Active Transport of CO₂ by the Cyanobacterium Synechococcus UTEX 625¹

MEASUREMENT BY MASS SPECTROMETRY

Received for publication August 18, 1987 and in revised form September 28, 1987

ANTHONY G. MILLER^{*}, GEORGE S. ESPIE, AND DAVID T. CANVIN Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6

ABSTRACT

Mass spectrometry has been used to confirm the presence of an active transport system for CO₂ in Synechococcus UTEX 625. Cells were incubated at pH 8.0 in 100 micromolar KHCO₃ in the absence of Na⁺ (to prevent HCO₃⁻ transport). Upon illumination the cells rapidly removed almost all the free CO₂ from the medium. Addition of carbonic anhydrase revealed that the CO_2 depletion resulted from a selective uptake of CO_2 , rather than a total uptake of all inorganic carbon species. CO2 transport stopped rapidly (<3 seconds) when the light was turned off. Iodoacetamide (3.3 millimolar) completely inhibited CO₂ fixation but had little effect on CO₂ transport. In iodoacetamide poisoned cells, transport of CO₂ occurred against a concentration gradient of about 18,000 to 1. Transport of CO₂ was completely inhibited by 10 micromolar diethylstilbestrol, a membrane-bound ATPase inhibitor. Studies with DCMU and PSI light indicated that CO₂ transport was driven by ATP produced by cyclic or pseudocyclic photophosphorylation. Low concentrations of Na⁺ (<100 microequivalents per liter), but not of K⁺, stimulated CO₂ transport as much as 2.4-fold. Unlike Na⁺-dependent HCO₃⁻ transport, the transport of CO₂ was not inhibited by high concentrations (30 milliequivalents per liter) of Li⁺. During illumination, the CO₂ concentration in the medium remained far below its equilibrium value for periods up to 15 minutes. This could only happen if CO₂ transport was continuously occurring at a rapid rate, since the continuing dehydration of HCO₃⁻ to CO₂ would rapidly raise the CO₂ concentration to its equilibrium value if transport ceased. Measurement of the rate of dissolved inorganic carbon accumulation under these conditions indicated that at least part of the continuing CO₂ transport was balanced by HCO₃⁻ efflux.

Photosynthesis by cyanobacteria can occur when the CO_2 concentration in the extracellular medium is so low that CO_2 fixation via Rubisco² could not occur were it not for the presence of 'CO₂-concentrating' mechanisms (1, 2, 9, 13, 16, 19, 21, 25, 28). With a combination of alkaline pH, low DIC concentration and high cell density, photosynthesis by cyanobacteria is sustained mainly by the uptake of HCO_3^- , rather than CO_2 , from the

medium (2, 8, 9, 16, 19, 20). However, Badger and Andrews (2), using a mass spectrometer, provided strong evidence that a marine species of *Synechococcus* was also capable of removing CO_2 from the medium by an active transport process. This was most evident upon the illumination of darkened cells, when CO_2 was taken up so rapidly by the cells that the CO_2 concentration in the extracellular medium dropped almost to zero, in spite of the continuous reformation of CO_2 in the medium due to the dehydration of HCO_3^- (16).

While the mass spectrometric data of Badger and Andrews (2) are the most direct evidence yet presented, other approaches have yielded data that are fully consistent with the concept of active CO₂ transport by cyanobacteria. At pH 8.0, in the absence of added CA, the rate of CO_2 hydration to HCO_3^- is low enough $(t_{1/2} \approx 5 \text{ s at } 30^{\circ}\text{C})$ that cells can be provided, for a short period of time, with CO₂ at concentrations that are considerably in excess of the rather low equilibrium concentrations (only about 2% of the total DIC concentration at pH 8.0, 30°C, and low ionic strength). A number of species of cyanobacteria have been shown to be capable of accumulating DIC against considerable concentration gradients under these conditions of high, nonequilibrium CO_2 to HCO_3^- ratios (1, 2, 9, 18, 29). For a given DIC concentration, the rate of DIC accumulation was faster under the nonequilibrium conditions (high CO₂/HCO₃⁻) than under equilibrium conditions (high HCO_3^{-}/CO_3), thus indicating a lower K_m for CO₂ transport than for HCO₃⁻ transport (1, 2, 9, 29).

Miller and Canvin (17) provided further evidence for a CO_2 transport capacity, distinct from the HCO_3^- transport capacity, when they made use of the observation that HCO_3^- transport in rapidly growing cells of *Synechococcus* UTEX 625 is inhibited by the absence of Na⁺ in the extracellular medium (8, 17, 22). Cells that were incubated in the absence of Na⁺ were stimulated to accumulate normal levels of intracellular DIC by the addition of CA (17). It was postulated that, in the absence of the CA, the rate of supply of CO_2 to the CO_2 -transport system was limited by the rate of HCO_3^- dehydration to CO_2 in the extracellular medium. The DIC transport occurring in the presence of CA was not inhibited by the addition of Li⁺, whereas the Na⁺dependent process of HCO_3^- transport was strongly inhibited (17).

In the present study we have used a mass spectrometer to further describe the process of active CO_2 transport by the cyanobacterium *Synechococcus* UTEX 625.

MATERIALS AND METHODS

Organism and Growth Conditions. Synechococcus UTEX 625 (S. leopoliensis, University of Texas Culture Collection), also known as Anacystis nidulans (27) was grown with air bubbling

¹ Supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and by an NSERC Postdoctoral Fellowship to G. S. E.

