DA5-CH group was better
than the A53T sal group (P< 0.05), N= 12 per group, see
Figure 3.

3.3. Open Field Test. In the open feld assessment, an overall
signifcance in a one-way ANOVA was found (P< 0.001). In
the number of explorative rearing, the A53T sal group was
diferent from the sal control group (P< 0.01), and the
liraglutide group (P< 0.05) and DA5-CH group (P< 0.01)
were better than the A53T sal group (P<<0.05). In the time
in central zone anxiety evaluation, an overall signifcance in
a one-way ANOVA was found. In post hoc tests, the A53T
sal group was diferent from the sal control group (P< 0.01),
and the DA5-CH group was better than the A53T sal group
(P< 0.01), while the liraglutide group was better only at
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Figure 1: Study design of the test of DA5-CH with liraglutide as a comparator. Both drugs were tested at 25 nmol/kg and 50 nmol/kg bw ip.
once daily. Control mice received normal saline (NS).
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Figure 2: Testing spontaneous motor activity in the rotarod test.
DA5-CH reduced the motor impairment better than liraglutide.
∗∗P< 0.01 compared to the control group; #P< 0.05 and ##P< 0.01
compared to the A53T saline-treated group. N� 12 per group.
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P< 0.05. In the total distance evaluation, an overall signif-
icance in a one-way ANOVA was found. In post hoc tests,
the A53T sal group was diferent from the sal control group
(P< 0.01), and the DA5-CH group and the liraglutide group
were better than the A53T sal group (P< 0.05), N= 12 per
group, see Figure 4.

3.4. Levels of α-Synuclein in the Substantia Nigra. When
analyzing the levels of α-syn found in the substantia nigra, an
overall signifcance in a one-way ANOVA was found
(P< 0.001).Te A53Tsal group had higher levels than the sal
control group (P< 0.001), and the liraglutide group
(P< 0.05) and DA5-CH group (P< 0.001) were better than
the A53Tsal group. DA5-CH was more efective in lowering
α-syn levels than liraglutide (P< 0.05), see Figure 5.

3.5. Levels of Proinfammatory Cytokines in the Substantia
Nigra. When analyzing the levels of proinfammatory cy-
tokines in the substantia nigra, an overall signifcance in
a one-way ANOVAwas found (P< 0.001). TNF-α: the A53T
sal group had higher levels than the sal control group
(P< 0.05). Te liraglutide group and the DA5-CH group
were both lower than the A53T sal group (P< 0.001). IL-1ß:
the A53T sal group had higher levels than the sal control
group (P< 0.01). Te liraglutide group (P< 0.01) and the
DA5-CH group (P< 0.001) were both lower than the A53T
sal group. DA5-CH was more efective in lowering IL-1ß
levels than liraglutide, see Figure 6.

3.6. Levels of Pro- and Anti-Infammatory Cytokines in the
Striatum. When analyzing the levels of proinfammatory
cytokines in the striatum, an overall signifcance in a one-
way ANOVA was found (P< 0.001). TNF-α: the A53T sal
group had higher levels than the sal control group
(P< 0.001). Te liraglutide group (P< 0.05) was not as ef-
fective as the DA5-CH group (P< 0.001) in lowering levels

compared to the A53T sal group. IL-1ß: the A53T sal group
had higher levels than the sal control group (P< 0.05). Te
DA5-CH group (P< 0.05) was lower than the A53T sal
group, while the liraglutide group showed no diference. Te
DA5-CH was more efective in lowering cytokine levels than
liraglutide. IL-10 levels: the A53T sal group had lower levels
than the sal control group (P< 0.05). Te liraglutide group
and the DA5-CH group were both higher than the A53T sal
group (P< 0.001), see Figure 7.

