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The neurotrophic herpes virus cytomegalovirus is a known cause of neuropathology in utero and in immunocom-
promised populations. Cytomegalovirus is reactivated by stress and inflammation, possibly explaining the emerging 
evidence linking it to subtle brain changes in the context of more minor disturbances of immune function. Even mild 
forms of traumatic brain injury, including sport-related concussion, are major physiological stressors that produce 
neuroinflammation. In theory, concussion could predispose to the reactivation of cytomegalovirus and amplify 
the effects of physical injury on brain structure. However, to our knowledge this hypothesis remains untested.
This study evaluated the effect of cytomegalovirus serostatus on white and grey matter structure in a prospective 
study of athletes with concussion and matched contact-sport controls.
Athletes who sustained concussion (n = 88) completed MRI at 1, 8, 15 and 45 days post-injury; matched uninjured 
athletes (n = 73) completed similar visits. Cytomegalovirus serostatus was determined by measuring serum IgG 
antibodies (n = 30 concussed athletes and n = 21 controls were seropositive). Inverse probability of treatment weight-
ing was used to adjust for confounding factors between athletes with and without cytomegalovirus. White matter 
microstructure was assessed using diffusion kurtosis imaging metrics in regions previously shown to be sensitive 
to concussion. T1-weighted images were used to quantify mean cortical thickness and total surface area. 
Concussion-related symptoms, psychological distress, and serum concentration of C-reactive protein at 1 day 
post-injury were included as exploratory outcomes. Planned contrasts compared the effects of cytomegalovirus sero-
positivity in athletes with concussion and controls, separately.
There was a significant effect of cytomegalovirus on axial and radial kurtosis in athletes with concussion but not 
controls. Cytomegalovirus positive athletes with concussion showed greater axial (P = 0.007, d = 0.44) and radial 
(P = 0.010, d = 0.41) kurtosis than cytomegalovirus negative athletes with concussion. Similarly, there was a signifi-
cant association of cytomegalovirus with cortical thickness in athletes with concussion but not controls. 
Cytomegalovirus positive athletes with concussion had reduced mean cortical thickness of the right hemisphere 
(P = 0.009, d = 0.42) compared with cytomegalovirus negative athletes with concussion and showed a similar trend 
for the left hemisphere (P = 0.036, d = 0.33). There was no significant effect of cytomegalovirus on kurtosis fractional 
anisotropy, surface area, symptoms and C-reactive protein.
The results raise the possibility that cytomegalovirus infection contributes to structural brain abnormalities in the 
aftermath of concussion perhaps via an amplification of concussion-associated neuroinflammation. More work is 
needed to identify the biological pathways underlying this process and to clarify the clinical relevance of this putative 
viral effect.
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Introduction
Human cytomegalovirus (CMV) is a common neurotrophic herpes 
virus with an age-adjusted seroprevalence of ∼50% in the USA.1

CMV establishes lifelong latent infections in a variety of cell types, 
including myeloid lineage cells, vascular pericytes, endothelial 
cells of the blood–brain barrier, glia, neurons and neuronal precur-
sor cells.2-5 Periods of physiological or psychological stress6-8 and/ 
or inflammation9-11 promote reactivation of the virus via activation 
of the sympathetic nervous system (SNS)6,12 and AP-1 or 
NF-κB-induced transcription of the immediate early (IE) CMV pro-
moter,13,14 respectively. This reactivation is usually considered to 
be benign but may cause serious disease, including neurological 
sequelae, in individuals who are immunocompromised due to 
HIV infection, immune suppressive therapy or congenital immuno-
deficiencies.15,16 Emerging research suggests that reactivation 
of CMV may also have negative consequences in contexts where 
the disturbance in immune function is more subtle such as 
sepsis,17,18 autoimmune disease,19-22 old age23-26 and psychiatric 
disorders.27-32 With respect to psychiatric disorders, we recently 
showed that individuals with major depressive disorder (MDD) 
who were CMV seropositive had reduced grey matter volume, de-
creased white matter integrity, and altered resting state functional 
connectivity compared to propensity-matched CMV seronegative 
participants with MDD.30-32 Similarly, CMV-positive participants 
with schizophrenia were shown by independent groups to have 
smaller hippocampi and total cortical surface area compared to 
CMV-negative participants with schizophrenia.27-29 These data 
raise the possibility that CMV reactivation has an adverse effect 
on brain structure in the context of disorders that lead to activation 
of the SNS and/or the immune system.