² Abbreviations: Rubisco, D-ribulose 1,5-bisphosphate carboxylase/ oxygenase; BTP, 1,3-bis(tris[hydroxymethyl]methylamino)-propane; CA, carbonic anhydrase; CCCP, carbonyl cyanide *m*-chlorophenyl hydrazone; DES, diethylstilbestrol; DIC, dissolved inorganic carbon (CO_2 + $HCO_3^- + CO_3^{2-}$); $K_{1/2}$, substrate concentration required to give onehalf maximum rate; $[CO_2]_{i}$, intracellular concentration.

in a modified Allen's medium (8, 21) to a yield of 7 to 10 μ g Chl·ml⁻¹. Just before use, cells were washed (three times) and resuspended in 25.0 mM BTP/23.5 mM HCl buffer (pH 8.0). This buffer contains only 10 to 20 μ M DIC (or 0.15 - 0.30 μ M CO₂) when it is kept under N₂ in a serum-stoppered flask (21).

when it is kept under N_2 in a serum-stoppered flask (21). ¹⁴CO₂ Uptake. The accumulation of ¹⁴C-DIC was measured by rapidly separating cells from the incubation medium by centrifugal filtration through silicone fluid (6, 13). Samples (10 μ l) of cell suspension were layered over 75 μ l silicone fluid which, in turn, rested on 100 µl of 2 M KOH/10% methanol in a 400 µl microcentrifuge tube. The cell samples were then covered with 75 μ l degassed mineral oil (USP heavy) to reduce the invasion of atmospheric CO₂. All operations were carried out under a stream of N₂ to further reduce CO₂ contamination of the cell sample. The silicone fluid used was a mixture of Wacker-Chimie (Munich, FRG) AR20 and AR200 in a 0.625 to 1.0 ratio. The viscosity of these silicone fluids makes accurate measurement difficult and in some cases small amounts of either AR20 or AR200 had to be added to the mixture to give good recovery (>85%) of the unicellular Synechococcus into the basic terminating solution or to prevent the inversion of the layers during centrifugation. One tube at a time was placed in a Beckman microfuge and illuminated from the side with 300 W Sylvania flood-lamps yielding an incident photon flux density (400-700 nm) of about 350 μ E/m²·s, measured with a Li Cor model LI-185 light meter. The transmittance of this light through the polypropylene walls of the tubes was about 70%. With the aid of a water filter between the microcentrifuge tubes and the lamp and a fan blowing into the microcentrifuge, the temperature was maintained between 27 and 30°C. ¹⁴CO₂ solutions were generated in sealed microcentrifuge tubes by the addition of $K_2^{14}CO_3$ solution (0.7-1.2 μ Ci/ μ mol) to 10 mM phthalic acid at pH 4.0. Before each series of uptake measurements the ¹⁴CO₂ content of the stock solution was determined by liquid scintillation spectrometry and the volume of the stock solution needed to yield the desired CO₂ concentration in the incubation suspensions was calculated. The uptake of ¹⁴CO₂ was initiated by the injection of the required volume of the ¹⁴CO₂ solution (5–8 μ l, with H₂O to give a total volume of 10 μ l). Uptake was terminated by centrifuging the cells through the silicone fluid. The incubation layer became noncolored to the eye only after about 9 s centrifugation. The basic terminating solution was assayed for unmetabolized and metabolized ¹⁴C-DIC as previously described (6).

Mass Spectrometry. The uptake of ${}^{12}CO_2$ or ${}^{13}CO_2$ by cells was monitored by continuous measurement of the CO₂ concentration in the extracellular medium by mass spectrometry using an aqueous inlet system (2, 12). A VG Gas Analysis (Middlewich, England), model MM 14-80 SC, magnetic sector mass spectrometer was used. Cells suspensions (5 ml), washed three times in BTP/HCl buffer, were incubated in a glass cuvette (20 mm diameter) that contained a magnetic stirrer-bar and was thermostated at 30°C. The chamber was closed with a Plexiglas plug so as to leave no headspace. The plug contained a capillary bore for injection purposes. The inlet capillary to the mass spectrometer was separated from the cell suspension by a thin dimethyl silicone rubber membrane supported by a metal grid. The response time for CO_2 measurement was determined by the injection of K₂CO₃ solutions into pH 8.0 buffer in the presence of CA (25 μ g/ml). Response time (63% full response) was about 2 s. Calibration for CO₂ was achieved by the injection of small volume of 100 mM K_2CO_3 and calculation of the equilibrium CO_2 concentration for pH 8.0 at 30°C according to Buch (5). At the end of each run, 25 μ l of 2 N KOH was injected into the cell suspension to raise the pH above 11 so that a measurement at essentially $0 \ \mu M CO_2$ could be obtained. The leak rate of CO₂ across the inlet membrane to the mass spectrometer was low, <0.2%/min, yet the sensitivity of measurement was high (signal to noise ratio at 0.1 μ M CO₂ was about 10 to 1). The cell suspensions usually (5–8 μ g Chl/ml) were continuously stirred during the measurements. In most experiments incident photon flux density was about 600 μ E/m²·s PAR and was provided by a quartz-halogen lamp. Alternatively, incident light enriched in wavelengths absorbed by PSII was obtained using a 627 nm (half-bandwidth 22 nm) Balzers interference filter. Light enriched in PSI wavelengths was obtained using a 665 nm sharp cut-on filter (Oriel) in combination with a 672 nm interference filter (Balzers) to yield light having a peak wavelength of 677 nm and a half-bandwidth of 25 nm. The photon flux density incident upon the cuvette was adjusted by means of neutral density filters to be 15 μ E/m²·s in both cases. The mass spectrometer was also used to monitor photosynthetic O₂ evolution. Calibration was obtained using H₂O₂ and catalase.

Estimation of $[CO_2]_i$. In the past we have used the value of the carbonic acid dissociation constant at infinite dilution to calculate $[CO_2]_i$ (19). In this study we have used the equation derived by Yokota and Kitaoka (31) to calculate the pK_1 for carbonic acid for a more realistic cytoplasmic ionic strength of 0.2м and buffer ionic strength of 25 mм. The respective pK_1 values are 6.04 and 6.21, which compare to an infinite dilution pK_1 of 6.33 at 30°C (11). Using these pK₁ values produces $[CO_2]_i$ values that are 46% lower than those calculated using the pK_1 relevant to infinite dilution. Usually, however, it is the $[CO_2]_{i}/[CO_2]_{o}$ ratio that is of interest and in this case the ratio based on pK_1 values relevant to the ionic strength of the cytoplasm and external buffer are 31% lower than those based on the pK₁ relevant to infinite dilution. These calculations are based on the assumption that the intracellular pH in the light is 7.5 (4, 6). While calculations of $[CO_2]_i$ should certainly be made using pK₁ values relevant to the cytoplasmic ionic strength (31) it should be borne in mind that an uncertainty of only 0.1 pH in the value for the intracellular pH produces an uncertainty in the [CO₂], of 20%. An intracellular volume of 75 μ l/mg Chl was used when calculating [DIC] and [CO₂]_i (GS Espie, AG Miller, DT Canvin, unpublished data).

