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Aims It has been demonstrated that several cardiac pathologies, including myocardial ischaemia, can be detected using smartwatch 
electrocardiograms (ECGs). Correct placement of bipolar chest leads remains a major challenge in the outpatient 
population.

Methods 
and results

In this feasibility trial, we propose an augmented reality–based smartphone app that guides the user to place the smartwatch 
in predefined positions on the chest using the front camera of a smartphone. A machine-learning model using MobileNet_v2 
as the backbone was trained to detect the bipolar lead positions V1–V6 and visually project them onto the user’s chest. 
Following the smartwatch recordings, a conventional 10 s, 12-lead ECG was recorded for comparison purposes. All 50 pa
tients participating in the study were able to conduct a 9-lead smartwatch ECG using the app and assistance from the study 
team. Twelve patients were able to record all the limb and chest leads using the app without additional support. Bipolar chest 
leads recorded with smartwatch ECGs were assigned to standard unipolar Wilson leads by blinded cardiologists based on 
visual characteristics. In every lead, at least 86% of the ECGs were assigned correctly, indicating the remarkable similarity of 
the smartwatch to standard ECG recordings.

Conclusion We have introduced an augmented reality–based method to independently record multichannel smartwatch ECGs in an 
outpatient setting.
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Structured Graphical Abstract 

Key questions Several cardiac pathologies including myocardial ischaemia can be detected with multichannel smartwatch electrocardiograms. 
Correct placement of bipolar chest leads remains challenging.

Key findings In this feasibility trial, all 50 participants were able to correctly record a 9-lead smartwatch electrocardiogram using an augmented 
reaility-based smartphone app and technical assistance by the study team.

Take-home  
message

We have introduced an augmented reaility-based method to independently record multichannel smartwatch electrocardiograms in 
the outpatient setting.
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Introduction
Along with the increasing availability of smartwatches worldwide, 
health-related features of wearables such as photoplethysmography- 
based heart rate analysis and detection of atrial fibrillation are recog
nized, and some have already been implemented in the current clinical 
guidelines.1,2 Data on successful recording of 3- and 12-lead electrocar
diograms (ECGs) using smartwatches have been reported.3–5

Furthermore, it has been demonstrated that detection of myocardial 
ischaemia and other cardiac pathologies using smartwatch ECGs is pos
sible.4–7 Recording a 12-lead ECG in patients at the time of experien
cing symptoms is known to be of paramount diagnostic importance. 
Currently, multichannel ECGs are barely available outside of healthcare 
settings, which limits remote diagnostic options. To overcome this limi
tation, novel technologies using prepositioned electrode strips, belts, 

and 12-lead ECG T-shirts have been proposed.8–10 These methods, 
however, require purchasing specific equipment and have not been es
tablished in standard care. Considering the increasing availability of 
smartwatches, developing a multichannel ECG protocol for these 
wearables might enhance diagnostic accuracy for symptomatic patients 
in an outpatient setting. Correct placement of unipolar leads without 
additional guidance and instruction, however, remains a major challenge 
if the user is not instructed by medical staff. At the same time, this is 
necessary to obtain correct ECG recordings, as the morphology of 
each lead varies with its location. To date, there is no standardized 
protocol for self-recorded multichannel smartwatch ECGs. Against 
this background, in this study, we propose an augmented reality 
(AR)-based smartphone app that guides the user to place the smart
watch in predefined positions on the chest using the front camera of 
the smartphone or a touchpad. The goal is to establish a method for 
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self-recorded, instructed smartwatch ECGs and thereby facilitate early 
detection of cardiac disorders such as myocardial ischaemia in patients 
who do not have immediate access to full medical care. In this feasibility 
trial, we focus on the practical issues and limitations of our method as 
well as assessing the interpretability of the self-instructed ECG record
ings when compared with conventional ECGs.

Methods
Study design and participants
This study was an investigator-initiated, single-centre prospective feasibility 
trial conducted at the University Hospital Basel. It was performed in com
pliance with the Declaration of Helsinki. Ethics approval was obtained from 
the local ethics committee (EKNZ BASEC 2020-02470). The trial was regis
tered on clinicaltrials.gov (NCT05425342). Patients 18 years old or older 
who were able to record a smartwatch ECG and were hospitalized in 
the University Hospital Basel were eligible for enrolment. Exclusion criteria 
included allergic reactions, wounds or other local skin alterations that could 
interfere with the measurements, significant cognitive impairment, and 
prior knowledge or experience in recording ECGs. Participants were 
screened on-site and by using the electronic patient records of the univer
sity hospital.