3.7. Levels of Autophagy Biomarkers in the Substantia Nigra.
When analyzing the levels of autophagy-related proteins in
the substantia nigra, an overall signifcance in a one-way
ANOVA was found (P< 0.001). PINK1 levels: the A53T sal
group had lower levels than the sal control group (P< 0.01).
Te liraglutide group and the DA5-CH group were both
lower than the A53Tsal group (P< 0.001). LC3-II/LC3-1: the
A53T sal group had higher levels than the sal control group
(P< 0.01). Te DA5-CH group (P< 0.05) had lower levels
than the A53T sal group. DA5-CH was more efective in
lowering levels than liraglutide. P62: the A53Tsal group had
higher levels than the sal control group (P< 0.05). Te
liraglutide group (P< 0.05) had lower levels than the A53T
sal group, see Figure 8.

3.8. TEM Analysis of Mitochondria and Autophagosome
Morphology. Te shapes of mitochondria and autophago-
somes were analyzed in TEM images. Changes in mor-
phology that suggest damage have been observed in the
A53T mouse brain tissue compared to wild-type controls
(P< 0.0001). Drug treatment normalized these changes, and
DA5-CH treatment showed a diference compared to the
A53T tissue (P< 0.001), while liraglutide showed a diference
of P< 0.01 compared to the A53T tissue. Tere was no
diference between drug group values and wild-type con-
trols, see Figure 9.
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Figure 3: Testing motor activity and response time in the pole test. DA5-CH reduced the motor impairment better than liraglutide.
∗∗∗P< 0.001 and ∗∗P< 0.01 compared to the control group; # � P< 0.05 and ## � P< 0.01 compared to the A53T saline-treated group.
Control�wild-type saline-treated animals, A53T�A53T saline-treated mice, DA5�A53T DA5-treated mice, and liraglutide�A53T lira-
treated mice. N� 12 per group.
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4. Discussion

Type 2 diabetes mellitus (T2DM) is a risk factor for de-
veloping PD [45–49]. Insulin desensitization was found in
the brains of people who had PD, even if they did not have
diabetes [7, 50]. Tere is an additional association between
insulin resistance and an increased risk of PD dementia,
a more severe PD phenotype [51]. Insulin desensitization is
found in the brains of PD animal models independently of
diabetes, too [52, 53]. Terefore, drugs originally developed
to treat T2DM that reduce insulin resistance have been
tested in animal models of PD and in clinical trials
[8, 13, 26]. Importantly, a phase 2 clinical trial that tested the
GLP-1 receptor agonist exendin-4 (Bydureon) showed
improvements in PD patients (NCT01971242). After
48weeks of drug treatment, the motor activity was improved
compared to placebo treatment, and the improvement
remained visible 12weeks later. DAT brain imaging showed

a reduced deterioration of the dopaminergic nigral-striatal
system [14, 54]. When analyzing neuronal exosomes in these
patients, it was found that insulin sensitivity has been im-
proved in the brain by the drug [16]. A second phase 2 trial
testing the GLP-1 analogue liraglutide (Victoza) showed
meaningful improvements in everyday motor activities such
as walking, chewing, talking, and getting out of a chair
compared to placebo treatment. An improvement in the
quality of life score was observed, too [21].

Liraglutide and other GLP-1 receptor agonists have
been developed to treat T2DM and remain in the blood
stream for a long time [12, 55]. Terefore, the ability to
cross the blood-brain barrier (BBB) to get into the brain is
limited [27, 56, 57]. In order to improve target engage-
ment, drugs need to be able to get into the brain. Tere is
a direct correlation between crossing the BBB and pro-
tecting the CNS [27, 28, 32, 58]. We, therefore, developed
novel drugs that can cross the BBB at an enhanced rate
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[25, 32, 59]. Exendin-4 can cross the BBB well and showed
good efects in animal models of PD [27, 60] and in the
clinic [14, 61]. In contrast, the company Neuraly de-
veloped a PEGylated version of exendin-4 as a novel
treatment for PD [62], but this version with a 40 kDa
PEGylation attached does not readily cross the BBB and