Chemicals. Carbonic anhydrase, BTP, CCCP, and DES were obtained from Sigma Chemical Co. The $K_2^{13}CO_2$ (99 atom % ¹³C) was obtained from MSD Isotopes, Montreal, Canada. The $K_2^{14}CO_3$ was synthesized from Ba¹⁴CO₃ (Atomic Energy of Canada Ltd., Kanata, Canada) by acid release of ¹⁴CO₂ with subsequent trapping in KOH.

RESULTS

Uptake of ¹⁴CO₂. Very substantial uptake of ¹⁴C-DIC occurred when cells incubated in the light were provided with ¹⁴CO₂ dissolved in 10 mM phthalic acid at pH 4.0 (Fig. 1). The pH of the cell suspension remained above pH 7.9 upon the addition of the small volume of acidic solution. The percentage of the ¹⁴CO₂ taken up by illuminated cells was about 50% of the ¹⁴CO₂ provided (Fig. 1). As found by Badger and Andrews (2), but not by Volokita et al. (29) or Abe et al. (1), uptake was essentially complete by the first sampling time (Fig. 1). It must be noted that the sampling times given in Figure 1 are only nominal for they do not include the approximately 9 s required for most of the cells to be completely spun out of the incubation layer containing the ${}^{14}CO_2$. Uptake of ${}^{14}CO_2$ was substantially reduced by 10 μ M DCMU as well as darkness (Fig. 1). The addition of CA to the incubation medium greatly reduced the uptake of ¹⁴C-DIC following a ${}^{14}CO_2$ pulse (Fig. 1), thus indicating that most of the uptake occurring in the absence of CA was, in fact, as ¹⁴CO₂ and not H¹⁴CO₃⁻. Little fixation of the transported ¹⁴C took place within the short time period of these experiments (about 5% fixed after 15 s) and thus most (95%) of the transported ^{14}C remained in the cells as ¹⁴CO₂ and H¹⁴CO₃⁻. If assumptions regarding the intracellular pH in the light and pK₁ for carbonic acid are made ("Materials and Methods"), then the intracellular

FIG. 1. Measurement of ¹⁴CO₂ uptake. The silicone fluid filtration method was used to measure the ¹⁴CO₂ uptake ("Materials and Methods") following the addition of 10 μ M ¹⁴CO₂. Uptake was measured in the light (**II**), in the light in the presence of 25 μ g CA/ml (**A**), or 10 μ M DCMU (\bigcirc) and in the dark (**Φ**). The [DIC]_i (= intracellular [DIC]) is based upon the specific activity of the added ¹⁴CO₂ in all cases. In the presence of CA the specific activity for the total [DIC] would be used if HCO₃⁻ transport were also occurring but since the cells were incubated in the absence of 25 mM NaCl the rate of HCO₃⁻ transport was low (17). Due to contaminant DIC (15 μ M) the specific activity.

 CO_2 concentration in the illuminated cells after 15 s can be estimated as 264 μ M. The extracellular CO_2 concentration at this time is not known accurately, but will be lower that the initial 10 μ M because of uptake by the cells and because of the conversion of CO_2 to HCO_3^- in the extracellular medium. We estimate the $[CO_2]_o$ to be about 1 μ M after 15 s. This gives a $[CO_2]_i/[CO_2]_o$ of about 264 to 1.

Mass Spectrometry. Upon illumination of the cells that had been incubated in the dark for several minutes with 100 μ M KHCO₃ at pH 8.0 ([CO₂] = 1.6μ M) there was a rapid and substantial drop in the extracellular \dot{CO}_2 concentration (Fig. 2). This low CO₂ concentration was maintained for at least 10 min (the longest time examined, data not shown). The addition of CA caused a rapid return to the equilibrium CO_2 concentration (Fig. 2). The mass spectrometer measures only dissolved CO₂ concentration, since only CO_2 is volatile across the silicon rubber membrane that covers the end of the inlet capillary. Thus, in the absence of CA, a drop in the extracellular CO₂ concentration could be due either to the selective removal of CO_2 by the cells at a rate sufficient to maintain the $HCO_3^- \rightleftharpoons CO_2$ conversion out of equilibrium or could be due to the total removal of CO₂ plus HCO_3^- from the medium. The rapid restoration of a close to equilibrium CO₂ concentration upon the addition of CA argues very strongly for the former option—the selective uptake of CO₂ at a rapid rate by the cells (Fig. 2). The observation that the extracellular CO₂ concentration remained low, even though a substantial concentration of HCO3⁻ remained, means that a substantial rate of CO_2 transport was being maintained (Fig. 2). Obviously, without ongoing CO₂ transport the dehydration of HCO_3^- remaining in the medium would soon raise the extracellular CO₂ concentration to its equilibrium value. This, of course, is what happens when CA is added, resulting in a rate of HCO₃ to CO_2 conversion that exceeds the rate of CO_2 transport (Fig. 2) or when CO_2 transport is inhibited by dark (Fig. 2). The rate of ongoing CO₂ transport can be calculated from the equation:

.

$$Jco_{2} = k_{d} [HCO_{3}^{-}]_{t} - 62 k_{d} [CO_{2}]_{t}$$
(1)