The primary endpoint of the trial was the number of independently 
placed and recorded smartwatch ECG leads by patients. A correctly re
corded lead was defined as a complete, 30 s long bipolar electrical signal ob
tained by the patient with the smartwatch. The secondary endpoints were 
correct identification of the heart rhythm, heart rate, heart axis, and 

changes in P waves, PQ interval, QRS complex, ST segments, and T waves 
in smartwatch ECGs, when compared with the standard 12-lead ECGs, by 
two independent cardiologists. The percentage of correctly assigned bipo
lar smartwatch chest leads to unipolar Wilson leads was also determined.

Consent
All participants provided written informed consent.

Test methods
Clinical and demographic data, including medical history, were assessed 
through personal interviews and electronic patient records. Participants 
were then instructed on how to record an ECG on the smartwatch 
(Apple Watch Series 5; Apple Inc., Cupertino, CA, USA), and a general in
formation sheet based on available literature was handed out (see 
Supplementary material online, Supplements S1 and S2). Einthoven leads 
were recorded as proposed by Spaccarotella et al.7 For the Wilson-like bi
polar chest leads, a recently developed AR app (provided by the 
Department of Biomedical Engineering, University of Basel) was used. 
The app uses the front camera of an iPad Pro (Apple Inc.) to visualize the 
torso and marks the ECG positions V1–V6 (see Figure 1 and 
Supplementary material online, Video S1) using the model described below.

Patients moved the smartwatch to the suggested position and received a 
red-green colour feedback as soon as they reached the correct position 
(see Figure 1 and Supplementary material online, Video S1). In each position, 
a 30 s ECG was recorded by the participants. In case of technical or pos
itional errors, patients were corrected by the investigator and the assistance 
was precisely documented. Following the smartwatch recordings, a conven
tional 10 s, 12-lead ECG (Schiller Cardiovit AT-180m) was recorded by the 
study team, which was additionally trained for this purpose according to our 
hospital standards. The correct placement of the Wilson leads was guided 
by anatomical landmarks such as the intercostal spaces and the clavicle, 
which reflects our clinical practice. The standard ECG measurements 
were conducted by a medical professional in supine position, while the 
smartwatch ECGs were obtained while sitting and by the patients 
themselves.

Automatic electrocardiogram marker 
detection
For the automatic detection of the ECG marker V1–V6, we trained a 
machine-learning model to predict the position of V1–V6 directly from an im
age. Due to the real-time characteristic of the application, we used the 
MobileNet_v211 as the backbone. The MobileNet_v2 is a specific neural net
work architecture based on convolution neural networks12 and an inverted 
residual structure. It was specifically developed for mobile applications. The 
model is extended by two branches. The first branch estimates the position 
of the ECG markers with Tanh(BN(LN(RELU6(BN(LN(RELU6(BN 
(LN(1280, 256))), 128))), 12))) and the second branch Sigmoid(BN(LN 
(RELU6(BN(LN(DROP(RELU6(BN(LN(1280, 256))), 0.2),128))), 6))) pre
dicts the visibility of the marker in the given image.

For the training of the model, we used 374 images from 28 female and 61 
male subjects. For the evaluation, we used 44 images from 3 female and 7 
male subjects. In each image, a medical expert manually labelled the position 
of the ECG landmarks V1–V6. The study examiner acquired the training and 
evaluation images with the back camera of a smartphone. For the final appli
cation, images will be acquired with the front camera. This makes it necessary 
to flip the images for the training. Furthermore, the images were cropped and 
scaled to a final size of 512 × 512 pixels. All colour channels of the images 
were normalized to a mean of 0.485, 0.485, 0.406 and an SD of 0.225, 
0.225, 0.225. No dedicated test set was used as the images used for the train
ing slightly differ from those that will be acquired during the examination. The 
performance of the final model was evaluated in a real-life scenario.