Traumatic brain injury (TBI), including sport-related concussion 
(SRC), is a major physiological stressor that activates the SNS33,34

and induces both neuroinflammatory and systemic inflammatory 
responses.35-37 Moreover, neurotrauma is a well established cause 
of systemic immune suppression that increases the risk of subse-
quent infection.38-40 In theory, these post-injury changes in auto-
nomic and immunological function could predispose to the 
reactivation of CMV, which could in turn affect brain structure. 

However, to our knowledge, this hypothesis remains untested in 
the TBI field. The goal of this work was thus to determine if CMV 
serostatus moderated the physiological effects of concussion in 
athletes. Our primary analysis focused on diffusion kurtosis me-
trics in white matter given that we previously reported abnormal-
ities in these metrics in athletes with SRC in this sample41 and 
given that alterations in diffusion MRI are one of the most common-
ly reported sequelae of concussion because of the diffuse injury to 
white matter that is known to occur.42,43 Cortical thickness and sur-
face area were evaluated in secondary analyses while symptoms 
and the commonly used, non-specific marker of inflammation, 
C-reactive protein (CRP), were exploratory outcomes. We hypothe-
sized that CMV seropositivity would be associated with reductions 
in white matter microstructural integrity, cortical thickness, and 
surface area in athletes with concussion, but not controls.

Materials and methods
Participants

This study is a secondary analysis of data from a prospective study 
of concussion in high school and collegiate American football 
players enrolled between August 2015 and June 2018, described 
elsewhere.41,44 Parents of minors and adult participants provided 
written informed consent. Minor participants provided written as-
sent. Study procedures were approved by the Medical College of 
Wisconsin Institutional Review Board and the US Department of 
Defense Human Research Protection Office (HRPO).

Exclusion criteria for the parent study included contraindica-
tion or injury precluding participation in the study protocol; current 
narcotic use or psychotic disorder; or conditions known to cause 
cognitive dysfunction such as moderate-to-severe TBI or epilepsy. 
American football players participated in pre-season baseline clin-
ical assessments. Athletes sustaining a concussion completed up to 
four follow-up visits with an MRI session and blood collection, in-
cluding at 24–48 h (1 day) and 8, 15 and 45 days post-injury. Team 
physicians or certified athletic trainers identified and diagnosed 
concussions. The study team screened injuries to ensure they 
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met the study definition of concussion, which was based on the 
Centers for Disease Control and Prevention HEADS UP initiative: 

‘An injury resulting from a forceful bump, blow, or jolt to the head that re-

sults in rapid movement of the head and causes a change in the athlete’s 

behavior, thinking, physical functioning, or the following symptoms: 

headache, nausea, vomiting, dizziness/balance problems, fatigue, diffi-

culty sleeping, drowsiness, sensitivity to light/noise, blurred vision, mem-

ory difficulty, and difficulty concentrating.’

American football players without concussion in the prior 
6 months were enrolled as controls and completed similar visits, 
matched to injured athletes based on level of competition, institu-
tion, team, age, estimated intellectual functioning (word reading 
performance at baseline), race, handedness, concussion history 
and position. Additional inclusion criteria for the current study in-
cluded providing consent/assent to allow blood samples to be 
banked for future analyses and the inclusion in our prior work in-
vestigating diffusion kurtosis imaging metrics in this cohort.41

Clinical data

Demographic information, health history and the Wechsler Test of 
Adult Reading (WTAR; to estimate intellectual functioning) were col-
lected at pre-season baseline. An estimate of socioeconomic status 
(SES) was calculated using the modified Hollingshead Four Factor 
Index.45 Concussion-related symptom severity assessed using The 
Sport Concussion Assessment Tool-Third Edition (SCAT) and symp-
toms of psychological distress assessed using the Brief Symptom 
Inventory-18 Global-Severity Index (BSI-GSI) at the 1-day visit were 
included to characterize the clinical effects of SRC.

C-reactive protein and CMV IgG antibodies

Venous blood was collected in BD Vacutainer® serum tubes, 
processed following manufacturer’s instructions, and stored at 
−80°C. Serum concentrations of CRP were measured in duplicate 
using Meso Scale Discovery V-PLEX assays on a QuickPlex SQ 120 in-
strument following the manufacturer’s instructions, as previously 
described.44 One sample had CRP levels above detection limits 
and was excluded from further analysis. The current study focused 
on CRP concentrations at the 1-day visit. Finally, a single post- 
injury visit sample from each participant was used to detect IgG 
CMV antibodies using a commercially available semi-quantitative 
enzyme-linked immunosorbent assay (ELISA) (IBL America). A 
sample was considered CMV seropositive if it had an optical density 
(OD) value of 20% over the supplied cut-off standard, equivalent to 
∼10 international antibody units. All biomarker assays were per-
formed blind to concussion status.