FIG. 2. Measurement of CO₂ transport by mass spectrometry. A, Cells were incubated in the dark for several minutes with $100 \,\mu\text{M}$ KHCO₃ at pH 8.0 ([CO₂] = 1.6 μ M) and then CO₂ transport was initiated by turning on the lights (L). CA was subsequently added to a final concentration of 25 μ g/ml. The addition of CA, even in the absence of cells, results in a 17.6% increase in the mass 44 signal, presumably due to relief of unstirred layer effects near the capillary inlet membrane (10, 12). This enhancement has been subtracted from the actual chart recorder tracing. B, The effect of darkness (D) upon CO₂ uptake, following a period of illumination, was monitored in a separate cell suspension in the absence of CA. The [ChI] was 7.5 μ g/ml.

where JCO₂ is the net influx rate, in nmol CO₂·ml⁻¹·s⁻¹, k_d is the overall rate constant for HCO_3^- dehydration at pH 8.0, and 30° (0.87 \times 10 $^{-3} \cdot s^{-1}$) and [HCO3 $^{-1}$], and [CO2], are the concentrations at time t. The value for k_d was obtained under the actual conditions used for CO₂ uptake by the cells, by monitoring the time course of CO₂ production after the addition of a reasonably high (1 mM) concentration of K_2CO_3 . The coefficient 62 is the ratio of the equilibrium $[HCO_3^-]$ to the equilibrium $[CO_2]$, calculated for pH 8.0, 30°C, and an ionic strength of 0.025 M. For short periods after illumination (about 60 s or so) the $[HCO_3^{-1}]$ remains quite constant if cells are incubated in the absence of the millimolar concentrations of Na⁺ required for HCO₃⁻ transport by these cells (8, 17). In the absence of HCO_3^- transport, the total [DIC] drops quite slowly because the rate of DIC uptake is limited by the rate at which HCO₃⁻ is dehydrated in the medium to produce CO_2 for uptake (8, 16, 20). The addition of CA rapidly reestablishes the equilibrium between HCO₃⁻ and CO_2 , and the CO_2 signal from the mass spectrometer is now in direct proportion to the [DIC] in the medium. As expected, the addition of CA after only a short period of illumination reveals that the total amount of DIC taken up by the cells was low, even though the $[CO_2]$ dropped almost to zero (Fig. 2).

Other than darkness (Fig. 2), CO₂ uptake was most readily inhibited by low concentrations of DES (Fig. 3A) which is an inhibitor of various membrane-bound ATPases (15). The uncoupler CCCP, at rather high concentrations, inhibited CO₂ uptake (Fig. 3B) as did DCMU but only at concentrations substantially greater than those needed to inhibit O₂ evolution (Fig. 4). When cells were illuminated with light (subsaturating at 15 μ E/m²·s) enriched in wavelengths absorbed more by PSI than PSII O₂ evolution was inhibited by about 54% while CO₂ uptake was inhibited by only about 6% (data not shown).

Effect of Na⁺, K⁺, and Li⁺. We have previously shown that Li⁺ inhibited the Na⁺-dependent transport of HCO₃⁻ but did not inhibit the CA-dependent transport of DIC (presumably as CO₂) (8, 17). We have also shown that the uptake of CO₂ by cells grown on 5% CO₃ was stimulated by the addition of low

FIG. 3. Inhibition of CO_2 uptake by DES and CCCP. Cells were incubated in the dark for several minutes, in the absence or presence of inhibitor, with 100 μ M KHCO₃ at pH 8.0 and then CO₂ uptake was initiated by turning on the lights (L). A, In the absence or presence of DES; B, in the absence or presence of CCCP. The [Chl] was 8.7 and 9.6 μ g/ml, respectively.

FIG. 4. Effect of DCMU concentration upon photosynthetic O_2 evolution and CO_2 transport. Steady state rates of O_2 evolution (\blacksquare) were measured after successive additions of DCMU to yield increasingly higher concentrations. CO_2 transport (\odot) was measured by turning on the lights after DCMU had been added in the dark. The rates of CO_2 transport were based on the initial, linear rate observed in the 10 s period after turning on the light. CO_2 fixation during this period was negligible. Cells (5.1 µg Chl/ml) were incubated in 100 µM KHCO₃ at pH 8.0.

concentrations ($K_{1/2} = 18 \ \mu$ M) of Na⁺ (18). We have now investigated the effect of these cations on the CO₂ uptake by airgrown cells (Table I). The addition of low concentrations of NaCl (100 μ M) or Na₂SO₄ (50 μ M), but not K₂SO₄, increased the rate of CO₂ uptake substantially (Table I). Low concentrations of LiCl were without effect while high concentrations (30 mM) stimulated CO₂ uptake.

Initiation of CO₂ Transport by Addition of CO₂. Transport of CO₂ can be initiated by illumination (Figs. 2-4) but it can also be initiated by the addition of small volumes of acidified water (40 mM HCl; 1000 times final concentration in cuvette) that have been saturated at 0°C with 5% CO₂ (Fig. 5). As expected, net CO₂ transport in the dark or in the light in the presence of 10 μ M DES was substantially inhibited (Fig. 5). Since the response time of measurement, at about 2 s, is large with respect to the time period of maximum uptake (Fig. 5) we have made no at-

 Table I. Effect of Na⁺, K⁺, and Li⁺ on the Rate of CO₂ Uptake by

 Air-Grown Cells of Synechococcus UTEX 625

Addition	Rate of CO ₂ Uptake ^a
	% of control
Control (buffer)	100
100 µм NaCl	238
50 μ м Na ₂ SO ₄	223
$50 \mu M K_2 SO_4$	116
50 µм LiCl	110
30 mм LiCl	129

^a The rate of CO₂ uptake was determined prior to (control) and following the addition of the indicated salt. Uptake of CO₂ was initiated by turning on the light. Measurements were made at pH 8.0, 30°C, and 100 μ M DIC.

FIG. 5. Measurement of transient CO₂ uptake following a CO₂ pulse. Cells (a, b, c) or buffer alone (d) at pH 8.0 were pulsed with CO₂ by the addition of a small (5 μ l) volume of acidified water that had been gassed at 0°C with 5% CO₂. This yielded an initial [CO₂] in the buffer of 4.3 μ M. a, Continuously illuminated cells; b, illuminated cells with 10 μ M DES; c, darkened cells; d, buffer alone. Due to the about 2 s response time of the mass spectrometer, a full response to the 4.3 μ M CO₂ is not observed, even in the absence of cells.

tempt to calculate actual rates of CO₂ transport.