The complete model, with the pretrained MobileNet_v2 backbone, was 
trained with the Adam optimizer13 with a learning rate of 0.0001 using 
PyTorch by the PyTorch Foundation, a project of the Linux Foundation. 
During training, we used random translation, rotation, scale, scale-crop, 
changes to brightness, contrast and saturation, and iso-noise as data aug
mentation. We used the mean square error loss for the landmark position 
estimation and the binary cross entropy for the prediction of the label 

Figure 1 Screenshot of the augmented reality mobile app. Using 
the Apple Core ML framework, the estimated positions of the bipolar 
chest leads bV1–bV6 are projected live to the anterolateral chest sur
face. Upon correct placement of the smartwatch, an optical feedback 
of colour change is provided, as shown at the position bV1.
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visibility. Finally, the trained model was converted to the Apple Core ML 
format to be used in the mobile application.

Electrocardiogram marker augmentation
The final application for the automatic detection of the ECG landmarks and 
the user feedback is implemented as a mobile app for Apple iOS and the 
Apple iPad Pro (Apple Inc.) using the Apple Core ML framework. There 
are two main parts of the application to support the user in placing the watch 
at the correct ECG landmark locations. The first part is the detection of the 
ECG landmarks from the image. Images are continuously acquired with the 
front camera of the iPad so that users can see themselves on display like a 
mirror. On each image, the trained model from above is used to predict 
the locations of the ECG landmarks. In order to prevent large changes in 
the landmark positions between consecutive images, we use a running aver
age of the predicted locations. Finally, the predicted positions are overlaid 
onto the current image to show the user the correct location to place the 
watch. In the second step, we provide an optical feedback to the users if 
they place the watch at the correct location. To achieve this, the hand of 
the user is tracked with the hand pose estimation function of the Core ML 
framework. Using the position of the tip of the index finger and the thumb, 
we provide feedback to the user by changing the colour of the overlaid land
marks if the user places the watch at the correct position to acquire the ECG.

Analysis
The number of correctly recorded smartwatch ECG leads without assist
ance was determined and divided by the number of total attempts. The 
number of assistance interventions and their type (placement vs. technical 
assistance) was evaluated.

The smartwatch single-lead ECG recordings were compared with those 
of the conventional ECGs by two blinded independent board-certified car
diologists. In case of an analysis mismatch, a consensus decision was 
achieved. Sensitivity and specificity of the smartwatch ECG to determine 
the heart rhythm and detect atrial and ventricular conduction abnormalities 
were calculated. For this analysis, the conventional ECG interpretations by 
cardiologists were used as the gold standard. The 95% confidence intervals 
(CIs) were (95% CI LL, UL), where LL is the lower limit of the CI and UL is 
the upper limit.

The ratio of correctly identified bipolar chest ECG leads (bV1–bV6) was 
calculated as the number of successes divided by the sample size. An assign
ment was defined as correct if the bipolar lead was assigned to the same or a 
neighbouring unipolar Wilson lead. Results are expressed as means ± SD or 
in percentage.

Results
Baseline demographic and clinical 
characteristics of participants
A total of 54 patients were screened, of which 4 were excluded due to 
prior experience in recording ECGs. Of the 50 patients enrolled, 25 
(50%) were males, 34 (68%) had a history of hypertension, 26 (52%) 
had vascular disease, and 34 (74%) had arrhythmia. The mean age of 
the participants was 66.2 ± 10.2 years at the time of inclusion. The 
demographic and clinical characteristics are given in Table 1.

Primary endpoint: correctly recorded 
smartwatch electrocardiogram without 
assistance and number and type of 
assistance intervention
Seventy-eight per cent of the participants were able to independently 
record Einthoven Lead I. For Leads II and III, 80 and 68% of patients 
could successfully carry out the measurement, respectively. The bipolar 
Wilson-like chest leads bV1–bV6 are presented in Table 2. Altogether, 
24% of patients were able to record all limb and chest leads without any 
assistance from the study team. The rest of the patients needed at least 
one assistance intervention to conduct the measurements. A total of 
42% of patients required assistance interventions related to incorrect 
lead placement, whereas 48% of them needed assistance due to tech
nical problems such as premature termination of the ECG, pressing the 
digital crown, or failing to maintain skin contact during the recording. 
The total number of assistance interventions was 94, corresponding 
to 1.9 ± 1.7 interventions per patient per complete 9-lead ECG. The 
maximum number of assistance interventions for one patient was 7.

Secondary endpoint: interpretation of the 
smartwatch electrocardiogram
Rhythm
Of the 50 participants, 41 (82%) had sinus rhythm in the conventional 
12-lead ECG. Atrial fibrillation was detected in 7 cases (14%) in smart
watch ECGs, of which all were confirmed with the gold standard indi
cating a 100% sensitivity for detecting this arrhythmia (Table 3). 
Specificity for atrial fibrillation, however, was slightly lower at 93% 
(95% CI 81, 98). Sensitivity and specificity for other arrhythmias are 
shown in Table 3.