MRI acquisition, processing and metrics

MRI data acquisition has been previously described.41 MRI data 
were collected on a General Electric MR750 whole body 3 T scanner 
using a 32-channel head coil. T1-weighted images were collected 
using a magnetization-prepared rapid gradient-echo sequence 
with 1 mm isotropic voxels. Diffusion weighted images covering 
the whole brain were obtained using a single-shot spin-echo echo- 
planar sequence with 3 mm isotropic voxels and b-values of 1000 
and 2000s/mm2 with 30 directions for each b-value.

Processing of diffusion data included susceptibility distortion 
correction, motion correction and eddy current correction using 
FSL version 6.0.0.46,47 Kurtosis metrics were calculated via the 
DKE software48,49 with the robust option to detect and remove 

outliers during model fitting.50 In our prior work, the tract-based 
spatial statistics program51 was used to identify differences in dif-
fusion kurtosis metrics between athletes with and without concus-
sion at each post-injury visit.41 We previously reported increased 
axial kurtosis in the corpus callosum, genu and splenium in the 
SRC group relative to controls at the 1 day time point, which spread 
to the corticospinal tracts, superior longitudinal fasciculus and infer-
ior longitudinal fasciculus, bilaterally, by 8 days post-injury.41 In con-
trast, radial kurtosis was significantly reduced in the SRC group 
relative to controls. The changes in radial kurtosis were also more 
delayed, becoming evident at Day 15 in the major white matter tracts 
of the frontal cortex.41 Finally, the pattern of changes in kurtosis 
fractional anisotropy resembled that of radial kurtosis emerging at 
Day 15 and persisting to Day 45 predominantly in the frontal cortex. 
Here, we aimed to evaluate the moderating effects of CMV on white 
matter microstructural integrity following SRC. We therefore se-
lected three different regions of interest (ROIs; one for each metric) 
based on the largest cluster of significant voxels at the visit with 
the largest difference between groups in our previous work.41

Specifically, the axial kurtosis ROI was obtained from the 8 day com-
parison while the radial kurtosis and kurtosis fractional anisotropy 
ROIs were obtained from the 15 day comparisons. The average axial 
kurtosis, radial kurtosis and kurtosis fractional anisotropy from 
within these ROIs were then obtained in all athletes at each post- 
injury visit for subsequent analysis. ROIs are illustrated in Fig. 1.

Cortical reconstruction and volume segmentation of 
T1-weighted images was conducted using the longitudinal process-
ing stream in FreeSurfer version 5.3.52-54 Mean cortical thickness 
was estimated for each hemisphere. Total cortical surface area 
for each hemisphere was calculated as the sum of individual sur-
face areas from cortical regions defined by the Desikan-Killiany at-
las for that hemisphere.55,56 The test-retest reliability and 
segmentation accuracy of FreeSurfer have been previously estab-
lished,57-59 and the same processing pipeline and quality assess-
ment procedures were applied to all participants. All MRI 
processing was conducted blind to CMV status. Although analyses 
were not technically blind to injury group, as it could be deduced 
from subject labels, the same processing pipeline and quality con-
trol procedures were applied to all participants and no manual edits 
were made to generated outputs to avoid potential bias. Of the 558 
total MRI datasets included in this study, 19 failed quality assess-
ment procedures (e.g. due to excessive head motion on the 
T1-weighted image) and were excluded from FreeSurfer analyses.

Statistical analysis

Statistical analyses were performed using SPSS version 27 unless 
otherwise specified. Participant matching in the parent study was 
focused on matching athletes with concussion to controls; athletes 
were not matched upon enrolment based on CMV serostatus. 
Therefore, inverse probability of treatment weighting (IPTW) was 
used to adjust for confounding factors between each unique athlete 
with and without CMV following recommended guidelines, as in 
our prior work in other clinical populations.31,32,60 The propensity 
score was defined as the likelihood of being CMV-positive (CMV+)  
based on multivariate logistic regression with the following vari-
ables in R: body mass index (BMI), age, socioeconomic status 
(SES), ethnicity, race, WTAR standard score, and prior number of 
concussions. Prior to IPTW, mean imputation of one WTAR stand-
ard score was conducted for a single participant that did not com-
plete WTAR testing. Generalized linear models (GLM) compared 
demographic variables between SRC and controls for descriptive 
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purposes. Similarly, GLM were used to test for group differences in 
CMV+ and CMV-negative (CMV−) before and after IPTW to assess 
covariate balance.