was inferior in a direct comparison with DA5-CH in the
MPTP mouse model of PD [32]. Importantly, it did
not show any improvements in a phase II clinical trial in
PD patients either [31]. DA5-CH in contrast has been
developed to cross the BBB at an enhanced rate
[27, 40, 63].
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Glucose-dependent insulinotropic polypeptide (GIP) is
the sister incretin hormone of GLP-1 [64]. GIP analogues
have similar protective properties as GLP-1 has in animal
models of PD [24, 65, 66]. Our dual GLP-1/GIP receptor
agonist DA5-CH (KP405) has better neuroprotective efects
in theMPTPmouse model of PD when directly compared to
liraglutide [25, 28] and is furthermore more efective than
exendin-4 in the 6-OHDA rat model of PD [63]. Both
exendin-4 (Bydureon) and liraglutide (Victoza) have shown
good protective efects in clinical trials in PD [14, 16, 21]. In
the present study, we show that DA5-CH is superior to
liraglutide in the A53T mouse model of PD, too.

GLP-1 and GIP both act as growth factors in the brain
and improve a range of key pathological developments in the
PD brain. Insulin signalling is reduced, glucose utilization
and energy production are impaired, mitochondrial activ-
ities such as mitophagy and mitogenesis are compromised,
autophagy and the removal of aggregated proteins are
normalized, gene expression of key growth factors such as
BDNF and GDNF is normalized, dopamine synthesis and
synaptic activity are improved, and the chronic in-
fammation response is reduced, see [13, 59, 65, 67] for
details. Te mechanism of action is a single process rather
than the sum of all of these improvements. Importantly,
GLP-1 and GIP act synergistically and therefore show en-
hanced protective efects in comparison with a single GLP-1
receptor agonist [68, 69]. Chronic infammation in the brain
is observed in PD, and it plays a key role in disease pro-
gression [70, 71]. Initial triggers such as toxins can active
microglial cells which release proinfammatory cytokines
and free radicals. Tis starts a chronic neuroinfammatory
process that can kill vulnerable neuronal populations such as
dopaminergic neurons [5, 72]. Importantly, proin-
fammatory cytokines can induce insulin desensitization and
reduce growth factor synthesis and function [73–76]. Our

study demonstrates that a chronic infammation response is
present in the brains of A53Tmice, and liraglutide and DA5-
CH downregulate TNF-ɑ and IL-1ß levels in the substantia
nigra.Tis result confrms our previous study fndings in the
MPTP mouse model of PD, where chronic infammation in
the brain was much reduced by liraglutide [19] and DA5-CH
[28, 32, 63]. Te reduction of chronic infammation by these
drugs is driven by activating the GLP-1 receptor on
microglia, which reduces the infammation as GLP-1 also
acts as an anti-infammatory cytokine [77, 78]. Te re-
duction of TNF-ɑ and IL-1ß levels in the brain will con-
tribute to the reversal of insulin desensitization in the brain.
TNF-α can reduce IRS-1 serine phosphorylation, which
blocks the secondmessenger cascade activated by the insulin
receptor [73, 79]. We showed in previous studies that lir-
aglutide or DA5-CH reduced the tyrosine 312 phosphory-
lation of IRS-1 in the 6-OHDA rat model of PD [29]. Tis
demonstrates that the drugs can reactivate insulin signalling
which was blocked by the chronic infammation response.
Other studies have shown similar insulin resensitization
with GLP-1 class drugs [11, 30, 80, 81].