Heart rate
The normal heart rate was considered 60–100 b.p.m. Bradycardia was 
defined as <60 b.p.m., tachycardia as >100 b.p.m. Thirty-nine patients 
(78%) had a normal heart rate in the 12-lead ECGs. Bradycardia was 
identified in 5 (10%) of the standard and in none of the smartwatch 

Table 1 Demographic and clinical characteristics of the 
participants

Demographic characteristics

Age mean (years) 66.2 (10.2)

Gender
Male/female 25/25 (50/50)

Clinical characteristics

Congestive heart failure history 14 (28%)
Hypertension 34 (68%)

Stroke/TIA/thromboembolism history 8 (16%)

Vascular disease history 26 (52%)
Diabetes history 10 (20%)

Arrhythmia history 37 (74%)

Data are given as means (SD) or n (%).

Table 2 Number of correctly recorded chest leads (b: bipolar)

Lead bV1 bV2 bV3 bV4 bV5 bV6

Correctly recorded lead, n (%) 32 (64) 43 (86) 46 (92) 50 (100) 42 (84) 40 (80)
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ECGs. Tachycardia, on the other hand, was found in 6 (12%) cases and 
could be detected by the smartwatch with a sensitivity of 83% (95% CI 
44, 97) and specificity of 80% (95% CI 65, 89).

Heart axis
The heart axis, describing the main direction of electrical heart activity, 
was assessed using the Cabrera system. The normal heart axis was de
fined as −30° to +90°. A normal heart axis was found in 40 cases (80%). 
Left and extreme heart axis were found in 7 (14%) and 3 (6%) cases, 
respectively. In the smartwatch ECGs, a sensitivity of 57% (95% CI 
25, 84) and a specificity of 100% (95% CI 92, 100) for the detection 
of the left heart axis were calculated. Extreme heart axis was detected 
with a sensitivity of 67% (95% CI 21, 94) and specificity of 98% (95% CI 
89, 100).

P waves and PQ interval
P waves and PQ interval were analysed in the standard and smartwatch 
ECGs in order to assess atrial and atrioventricular conduction. The car
diologists analysed P waves and PQ interval in arbitrarily chosen leads 
based on individual morphologies. Physiologic P waves were found in 
41 of the cases (82%). P mitrale was diagnosed in two cases, none of 
which was detected in the smartwatch ECGs. Single cases of 

atrioventricular blocks I° and III° were identified in both 12-lead and 
smartwatch ECGs.

QRS complex
A wide QRS complex was defined as >100 ms and was detected in 5 
(10%) cases. Sensitivity of detecting wide QRS complex in the smart
watch ECGs was 60% (95% CI 23, 88) and a specificity of 98% (95% 
CI 88, 100) was calculated. In some cases, bundle branch blocks, fasci
cular blocks, and pathologic Q waves were detected (Table 4). An ex
ample of a bifascicular block is shown in Figure 2.

ST segments and T waves
A thorough analysis of ST segments and T waves was performed to as
sess repolarization abnormalities.

In total, 6 patients (12%) with ST elevation were identified. One of 
these was detected in the smartwatch ECGs (Table 5), indicating a sen
sitivity of 17% (95% CI 3, 56) and a specificity of 95% (95% CI 85, 99). ST 
depression was detected in 13 cases (26%) in the 12-lead ECGs. The 
sensitivity and specificity for detecting ST depressions in the smart
watch ECGs were 38% (95% CI 18, 64) and 95% (95% CI 82, 99; 
Table 5). Pathologic T waves were identified in 16 patients (32%) in 
at least one lead. The sensitivity of detecting this anomaly was 31% 
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Table 3 Heart rhythm as determined by two independent cardiologists

Pathology n n SW Sens. 95% CI (LL, UL) Spec. 95% CI (LL, UL)

Atrial fibrillation 7 10 100 (65, 100) 93 (81, 98)

Atrial flutter 2 2 50 (9, 91) 98 (89, 100)

Junctional rhythm 0 0 — (–,–) 100 (93, 100)
Pacemaker rhythm 3 2 33 (6, 79) 98 (89, 100)