A priori analyses focused on the effect of CMV within each group 
(i.e. concussed and controls) for outcome measures of interest. For 
primary (kurtosis metrics) and secondary outcomes (left and right 
hemisphere thickness and area), planned contrasts were specified 
within the confines of linear mixed-effect models. These models in-
cluded the effects of visit (modelled as a repeated factor across par-
ticipants), injury group (SRC or control), CMV status (positive or 
negative), all two-way interactions, and the three-way interaction 
while accounting for estimated propensity weights. Estimated 
intracranial volume was included as a covariate for surface area 
analyses. A limited number of participants did not complete MRI 
sessions at all visits (Supplementary material); mixed models can 
include these participants with the missing at random assumption. 
Analysis of exploratory markers (CRP and symptoms) was limited 
to the 1-day visit using GLM to compare CMV+ versus CMV− within 
SRC and controls, separately, accounting for propensity weights. 
Because symptoms were often not endorsed or were endorsed at 
low levels in the control group, SCAT symptom severity and 
BSI-GSI scores were binarized (absent/present) and a GLM was fit-
ted using a binomial distribution with logit link to compare controls 
with and without CMV. For SCAT and BSI-GSI (T-scores) in patients 
with SRC, as well as CRP across each group, a GLM with a normal 
distribution was used. CRP levels were log transformed to normal-
ize their distribution prior to analysis. Bonferroni correction was 
used to account for multiple comparisons within each level of ana-
lyses (primary analyses: P < 0.017 for three tests; secondary ana-
lyses: P < 0.0125 for four tests; exploratory analyses: P < 0.017 for 
three tests). All results are reported from the two-tailed tests.

Data availability

Data from the parent project (e.g. MRI, clinical, demographic data) 
are publicly available from the Federal Interagency Traumatic 

Brain Injury Research Informatics System (FITBIR; https://fitbir.nih. 
gov/study_profile/279). CRP and CMV data and relevant analysis pro-
tocols are available from the corresponding author upon reasonable 
request with the execution of necessary data-use agreements.

Results
A total of 1174 athletes were enrolled at baseline for the parent study; 
106 sustained SRC and completed follow-up visits while 91 matched 
controls completed similar visits. As previously described, 10 ath-
letes with SRC and nine control athletes were removed due to failing 
imaging quality control procedures (e.g. excessive head motion) re-
sulting in diffusion kurtosis imaging data in 96 SRC and 82 controls.41

From this subset of participants, 88 American football players with 
SRC and 73 controls met the current study criteria (i.e. enrolled in 
biosample banking) and were included in analyses. Of the 88 unique 
athletes with SRC, 30 (34%) were seropositive for CMV, while 21 of the 
73 (29%) controls were seropositive for CMV, relatively consistent 
with the CMV prevalence expected in a sample with mean age of 
∼19 years and comparable demographics.61 Demographic character-
istics of athletes with SRC and controls based on CMV status are 
summarized in Table 1. After propensity weighting, there were no 
significant group differences in demographic/background factors be-
tween athletes with and without CMV.

Primary outcomes: effect of CMV on white matter 
microstructure

Estimated marginal means for all a priori contrasts are provided in 
the Supplementary Table 1. Descriptive statistics for kurtosis me-
trics for each group across each visit are illustrated in Fig. 2 and pro-
vided in Supplementary Table 2. There was a significant effect of 
CMV on axial kurtosis in athletes with SRC [t(155) = 2.72, P = 0.007, 
mean difference (standard error) (MD) = 0.01 (0.004), 95% confidence 
interval (CI) (0.003, 0.017), Cohen’s d = 0.44], but not in controls 
[t(152) = −0.57, P = 0.57, MD = −0.002 (0.004), 95% CI (−0.01, 0.005), 

Figure 1 Diffusion kurtosis imaging regions of interest. Regions of interest (ROIs) from the skeletonized data have been inflated using tbss_fill for visu-
alization. The Axial kurtosis (KAX) ROI, the kurtosis-fractional anisotropy (KFA) ROI, the radial kurtosis (KRAD) ROI, and areas of overlap between ROIs 
are displayed. Z-coordinates are displayed for each slice. Images are displayed using radiological convention. The figure was made using MRIcroGL.
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d = 0.09]. Similarly, there was a significant effect of CMV on radial 
kurtosis in athletes with SRC [t(165) = 2.61, P = 0.010, MD = 0.043 
(0.016), 95% CI (0.01, 0.075), d = 0.41], but not controls [t(162) = 0.48, 
P = 0.63, MD = 0.008 (0.018), 95% CI (−0.026, 0.043), d = 0.08]. For 
both axial and radial kurtosis, CMV+ athletes with SRC had elevated 
kurtosis relative to CMV− athletes with SRC. CMV status did not af-
fect kurtosis fractional anisotropy levels in either athletes with SRC 
[t(162) = −0.48, P = 0.63, MD = −0.003 (0.007), 95% CI (−0.017, 0.01), d =  
0.08] or controls [t(159) = −1.21, P = 0.23, MD = −0.009 (0.008), 95% CI 
(−0.024, 0.006), d = 0.19].