CO₂ Uptake against Concentration Gradient. To determine the extent to which CO₂ uptake can occur against a gradient, we have monitored CO₂ uptake into cells having a high intracellular $[CO_2]$ (Fig. 6). We have previously shown that 20 mM NaCl, at pH 8.0 stimulates the accumulation of large amounts of DICand thus CO_2 —by the stimulation of HCO_3^- transport (17). In the present experiment (Fig. 6), CO_2 fixation was inhibited by iodoacetamide (26) and $K_2^{13}CO_3$ was used, instead of the usual $K_2^{12}CO_3$, to avoid ambiguities due to any respiratory release of ¹²C-DIC into the intracellular and extracellular volumes. Uptake of CO_2 was initiated by illumination of the cells (Fig. 6) and after several minutes 25 mM NaCl was added. The addition of NaCl had no effect upon the steady state uptake of CO₂ (Fig. 6). After sufficient time to allow for accumulation of large amounts of DIC (mainly by HCO₃⁻ transport under these conditions [17]), CA was added to the cell suspension (Fig. 6). After correction for the enhanced sensitivity of CO₂ measurement in the presence of CA (Fig. 2A), it was determined that only 54.9% of the original ¹³C remained accessible to the CA. It should be remembered that in the presence of CA, measurement of the CO₂ concentration in the extracellular medium is a reflection of the total DIC concentration because of the very rapid interconversion of CO_2 and HCO_3^- . Assuming that the DIC removed from

FIG. 6. Transport of CO₂ against a concentration gradient. Cells (15.2 μ g Chl/ml) were incubated at pH 8.0 in the presence of 100 μ M K₂¹³CO₃ and with 3.3 mM iodoacetamide to inhibit CO₂ fixation. At the time indicated 25 mM NaCl was added to initiate HCO₃⁻ transport (17). CA was added to a final concentration of 25 μ g/ml and the lights were turned off (D) at the times indicated. The amount of DIC transported can be estimated by two different methods: Method 1, measurement of amount of DIC removed from the medium by the cells. This is determined by adding CA to the cell suspension in the light. After correction for the enhancement of 17.6% of the mass 44 signal due to CA, the DIC depletion can be estimated as shown. Method 2, upon turning out the lights, the accumulated DIC leaked from the cells. Since CO₂ fixation was inhibited by iodoacetamide a quantitative recovery of the accumulated DIC occurred. [CO₂], was calculated as described in "Materials and Methods."

the medium was evenly distributed within the intracellular volume, an intracellular DIC concentration of 39.6 mM can be calculated with a corresponding CO₂ concentration of 1.31 mM. The measured extracellular CO₂ concentration just prior to CA addition was only 0.074 μ M (Fig. 6) and thus the [CO₂]_{*i*}/[CO₂]_{*o*} ratio at that time would have been about 17,600 to 1. After the addition of CA the cells were darkened and the accumulated DIC was allowed to leak back into the medium (Fig. 6). Leakage from the cells was slow ($t_{1/2} = 80$ s) as previously seen with other cyanobacteria (3, 14, 19, 28). Measurement of the amount of ¹³C-DIC leaking slowly out of the cells in the dark provides another estimate of the intracellular [DIC] that existed during the period of illumination. This measurement gave results very similar to those previously mentioned (42.1 mM total DIC; and a [CO₂]_{*i*}/[CO₂]_{*o*} ratio of about 18,700 to 1).

CO₂ Uptake in Presence of CA. In the absence of extracellular CA the rate of CO₂ uptake can be limited by the rate at which extracellular HCO_3^- is converted to CO_2 (8, 9, 16, 20). The ability of cells to remove almost all the CO_2 from the medium, while leaving most of the HCO_3^- behind (Fig. 2), is a manifestation of this limitation. The advantages of measuring CO₂ uptake under these conditions were that easily measurable changes in the extracellular CO_2 concentration occurred and a ready distinction between CO_2 and HCO_3^- uptake could be made. However, the addition of CA has been shown to stimulate CO_2 uptake (9, 16, 17) and we have thus carried out measurements under various conditions in the presence of CA (Fig. 7). In the presence

FIG. 7. DIC transport in the presence of CA. Cells (7.9 μ g Chl/ml) were incubated in the presence of 50 μ M K₂CO₃, 25 μ g/ml CA and 3.3 mM iodoacetamide (to inhibit CO₂ fixation). Other additions were made while cells were in the dark and then DIC transport was initiated by turning on the light: 1, no other additions; 2, plus 100 μ M NaCl; 3, plus 5 mM NaCl; 4, plus 5 mM NaCl and 20 mM LiCl. The rates of DIC transport were 77, 137, 189, and 87 μ mol/mg Chl·h, respectively. The intracellular [DIC] were 20.4, 26.8, 34.9, and 25.5 mM, respectively. Accumulated DIC was quantitatively leaked back into the medium when the light was turned off (data not shown).

of CA, intracellular DIC concentrations were high, as previously reported based upon measurements obtained by the silicone fluid filtration method (17).

Both the rate and extent of DIC accumulation were increased by a low (100 μ M) concentration of NaCl (Fig. 7). Uptake of DIC was then further increased by the addition of a high NaCl concentration (5 mM), presumably due to HCO₃ -transport (17). The addition of 20 mM LiCl reduced the rate and extent of DIC uptake to that expected for CO₂ uptake alone (Fig. 7).