Supraventricular premature 

beats

0 3 — (–,–) 94 (84, 98)

Ventricular premature beats 2 8 100 (34, 100) 88 (75, 94)

n, arrhythmias found in the standard ECG; n SW, arrhythmias found in the smartwatch ECG.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 QRS complex analysis by two independent cardiologists

Pathology n n SW Sens. 95% CI 
(LL, UL)

Spec. 95% CI  
(LL, UL)

Wide QRS complex (>100 ms) 5 4 60 (23, 88) 98 (88, 100)
Left bundle branch block 3 2 33 (6, 79) 98 (89, 100)

Right bundle branch block 4 4 75 (30, 95) 98 (89, 100)

Left anterior fascicular block 1 1 0 (0, 79) 98 (89, 100)
Left posterior fascicular block 0 0 — (–,–) 100 (93, 100)

Bifascicular block 0 0 — (–,–) 100 (93, 100)

Pathologic Q waves 1 0 0 (0, 79) 100 (93, 100)
Poor R-wave progression 6 5 0 (0, 39) 89 (76, 95)

Signs of left heart hypertrophy (Sokolow–Lyon criteria) 1 3 100 (21, 100) 96 (86, 99)

Signs of right heart hypertrophy (Sokolow–Lyon criteria) 1 0 0 (0, 79) 100 (93, 100)

n, number of pathologies found in the standard ECG; n SW, number of pathologies found in the smartwatch ECG.
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Figure 2 Example of a 86-year-old female patient with history of hypertension and vascular disease presenting with a bifascicular block (right bundle 
branch block and a left anterior fascicular block) in the standard 12-lead electrocardiogram (upper panel). Accordingly, resembling QRS morphology 
and axis deviation were identified in the self-recorded smartwatch electrocardiogram (lower panel). The interval 10–20 s of the smartwatch recordings 
are presented.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 ST segment and T-wave analysis by two independent cardiologists

Pathology n n SW Sens. 95% CI 
(LL, UL)

Spec. 95% CI  
(LL, UL)

ST segment elevation 6 3 17 (3, 56) 95 (85, 99)
ST segment depression 13 7 38 (18, 64) 95 (82, 99)

Pathologic T waves 16 6 31 (14, 56) 97 (85, 99)

n, number of pathologies found in the standard ECG; n SW, number of pathologies found in the smartwatch ECG.
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(95% CI 14, 56). A specificity of 97% (95% CI 85, 99) for detecting 
pathologic T waves was noted.

Assignment of bipolar smartwatch chest 
leads to unipolar Wilson leads
Bipolar chest leads recorded with smartwatch ECGs were assigned to 
standard unipolar Wilson leads by cardiologists based on visual charac
teristics. In every lead, at least 86% of the ECGs were assigned correct
ly. bV2 was the most correctly identified lead (92 and 96% by 
Cardiologists 1 and 2, respectively). The anterior leads bV3 and bV4 
had the lowest accuracy of assignment (Table 6). The smartwatch chest 
leads were most commonly erroneously assigned to the contiguous 
leads, as shown in Table 6. Two of the 300 chest leads recorded could 
not be interpreted by Cardiologist 2 due to motion artefacts.

There were no adverse events related to the use of the standard or 
the smartwatch ECGs.

Discussion
There is emerging evidence that smartwatch ECGs may contribute to 
the out-of-hospital diagnosis of cardiac disease, particularly arrhyth
mias, possibly even myocardial ischaemia. However, obtaining a multi
channel smartwatch ECG remains challenging. The present feasibility 
study describes a novel method to facilitate the conduction of a multi
lead smartwatch ECGs using an AR approach. The goal was to develop 
a tool for patients to obtain a nine-lead smartwatch ECG.

Despite the advanced age of participants (66.2 ± 10.2 years), we 
have found that the majority was able to record an interpretable nine- 
lead ECG using the AR technology and some technical assistance. As 
expected, the Einthoven leads were less challenging to obtain than 
the bipolar precordial leads. Our findings generally support the hypoth
esis that certain cardiac pathologies may be identified with smartwatch 
ECGs.