Secondary outcomes: effect of CMV on grey matter 
structure

Descriptive statistics for structural metrics for each group across each 
visit are illustrated in Fig. 3 and provided in Supplementary Table 3. 
There was a significant effect of CMV status on right hemisphere 
mean cortical thickness in athletes with SRC [t(159) = −2.66, P =  
0.009, MD = −0.044 (0.017) mm, 95% CI (−0.078, −0.011), d = 0.42], but 
not in controls [t(157) = −0.92, P = 0.36, MD = −0.017 (0.018) mm, 95% 
CI (−0.053, 0.019), d = 0.15]. A similar effect of CMV in athletes with 
SRC was observed on left hemisphere mean cortical thickness though 
it did not survive strict multiple comparison correction [t(161) = −2.12, 
P = 0.036, MD = −0.033 (0.016) mm, 95% CI (−0.064, −0.002), d = 0.33]. As 
in the right hemisphere, there was no association of CMV with left 
hemisphere thickness in controls [t(158) = −0.84, P = 0.40, MD =  
−0.014 (0.017) mm, 95% CI (−0.048, 0.019), d = 0.13].

For total surface area, there was no significant CMV effect for 
either athletes with SRC or controls for the left hemisphere 
[t(155) = 1.49, P = 0.14, MD = 1189.63 (800.22) mm2, 95% CI (−391.09, 
2770.35), d = 0.24; t(155) = 1.00, P = 0.32, MD = 883.07 (883.28) mm2, 
95% CI (−861.75, 2627.90), d = 0.16] or right hemisphere [t(155) =  
1.66, P = 0.10, MD = 1325.77 (797.80) mm2, 95% CI (−250.18, 
2901.71), d = 0.27; t(155) = 1.30, P = 0.20, MD = 1144.44 (880.58) mm2, 
95% CI (−595.04, 2883.93), d = 0.21].

Exploratory analysis: effect of CMV on symptoms 
and CRP

Descriptive statistics for symptom measures and CRP for each 
group at the 1-day visit are illustrated in Fig. 4 and provided in 
Supplementary Table 4. The effect of CMV seropositivity on SCAT 
symptom severity scores was not significant in athletes with SRC 
[χ2 = 0.014, P = 0.91, MD = 0.50 (4.21), 95% CI (−7.75, 8.74), d = 0.03] 
or controls [χ2 = 0.001, P = 0.98, MD = −0.01 (0.35), 95% CI (−0.70, 
0.68), d = 0.01]. Similarly, the effect of CMV status on BSI-GSI scores 
was not significant in SRC [χ2 = 0.001, P = 0.97, MD = 0.07 (1.93), 95% 
CI (−3.72, 3.86), d = 0.01] or controls [χ2 = 0.17, P = 0.68, MD = −0.14 
(0.35), 95% CI (−0.82, 0.54), d = 0.10]. Finally, there was no significant 
effect of CMV on log-transformed serum CRP levels (mg/l) in SRC 
[χ2 = 2.119, P = 0.15, MD = 0.44 (0.30), 95% CI (−0.15, 1.02), d = 0.32] 
or controls [χ2 = 3.525, P = 0.06, MD = −0.69 (0.37), 95% CI (−1.42, 
0.03), d = 0.47].

Sensitivity analyses

Sensitivity analyses were conducted for all analyses to determine 
whether results differed when propensity weighting was not ap-
plied. As reported in the Supplementary material, the exclusion 
of propensity weights on our models did not alter results.

Additional exploratory analyses were conducted to ensure that 
present results were not due to other underlying differences be-
tween CMV+ and CMV− athletes within each group (SRC or controls). T
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Few athletes self-reported health conditions upon enrolment and 
the proportion of CMV+ and CMV− athletes with self-reported health 
conditions did not differ in athletes with SRC or in controls (P-values  
> 0.05). Moreover, inclusion of the presence of any self-reported 
health condition as a covariate had no impact on our results. 
These analyses are presented in the Supplementary material.