DISCUSSION

Our results show that Synechococcus UTEX 625 transports the CO₂ molecule against a large concentration gradient by a process distinct from HCO₃⁻ transport. This implies the existence of a transport system which recognizes the CO₂ molecule, as distinct from HCO_3^- or CO_3^{2-} and is coupled, directly or indirectly, to the expenditure of metabolic energy. The process we have observed in Synechococcus UTEX 625 is the same in these respects to CO₂ uptake by Anabaena (1, 2, 9) and the marine Synechococcus (2, 3). It is completely distinct from the mere passive movement of CO₂ across biological membranes as a consequence of its lipid solubility (10). The most direct evidence that CO_2 is a substrate for a transport system comes from mass spectrometry (Fig. 2). Synechococcus UTEX 625, like the marine Synechococcus (2, 3), was able to selectively remove CO₂ from the medium at such a rate that the CO₂ concentration dropped almost to zero while the HCO3⁻ concentration remained almost unchanged (Fig. 2). These experiments were facilitated by our finding that HCO₃⁻ transport in air-grown cells is inhibited in the absence of millimolar concentrations of Na $^+$ (8, 17). The transport of CO₂ occurred against a large concentration gradient (Fig. 6). Since CO_2 is a weak acid an intracellular accumulation of DIC could occur passively if the cytoplasm were more alkaline than the extracellular medium. This was not the case in our experiments as we purposefully carried our experiments out at pH 8.0, which is higher than the intracellular pH (4, 6). For CO₂ uptake to be driven solely by a pH gradient an intracellular pH of about 12.3 would have been required to account for the inorganic carbon accumulation ratio observed in the experiment described in Figure 6. Not only is such an intracellular pH not measured when the extracellular pH is 8.0, but the addition of the ionophore monensin, which collapses pH gradients in the presence of Na⁺, had no inhibiting effect upon CO_2 uptake (data not shown).

The effects of darkness and the metabolic inhibitors DES and CCCP are consistent with a need for metabolic energy to drive CO_2 uptake (Figs. 2 and 3). Futhermore, the greater effect of DCMU upon O_2 evolution than upon CO_2 uptake (Fig. 4) and the ability of PSI light to support CO_2 uptake suggest an involvement of ATP produced by cyclic or pseudocyclic photophosphorylation. Ogawa and Ogren (25) showed that PSI illumination supported active DIC transport by *Anabaena*. Since their cells were grown on 5% CO_2 rather than air, their cells probably were enriched in CO_2 transport relative to HCO_3^- transport (18). Ogawa *et al.* (26) also found that air-grown cells of *Anacystis nidulans* seemed to require both PSI electron flow itself and the ATP produced in cyclic photophosphorylation. Since their experiments were carried out at pH 7.0 it is also probable that much of the DIC transport was as CO_2 (24).

We have previously reported that low concentrations of Na⁺ were required to allow the efficient transport of DIC, apparently as CO_2 , by cells grown on high levels (5%) of CO_2 (18). At 500 μ M DIC and pH 8.0 a K_{1/2} (Na⁺) of 18 μ M for photosynthesis was determined (18). The addition of 100 μ M NaCl to cells incubated in the absence of added Na⁺ served as a simple way to initiate DIC transport (18). Isotopic disequilibrium studies with ¹⁴C-DIC indicated that the major form of DIC being transported under these conditions was CO_2 (18). It is now evident that low concentrations of Na⁺, but not K^+ , stimulate CO₂ transport in air-grown cells as well (Table I). We do not know whether the CO_2 uptake observed in the absence of added Na⁺ is truly a Na⁺-independent process or whether it is dependent upon the contaminant levels of Na⁺ in the incubation solution. A significant stimulation of DIC uptake by 100 μ M NaCl was also observed when CO₂ transport was enhanced by the addition of CA (Fig. 7). We previously had thought the CA-stimulated DIC transport was Na⁺-dependent (17) but in light of the present results (Table I; Fig. 7) we must now modify this view. In our previous study we examined only the effects of the millimolar Na⁺ concentrations known to stimulate HCO₃⁻ transport (17) as we were not aware then of the effects of micromolar Na⁺ on CO₂ transport (18). Our finding that CO₂ transport was not inhibited by high concentrations of Li⁺ (17) is confirmed by the present results (Table I). The Na⁺-dependent transport of HCO₃⁻ is inhibited in a competitive fashion by Li⁺ (17; GS Espie, AG Miller, DT Canvin, unpublished data). Thus, CO₂ transport, at least at pH 8.0, can be distinguished from HCO₃⁻ transport by air-grown Synechococcus UTEX 625 by its response to microrather than millimolar NaCl concentrations and by its resistance to inhibition by LiCl. The site (or sites) of interaction of Na⁺ and Li⁺ with DIC transport remain unknown.

The observation that the rate of CO_2 uptake remained constant for an extended period of time (Fig. 2) requires comment. There are two possible explanations for this constant rate. First, continued intracellular accumulation of DIC, with no feedback effect on the net rate of CO_2 uptake, could be occurring. Second, net CO_2 uptake could be balanced by an equivalent efflux of HCO_3^- . We designed an experiment to test these two possibilities (Fig. 8). Cells were incubated for 15 min in the light, in the absence of Na⁺, with 100 μ M K₂¹³CO₃. Iodoacetamide was present to inhibit CO₂ fixation. After 15 min, CA was added and then the lights were turned off to allow the accumulated ¹³C-DIC to leak back into the medium (Fig. 8). From the amount of leakage, the intracellular [¹³C-DIC] that had existed at the end of the illumination period was calculated at 18.0 mM. This was only 32%

FIG. 8. Evidence for HCO_3^- efflux in the light during CO_2 transport. Cells were incubated with 100 μ M K₂¹³CO₃ at pH 8.0 in the presence of 3.3 mM iodoacetamide. Only contaminant levels of Na⁺ were present. Soon after the addition of 25 μ g/ml CA the lights were turned off and accumulated DIC was allowed to leak into the medium. The intracellular [DIC] was calculated from this leakage as being 18.0 mM at the end of the illumination period. The steady state rate of CO₂ transport was calculated from equation 1 where $k_d = 0.87 \times 10^{-3} \text{ s}^{-1}$ and $[\text{HCO}_3^{-1}]_i$ half way through the illumination period was estimated as $87.8 \ \mu M$ and $[CO_2]$ was measured as 0.052 μ M. The calculated JCO₂ was 0.0736 nmol/ ml suspension/s (equivalent to a change in [DIC]_i of 62.4 μ M·s⁻¹). The cell density was 15.7 μ g Chl/ml. The Δ G for CO₂ leakage is given by $-2.3 RT \log [CO_2]_i / [CO_2]_o$ and the ΔG for HCO₃⁻ leakage is given by $-F\Delta\psi$ + 2.3 RT log [HCO₃⁻]_i/[CO₂]_o. A value of -120 mV was used for $\Delta \psi$ (22). The iodoacetamide efficiently inhibited ¹³CO₂ fixation, as a total recovery of the added ¹³C as DIC was obtained (107%) (when the correction for CA enhancement of the mass 45 signal was made).