The agreement of ST segment changes between smartwatch and 
standard ECG in patients with acute ST elevation myocardial infarction 
has previously been reported by Spaccarotella et al.7 Our data show 
that ST segment changes in asymptomatic patients could not be reliably 
detected by the smartwatch ECGs. However, considering the feasibility 
nature of the study, the low number of participants does not allow a 
conclusive evaluation. Overall, the visual characteristics of the 

smartwatch leads markedly resemble those of the standard ECG. 
This was demonstrated by the fact that the vast majority of smartwatch 
ECG leads could be assigned to the respective or neighbouring standard 
leads. These findings suggest that future use of the AR app may allow 
patients to record a self-instructed high-quality smartwatch ECGs in 
an out-of-hospital setting.

We observed a remarkable discrepancy in the number of partici
pants with bradycardia between the smartwatch ECG and the standard 
ECG. We assume that the recording conditions account for this differ
ence: while standard 12-lead ECGs were obtained in the supine pos
ition requiring no mental or physical effort by the participant, the 
smartwatch ECGs are recorded in the sitting position, requiring active 
participation of the patients and are recorded for a period of 30 s per 
lead as opposed to the standard 10 s ECG. Hence, the difference be
tween the two recordings was reflecting a physiological difference 
and not a technical problem.

The trial has demonstrated that most participants required some in
structions to record a self-instructed ECG with the present version of 
the AR app. This is why the authors would recommend supplying poten
tial users with a professional video clip that demonstrates the correct use 
and gives instructions before they use the app. Further improvements to 
better guide the users during the acquisition of the ECGs include feed
back by sound, depicted signs and vibration alerts originating directly 
from the smartwatch. Also, the implementation of a nine-lead smart
watch ECG report, similar to the one depicted in Figure 2, is under 
consideration. Furthermore, implementation of automated evaluation 
of the smartwatch ECGs using the K-means clustering algorithm or 
two-event related moving-averages or fractional-Fourier-transform algo
rithms14,15 would further enhance diagnostic accuracy.

There are several limitations to the study. First, the study population 
consists of hospitalized patients, which limits interpretability for the 
general population that may be able to record a smartwatch ECG at 
home. A general limitation of multichannel smartwatch ECGs is the se
quential recording of leads, as opposed to the standard 12-lead ECGs, 
where all leads are obtained simultaneously. In traditional 12-lead sur
face electrocardiography, the Wilson’s Central Terminal (WCT), an ar
tificially constructed reference point, is defined as the simple average of 
the limb leads.16 In smartwatch ECG recordings, reconstruction of the 
WCT and the augmented leads aVF, aVL, and aVR remains challenging 
due to heart rate and heart rate variability discrepancies between the 
sequential limb measurements. However, computing leads III, aVF, 
aVL, and aVR is possible after aligning the R-peaks in I and II (see 
Supplementary material online, Supplement S3). Implementing this 
protocol could, after appropriate validation, further enhance diagnostic 
accuracy and facilitate the recording of a 12-lead smartwatch ECG. The 
feasibility nature of the study allows no conclusive assessment of the 
smartwatch ECG interpretation due to the low number of participants 
and pathologic ECG findings. The AR algorithm was based on a neural 
network and was trained on the images of the participants who placed 
their arms straight to their body. This might reduce the quality of the 
landmark tracking during the application where landmarks can be oc
cluded by the hands of the participants. Extending the training data 
set with such type of images may improve the quality of the landmark 
tracking. In the present study, we used an iPad Pro to run the AR app 
due to technical reasons. A future version of the app may be installed on 
any mobile device with a front camera. Further training of the AR algo
rithm will allow us to specify the lead positions and improve the record
ing quality. Studies in different settings are needed to assess the 
feasibility of this AR approach in a non-supervised outpatient setting. 
In this feasibility study, we introduced a novel AR-based method to in
dependently record multichannel smartwatch ECGs. In this era of 
emerging telemedicine applications, this AR-based technology may 
play a complementary role in improving out-of-hospital diagnostics of 
cardiac disease.
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Table 6 Number of correct bipolar smartwatch chest 
lead assignments to unipolar Wilson leads and the most 
commonly erroneously assigned chest leads by two 
independent cardiologists

Smartwatch 
chest lead

Cardiologist 
1

Cardiologist 
2

Most 
commonly 

erroneously 
assigned chest 

leads

bV1 45 (90) 42 (86) V2

bV2 46 (92) 47 (96) V1
bV3 41 (82) 46 (92) V2, V4

bV4 44 (88) 43 (86) V3

bV5 44 (88) 48 (96) V6
bV6 38 (76) 47 (94) V5

The number in the parenthesis is the percentage of correct assignments.
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