Discussion
This study revealed that CMV seropositive athletes with SRC had 
elevated axial and radial kurtosis in white matter, but not kurtosis 
fractional anisotropy compared with CMV seronegative athletes 
with SRC. The CMV+ and CMV− groups were propensity weighted 

Figure 2 Association of cytomegalovirus and diffusion kurtosis metrics. Trimmed violin plots with box plots of axial kurtosis (KAX), radial kurtosis 
(KRAD) and kurtosis fractional anisotropy (KFA) in athletes with sport-related concussion (SRC) and contact controls (CC) with (CMV+) and without 
cytomegalovirus (CMV−). Box plots show first quartile, median and third quartile; whiskers extend to the largest or smallest observation up to 1.5× 
the interquartile range. 1d = 1 day, 8d = 8 day, 15d = 15 day, 45d = 45 day visit. aEffects of CMV that survived multiple comparison correction.

Figure 3 Association of cytomegalovirus with cortical thickness and surface area. Trimmed violin plots with box plots of mean cortical thickness and 
total surface area in left hemisphere (LH) and right hemisphere (RH) in athletes with sport-related concussion (SRC) and contact controls (CC) with 
(CMV+) and without cytomegalovirus (CMV−). Box plots show first quartile, median and third quartile; whiskers extend to the largest or smallest ob-
servation up to 1.5× the interquartile range. 1d = 1 day, 8d = 8 day, 15d = 15 day, 45d = 45 day visit. aEffects of CMV that survived multiple comparison 
correction. bEffects that did not survive multiple comparison correction.
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based on seven different potentially confounding variables. The 
CMV+ participants with SRC also showed reductions in both left 
and right cortical thickness but not surface area compared to 
CMV− participants with SRC although only the right hemisphere 
thickness remained statistically significant after Bonferroni correc-
tion. In contrast, there were no significant effects of CMV serostatus 
on kurtosis metrics or cortical thickness in the control sample.

Participants with a SRC who tested positive for CMV showed in-
creased axial and radial kurtosis compared to seronegative partici-
pants with an SRC. Unlike diffusion tensor imaging (DTI), which 
assumes a Gaussian distribution of diffused water molecules, diffu-
sion kurtosis imaging assumes a non-Gaussian distribution of dif-
fusion, which theoretically better reflects the underlying biology 
of complex tissues with high structural heterogeneity such as the 
brain.62,63 It has therefore been postulated that diffusion kurtosis 
imaging may be more sensitive than conventional DTI measures 
to the complex microstructural changes that occur following con-
cussion. In theory, the higher the kurtosis, the more the diffusion 
pattern deviates from a Gaussian distribution, indicating a more re-
stricted and complex diffusion environment.48,49 Thus, increased 
axial kurtosis is indicative of impeded diffusion along the longitu-
dinal axis of the white matter fibre tracts while increased radial dif-
fusion indicates impeded diffusion in the transverse orientation. 
On a biological level these changes are thought to reflect increased 
intra-axonal debris or cellularity.41,64,65 Neuroinflammation is one 
possible explanation as damaged axons would attract activated 
microglia, leading to elevated tissue structural complexity and 
hence increased kurtosis values.66 In fact, experimental TBI studies 
in preclinical models have provided some empirical support for a 
positive association between axial or radial kurtosis and the dens-
ity of microglial staining,67,68 while microgliosis was associated 
with an increase of radial kurtosis during the acute inflammatory 
demyelination phase in a cuprizone model of multiple sclerosis.69

Interestingly, while the effects of CMV on axial kurtosis were in 
the same direction as those of SRC (both elevated), radial kurtosis 
was decreased across all athletes with SRC relative to controls 
whereas CMV status in SRC was associated with elevated radial 
kurtosis. This finding appears counterintuitive. However, both in-
creased and decreased radial kurtosis can be indicative of path-
ology because the effects of SRC on white matter microstructure 
are complex and include any combination of neuroinflammation, 
oedema, axonal beading, or neurodegeneration, among many pos-
sibilities.64,70 The putative effects of CMV on white matter 

microstructure are then superimposed upon those of SRC. Thus, 
one conceivable explanation is that CMV and SRC both exert nega-
tive effects on brain structural integrity, but the different biological 
processes engendered by CMV and SRC have opposing effects on 
the radial kurtosis metric. For instance, the decreased radial kurto-
sis observed due to SRC may be reflective of a degenerative process 
whereas CMV seropositivity results in a parallel increase in radial 
kurtosis due to the cellular complexity associated with inflamma-
tion. Ultimately, in vivo diffusion imaging does not have the reso-
lution to definitively clarify the underlying pathology at this time.