Te A53T mouse model expresses a human-mutated
gene and is a standard animal model for α-syn proteinop-
athy [39, 82]. A leading hypothesis is that “misfolding” and
aggregation of α-synuclein, a component of Lewy bodies in
frontotemporal dementia (FTD) patients, are driving PD
progression [83]. Te reason why α-syn accumulates and
aggregates in the brain is believed to be overexpression of the
protein and failure to remove the protein by autophagy
[84, 85]. Furthermore, misfolding of α-syn and formation of
oligomers and fbrils have shown to interfere with normal
cellular processes which ultimately lead to neuronal death
[33–35]. Te cerebrospinal fuid (CSF) of PD patients can
contain increased levels of α-syn oligomers [86]. However,
other studies could not detect these oligomers in brain
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sections. It was found that while α-syn oligomers can be
neurotoxic, Lewy bodies, the fbrillar form of α-syn, can be
neuroprotective [87]. Clinical trials testing antibodies that
reduce the levels of α-syn in the brain did not show im-
provements in PD patients [88–90]. A potential mechanism
of how α-syn oligomer could induce neurodegeneration in
PD may include the disruption of a variety of cellular
processes, such as mitochondrial impairments, endoplasmic
reticulum stress, synaptic functions, dysfunction of the
autophagy pathway, and activating microglia [91]. Impor-
tantly, both liraglutide and DA5-CH reduced the levels of

α-syn in the substantia nigra. Te dual agonist DA5-CH was
more efective. Tis result confrms a previous result mea-
suring α-syn monomers and oligomers found in the 6-
OHDA rat model of PD [29].Te underlying mechanism for
reducing the levels of α-syn is most likely the normalization
of autophagy, which can remove the protein. We and others
have shown that GLP-1 class drugs can normalize autophagy
and remove proteins such as α-syn or ß-amyloid that can
accumulate and aggregate in the brain [92–96], for a detailed
review, see [67]. We were able to show in our study that drug
treatment can normalize levels of proteins that play key roles

A53T liraglutidecontrol DA5

(a)

A53T liraglutidecontrol DA5

(b)

######

****

A53T DA5 liraglutidecontrol
0.0

0.2

0.4

0.6

0.8

1.0

SN
pc

 N
or

m
al

m
ito

ch
on

dr
ia

 (%
)

(c)

##
####

****

0

1

2

3

4

%
 S

N
pc

 co
nt

ai
ni

ng
au

to
ph

ag
os

om
e

A53T DA5 liraglutidecontrol

(d)

Figure 9: (a) TEM observation of mitochondria in the SNpc of mice in each group. Te blue triangles represent normal mitochondria and
the red triangles represent damaged mitochondria (scale bar: 2 μm and 1 μm). (b) TEM observation of autophagosomes (green arrows) in
the SNpc of mice in each group (scale bar: 2 μm and 1 μm). (c) Quantifcation of (a). (d) Quantifcation of (b). ∗∗∗∗P< 0.0001 compared to
the control group; ##P< 0.01 and ####P< 0.0001 compared to the A53T group. N� 5-6 per group.

8 Parkinson’s Disease



in autophagy, which supports this concept, see Figure 10.
Again, the dual agonist was more efective than liraglutide.

Mitochondrial dysfunction is a key pathological feature
of PD [97–99]. GLP-1 and GIP mimetics can improve
mitochondrial activities in animal models of PD
[20, 24, 92, 100], and DA5-CH improved mitochondrial
activities, too [13, 67]. Te present study shows that the
expression levels of key mitochondrial proteins and the
morphology of mitochondria are normalized, too.

As liraglutide has already shown meaningful im-
provements in a phase 2 clinical trial of PD patients [21],
DA5-CH may be more efective than liraglutide. In ad-
dition, we recently fnished a phase 2 clinical trial testing
liraglutide in patients with Alzheimer’s disease. Here, the
drug improved the scores in tests of cognition and slowed
down brain shrinkage as shown in MRI scans [101, 102].
Terefore, DA5-CH may be an efective treatment for this
disease, too. A phase 1 clinical trial of DA5-CH (KP405)
has started.

5. Conclusion

Tis study demonstrates good efects of the dual GLP-1/GIP
receptor agonist DA5-CH (KP405) in the A53T mouse
model of PD. Motor impairments were alleviated, and levels
of α-synuclein and proinfammatory cytokines were much
reduced in the brain, and proteins that play key roles in the
process of autophagy and mitochondrial activity were
brought back to physiological levels. In comparison, lir-
aglutide was not as efective in alleviating these pathological
features.
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