of the DIC accumulation that should have occurred given the calculated steady state rate of CO₂ transport. Thus, the net uptake of CO₂ must have been offset by a considerable rate of HCO_3^- efflux. There is no reason to doubt that CO_2 efflux also occurs in the light but this experiment (Fig. 8) which monitored only the extracellular [13CO₂] gives information only on the net rate of ¹³CO₂ uptake. Ogawa and Kaplan (24) have recently come to the same conclusion regarding HCO₃⁻ efflux during CO₂ uptake by A. nidulans R2. They found that HCO₃⁻ efflux occurred during CO_2 uptake both by wild type cells in which CO_2 -fixation was inhibited by iodoacetamide or by mutant cells able to transport CO_2 but unable to effectively fix CO_2 at air concentrations (24). It remains to be seen how much HCO_3^- efflux occurs during CO_2 transport by cells undergoing rapid CO_2 fixation or under conditions (*i.e.* plus Na⁺) more favorable to HCO_3^- transport. In the past, thought has been given to the effect of the leakage from the cell of the lipid-soluble CO2 molecule during DIC transport (2, 3). This remains a valid concern as CO_2 certainly does leak from the cells, at least when the lights are turned off (2; unpublished observations). Badger and Andrews (2) found, however, that the passive permeability to CO₂ of the marine Synechococcus really is much lower than would be expected from a consideration of other biological membrane systems. A consideration of the ΔG values for HCO_3^- and CO_2 accumulation (Fig. 8 legend) reveals that the driving force for HCO_3^- leakage is at least as high, at -25.1 kJ/mol, as it is for CO₂ leakage, at -23.2kJ/mol. Thus, although the accumulation factor for HCO₃⁻ is usually less than it is for CO_2 , this is overcome by the large effect of the negative membrane potential difference-at least -120 mV in the light (22).

The uptake of ${}^{14}CO_2$ can be measured by the filtration of incubated cells through silicone fluid (1, 2, 29; Fig. 1). Using this technique the effect of inhibitors can be assessed (Fig. 1) but the time resolution prevents its use in detailed kinetic studies.

Consideration of the mass spectrometry results of Figure 5 reveals why the silicone fluid method is inadequate for kinetic studies of CO_2 uptake. The combination of uptake by the cells and the hydration of CO_2 to HCO_3^- in the medium means that by the first sampling time possible with the silicone fluid method (about 14 s) only about 10% of the added CO_2 remains to be taken up. Given this drastic depletion of extracellular CO_2 it is not at all surprising that CO_2 uptake is often essentially complete by the first sampling time (2; Fig. 1). The use of lower cell densities may ameliorate the situation somewhat but we find that with unicellular cyanobacteria, such as *Synechococcus* and *Coccochloris*, that densities below about 6 μ g Chl/ml result in a lowered percentage recovery of cells in the terminating solution.

Although Synechococcus UTEX 625 can actively transport CO₂ with high affinity, the rate of CO_2 uptake and thus CO_2 fixation, is often limited under experimental conditions by the rate of HCO_3^- dehydration to CO_2 in the extracellular medium (8, 16, 20). This limitation can be overcome, inter alia, by increasing the DIC concentration. Thus, for a cell density of 7.8 μ g Chl/ ml, for example, we have measured a rate of CO_2 uptake of 27 μ mol/mg Chl·h at 25 μ M DIC (0.4 μ M CO₂) while it became 136 μ mol/mg Chl·h when the DIC concentration was raised to 350 μM (5.5 μM CO₂) (data not shown). We have previously shown that the inhibition of photosynthesis due to the lack of Na⁺ can also be largely overcome by increasing the DIC concentration (8, 17, 22). It is quite possible that the rate of photosynthesis increases as a result of increased CO₂ transport and that HCO₃ transport remains inhibited, even at high [HCO₃⁻], in the absence of Na⁺. The limitation on the rate of CO_2 transport can, of course, also be overcome by the addition of CA which increases the rate of CO_2 supply to the transport system (Fig. 7). In this context it is worth noting that there is no evidence that the cyanobacteria examined so far produce their own extracellular CA (2, 3, 8, 9, 13, 20, 21) while many green algae do (7, 1)23). The function of the extracellular CA of green algae remains a subject of debate (30) and thus its ecological role is unknown. At the low cell densities of cyanobacteria that commonly exist in nature and at mildly alkaline pH it is probable that the dehydration rate of HCO_3^- to CO_2 is not a limiting factor for CO_2 uptake even in the absence of extracellular CA. At pH greater than about 9, where the ability of CA to dehydrate HCO_3^{-1} would be impaired, HCO₃⁻ uptake provides the majority of DIC for photosynthesis. This capability is likely a major feature in the alkalotolerance of Synechococcus UTEX 625, and in conjunction with the active transport of CO₂ provides a diversity of mechanisms for the acquisition of DIC over a large pH range.

Acknowledgments—We thank Mr. Douglas G. Birch for expert assistance in the operation of the mass spectrometer and Ms. Lisa Roll for preparing the manuscript.