We previously reported replicable associations between expos-
ure to CMV and widespread reductions in grey matter volume in the 
context of MDD.31,32 Cortical volume is determined by two compo-
nents: surface area and thickness, which are genetically and onto-
genetically independent of each other.71,72 Andreou et al.27 recently 
reported an association between CMV seropositivity and reduc-
tions in total cortical surface area but not thickness in participants 
with schizophrenia spectrum disorders. We therefore selected cor-
tical surface area and thickness as secondary outcomes in this 
study. We found that CMV seropositive athletes with SRC showed 
reductions in both left and right hemisphere cortical thickness 
(though only right hemisphere survived strict multiple comparison 
correction) but not surface area compared to CMV negative athletes 
with SRC.

The cortex consists of columns of neurons that run perpen-
dicular to the cortical surface. While surface area reflects the num-
ber of cortical columns, the amount of neuropil and number of 
cells within each cortical column determines the cortical thick-
ness.73,74 Thus, a difference in surface area may be more likely 
to reflect a disruption in neurodevelopmental processes while 
changes in cortical thickness may be more reflective of dynamic 
shifts in the environment such as an inflammatory process. 
Indeed, increased concentrations of circulating inflammatory 
mediators have been widely linked with reductions in cortical 
thickness in several different disorders,75-81 while reductions in 
cortical thickness are commonly reported in neuroinflammatory 
diseases such as multiple sclerosis82-85 as well as viral infections 
such as HIV.86-88 Nevertheless, as with the kurtosis data, we are 
unable to definitively attribute the observed cross-sectional differ-
ences in cortical thickness to specific pathology. Moreover, it is po-
tentially noteworthy that the CMV+ controls had qualitatively 
thinner cortex than the CMV− athletes (Fig. 3). It is conceivable 
that the significant reductions in cortical thickness observed in 

Figure 4 Association of cytomegalovirus with C-reactive protein and symptoms. Trimmed violin plots with box plots for log-transformed C-reactive 
protein (ln CRP, A), as well as (B) Brief Symptom Inventory Global Severity Index (BSI-GSI), and symptom severity score from the Sport Concussion 
Assessment Tool (SCAT) at the 1-day visit in athletes with sport-related concussion (SRC) and contact controls (CC) with (CMV+) and without cyto-
megalovirus (CMV−). Box plots show first quartile, median and third quartile; whiskers extend to the largest or smallest observation up to 1.5× the 
interquartile range.
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the CMV+ athletes with SRC could have resulted from the com-
bined effects of both the current episode and previous reactivation 
events.

As in the case of white matter microstructural integrity, there 
was no significant effect of CMV serostatus on cortical thickness 
or surface area in the control group. This finding suggests that the 
association between CMV infection and structural brain abnormal-
ities in the SRC group is unlikely to have resulted solely from the 
premorbid, neurodevelopmental effects of the virus, but is rather 
linked to the current concussive episode in some manner. 
Although we cannot rule out pre-existing cortical thickness differ-
ences between concussed athletes with and without CMV, we raise 
the possibility that concussion-induced inflammation and/or SNS 
activation leads to the reactivation of latent CMV infection, which 
in turn exerts biological effects over and above the initial concus-
sive insult. These putative biological effects could include the direct 
pathological effects of CMV on infected brain cells or the indirect in-
fluence of an amplification of concussion-associated inflammatory 
processes. While we have no direct evidence for this hypothesis, 
co-infection with CMV is a well known risk factor for inflammation- 
related morbidity in the context of people living with HIV,89,90 dou-
bles the risk of hospitalization due to SARS-CoV-2 infection,91 and 
has been implicated in the aetiology of inflammation-linked dis-
eases such as type 2 diabetes92,93 and cardiovascular disease.94,95

Although CMV serostatus did not have a significant influence on 
plasma CRP concentrations post-concussion, we did observe non- 
significantly higher CRP concentrations in the CMV+ SRC group 1 
day post-concussion (d = 0.32). It is possible that a larger sample 
size or the measurement of CRP at additional time points would 
have yielded statistically significant effects. On the other hand, it 
is also possible that specific markers of viral infection such as 
CXCL10,96 or other components of the interferon pathway, would 
be more sensitive than CRP to CMV’s impact on the immune sys-
tem. Indeed, in our previous work on the effects of CMV in MDD 
there were also no differences between CMV+ and CMV− groups 
with respect to CRP concentration.30,31

The immediate clinical significance of the current findings are 
unclear given the lack of significant CMV effects on acute concus-
sion symptoms. Additional work is needed to investigate other clin-
ical outcomes and with longer periods of follow-up. However, 
previous evidence suggests that the greater observed differences 
in structural MRI in athletes with SRC and CMV are meaningful. 
First, preliminary evidence suggests that persistent diffusion ab-
normalities in white matter that occur after symptom resolution 
following SRC increase the risk for subsequent concussion,97 con-
sistent with the preclinical literature demonstrating a window of 
cerebral vulnerability following an initial injury.98 Therefore, the 
current results suggest that CMV seropositivity may impact the 
time course of physiological recovery following SRC, which has im-
portant implications for decisions about when athletes can safely 
return to play following concussion.99 Second, there is evidence 
that a history of concussion or mild TBI is associated with long- 
term effects on brain structure, including thinner cortex and other 
measures of grey matter structure.100-103 In older adults, observable 
changes in brain structure are commonly observed before the 
manifestation of clinical symptoms, such as in the context of neu-
rodegenerative disease.104,105 CMV seropositivity is one potential 
moderating factor that should be considered in future work charac-
terizing the chronic and cumulative effect of neurotrauma, which is 
consistent with the growing support for a viral role in a variety of 
neurodegenerative diseases that are also associated with changes 
in brain structure.106

Several limitations deserve mention. First, the analyses focused 
on CMV serostatus rather than a quantifiable marker of CMV reacti-
vation. This is because CMV viraemia is rare even in immunosup-
pressed populations and there is no ‘gold standard’ marker of 
reactivation. Anti-CMV antibody titre is often employed as a surro-
gate measure of reactivation, but this approach has significant lim-
itations. For instance, a hypothetical post-concussion increase in 
IgG antibody titre would take time to occur, and IgG antibodies 
have a half-life of up to a month suggesting that it would be a lag-
ging indicator of reactivation. We were also unable to use this ap-
proach because CMV serostatus was determined from samples 
collected at different time points (i.e. Day 1 to Day 45) in different 
participants due to limited availability of serum samples. Second, 
it is conceivable that other herpes viruses could also affect brain 
structure in the context of concussion and this possibility should 
be evaluated in future studies. Nevertheless, CMV is known to 
have the most pronounced long-term effects on the immune sys-
tem and has been strongly linked with neuropathology in other 
contexts.15,107-109 Third, caution is suggested in the interpretation 
of the kurtosis diffusion imaging results as the biological correlates 
of changes in these metrics have not been fully resolved. Fourth, 
the current study was limited to adolescent and young-adult 
American football players, and thus whether the observed results 
generalize to other populations of TBI patients is uncertain (e.g. 
female athletes, non-sport TBI, more severe TBI). Fifth, this study 
focused on the potential effects of CMV in American football 
players with acute concussion. Growing literature supports poten-
tial cumulative effects of multiple concussions as well as effects 
other repetitive head impacts that occur through routine contact 
sport participation.110-112 Because repeated head injury and chronic 
TBI have also been associated with neuroinflammatory pro-
cesses,113,114 future work is needed to characterize any potential 
moderation of CMV seropositivity on the effects of repeated head 
injury and exposure. Finally, although unlikely based on the pro-
pensity weighting approach and sensitivity analysis results, we 
cannot rule out the possibility that some unmeasured variable 
(e.g. psychosocial factors) may differ between patients with and 
without CMV and partially explain some of the observed changes. 
Additional studies are needed to more thoroughly investigate the 
role of such factors.

In summary, the current study raises the possibility that the 
presence of a CMV infection negatively impacts white matter 
microstructure and cortical thickness after SRC. Observed effect 
sizes were small-to-moderate. For example, the effect size of CMV 
seropositivity on kurtosis metrics was smaller than the effect size 
of concussion across all athletes in this study (e.g. d’s = 0.41–0.44 
versus d’s = 0.60–0.70). In contrast, the effect sizes of CMV on cor-
tical thickness (d’s = 0.33–0.42) are in line with recent reports on 
thickness differences after mild TBI in paediatric patients relative 
to controls,115,116 though they exceed effects from multiple null 
findings of cortical thickness reported in collegiate athletes with 
concussion.117,118 These data suggest that the presence of latent 
neurotropic viruses may be one facet of the proposed 
bio-psycho-socio-ecological model of TBI that potentially impacts 
individual’s response to injury and subsequent physiological recov-
ery.119 Further research is necessary to follow-up on these initial 
findings to determine whether the observed physiological effects 
of CMV in athletes with concussion eventually resolve or accumu-
late over multiple injuries. Furthermore, additional work is also 
needed to determine the acute or long-term clinical implications 
of these findings (if any) for TBI patients. If CMV specifically ampli-
fies the neuropathological effects of TBI then this may open up a 
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novel avenue of treatment given the existence of approved 
anti-CMV medications120-122 and the ongoing efforts to develop 
CMV vaccines.122,123
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