LITERATURE CITED

- ABE T, M TSUZUKI, S MIYACHI 1987 Transport and fixation of inorganic carbon during photosynthesis of *Anabaena* grown under ordinary air. I. Active species of inorganic carbon utilized for photosynthesis. Plant Cell Physiol 28: 273-281
- BADGER MR, TJ ANDREWS 1982 Photosynthesis and inorganic carbon usage by the marine cyanobacterium, Synechococcus sp. Plant Physiol 70: 517– 523
- BADGER MR, M BASSETT, HN COMINS 1985 A model for HCO₃⁻ accumulation and photosynthesis in the cyanobacterium *Synechococcus* sp. Theoretical predictions and experimental observations. Plant Physiol 77: 465-471
- BELKIN S, RJ MELHORN, L PACKER 1987 Proton gradients in intact cyanobacteria. Plant Physiol 84: 25-30
- BUCH K 1960 Dissoziation der Kohlensaure, Gleichgenichte und Puffersysteme. In W Ruhland, ed, Handbuch der Pflanzenphysiologie, Vol I. Springer-Verlag, Berlin, pp 1–11
- 6. COLEMAN JR, B COLMAN 1981 Inorganic carbon accumulation and photosyn-

thesis in a blue-green alga as a function of external pH. Plant Physiol 67: 917-921

- COLEMAN JR, AR GROSSMAN 1984 Biosynthesis of carbonic anhydrase in *Chlamydomonas reinhardtii* during adaptation to low CO₂. Proc Natl Acad Sci USA 81: 6049-6053
- ESPIE GS, DT CANVIN 1987 Evidence for Na⁺-independent HCO₃⁻ uptake by the cyanobacterium Synechococcus leopoliensis. Plant Physiol 84: 125– 130
- ESPIE GS, KA GEHL, GW OWTTRIM, B COLMAN 1984 Inorganic carbon utilization by cyanobacteria. *In* C Sybesma, ed, Advances in Photosynthesis Research, Vol III. Martinus Nijhoff/Dr. W Junk, The Netherlands, pp 681– 684
- GUTKNECHT J, MA BISSON, FC TOSTESON 1977 Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate and unstirred layers. J Gen Physiol 69: 779–794
- HARNED HS, R DAVIS 1943 The ionization constant of carbonic acid in water and solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J Am Chem Soc 65: 2030-2037
- HOCH G, B KOK 1963 A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Arch Biochem Biophys 101: 160-170
- KAPLAN A, MR BADGER, JA BERRY 1980 Photosynthesis and the intracellular inorganic carbon pool in the blue-green alga Anabaena variabilis: response to external CO₂ concentration. Planta 149: 219–226
- MARCUS Y, D ZENVIRTH, E HAREL, A KAPLAN 1982 Induction of HCO₃⁻ transporting capability and high photosynthetic affinity to inorganic carbon by low concentration of CO₂ in *Anabaena variabilis*. Plant Physiol 69: 1008– 1012
- MCENERY MW, PL PEDERSEN 1986 Diethystilbestrol. A novel F₀-directed probe of the mitochondrial proton ATPase. J Biol Chem 261: 1745-1752
- MILLER AG 1985 Study of inorganic carbon transport: the kinetic reaction approach. *In* WJ Lucas, JA Berry, eds, Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists, Rockville, MD, pp 17-37
- MILLER AG, DT CANVIN 1985 Distinction between HCO₃⁻ and CO₂-dependent photosynthesis in the cyanobaterium *Synechococcus leopoliensis* based on the selective response of HCO₃⁻ transport to Na⁺. FEBS Lett 187: 29-32
- MILLER, AG, DT CANVIN 1987 Na⁺-stimulation of photosynthesis in the cyanobacterium Synechococcus UTEX 625 grown on high levels of inorganic carbon. Plant Physiol 84: 118-124
- MILLER AG, B COLMAN 1980 Active transport and accumulation of bicarbonate by a unicellular cyanobacterium. J Bacteriol 143: 1253-1259
- MILLER AG, B COLMAN 1980 Evidence for HCO₃⁻ transport by the bluegreen alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol 65: 397– 402
- MILLER AG, DH TURPIN, DT CANVIN 1984 Growth and photosynthesis of the cyanobacterium Synechococcus leopoliensis in HCO₃⁻-limited chemostats. Plant Physiol 75: 1064-1070
- MILLER AG, DH TURPIN, DT CANVIN 1984 Na⁺ requirement for growth, photosynthesis and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J Bacteriol 159: 100-106
 MIYACHI S, M TSUZUKI, Y YAGAWA 1985 Carbonic anhydrase in various
- MIYACHI S, M TSUZUKI, Y YAGAWA 1985 Carbonic anhydrase in various microalgae. In WJ Lucas, JA Berry, eds, Inorganic Carbon Uptake by Aquatic Photosynthesis Organisms. American Society of Plant Physiologists. Rockville, MD, pp 145-154
- OGAWA T, A KAPLAN 1987 The stoichiometry between CO₂ and H⁺ fluxes involved in the transport of inorganic carbon in cyanobacteria. Plant Physiol 83: 888-891
- OGAWA T, WL OGREN 1985 Action spectra for accumulation of inorganic carbon in the cyanobacterium. Anabaena variabilis. Photochem Photobiol 41: 583-587
- 26. OGAWA T, T OMATA, A MIYANO, Y INOUE 1985 Photosynthetic reactions involved in the CO₂-concentrating mechanism in the cyanobacterium, *Anacystis nidulans. In* WJ Lucas, JA Berry, eds, Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists, Rockville, MD, pp 287-304
- RIPPKA R, J DERUELLES, JB WATERBURY, M HERDMAN, RY STANIER 1979 Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1-61
- SHELP BJ, DT CANVIN 1984 Evidence for bicarbonate accumulation by Anacystis nidulans. Can J Bot 62: 1398-1403
- VOLOKITA M, D ZENVIRTH, A KAPLAN, L REINHOLD 1984 Nature of inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76: 599-602
- WILLIAMS TG, DH TURPIN 1987 The role of external carbonic anhydrase in inorganic carbon acquisition by *Chlamydomonas reinhardtii* at alkaline pH. Plant Physiol 83: 92-96
- 31. YOKOTA A. S KITAOKA 1985 Correct pK values for dissociation constant of carbonic acid lower the reported K_m values of ribulose bisphosphate carboxylase by half. Presentation of a nomograph and an equation for determining the pK values. Biochem Biophys Res Commun 131: 1075-1079