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Recent studies on Alzheimer’s disease (AD) suggest that tau proteins spread through the brain following neuronal 
connections. Several mechanisms could be involved in this process: spreading between brain regions that interact 
strongly (functional connectivity); through the pattern of anatomical connections (structural connectivity); or simple 
diffusion. Using magnetoencephalography (MEG), we investigated which spreading pathways influence tau protein 
spreading by modelling the tau propagation process using an epidemic spreading model. We compared the modelled 
tau depositions with 18F-flortaucipir PET binding potentials at several stages of the AD continuum.
In this cross-sectional study, we analysed source-reconstructed MEG data and dynamic 100-min 18F-flortaucipir PET 
from 57 subjects positive for amyloid-β pathology [preclinical AD (n = 16), mild cognitive impairment (MCI) due to AD 
(n = 16) and AD dementia (n = 25)]. Cognitively healthy subjects without amyloid-β pathology were included as con
trols (n = 25). Tau propagation was modelled as an epidemic process (susceptible-infected model) on MEG-based func
tional networks [in alpha (8–13 Hz) and beta (13–30 Hz) bands], a structural or diffusion network, starting from the 
middle and inferior temporal lobe. The group-level network of the control group was used as input for the model 
to predict tau deposition in three stages of the AD continuum. To assess performance, model output was compared 
to the group-specific tau deposition patterns as measured with 18F-flortaucipir PET. We repeated the analysis by using 
networks of the preceding disease stage and/or using regions with most observed tau deposition during the preceding 
stage as seeds.
In the preclinical AD stage, the functional networks predicted most of the modelled tau-PET binding potential, with 
best correlations between model and tau-PET [corrected amplitude envelope correlation (AEC-c) alpha C = 0.584; 
AEC-c beta C = 0.569], followed by the structural network (C = 0.451) and simple diffusion (C = 0.451). Prediction accur
acy declined for the MCI and AD dementia stages, although the correlation between modelled tau and tau-PET bind
ing remained highest for the functional networks (C = 0.384; C = 0.376). Replacing the control-network with the 
network from the preceding disease stage and/or alternative seeds improved prediction accuracy in MCI but not in 
the dementia stage.
These results suggest that in addition to structural connections, functional connections play an important role in tau 
spread, and highlight that neuronal dynamics play a key role in promoting this pathological process. Aberrant neur
onal communication patterns should be taken into account when identifying targets for future therapy. Our results 
also suggest that this process is more important in earlier disease stages (preclinical AD/MCI); possibly, in later stages, 
other processes may be influential.
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Introduction
Tau protein is a microtubule-associated protein that accumulates 
in the Alzheimer’s disease (AD) brain as neurofibrillary tangles. 
In vitro studies have suggested that tau proteins may propagate 
through the brain in a prion-like manner, and that this spreading 
is enhanced by neuronal activity.1-3 This has led to the ‘transneur
onal spread’ hypothesis, in which a toxic agent (tau) propagates 
along connected neurons, driven by aberrant neuronal activity.4

However, evidence regarding the role of functional dynamics in 
AD remains incomplete.

Discovery of tau-binding PET radiotracers has made it possible 
to not only quantify the amount of aggregated tau proteins in the 
brain, but also to assess the spatial patterns of tau protein distribu
tion in vivo. Currently, 18F-flortaucipir is the most widely used tracer 
to image tau pathology in vivo.5,6 Importantly, in vivo 18F-flortaucipir 
PET studies have shown agreement with Braak-staging regarding 
the distribution of tau tangles throughout the brain.7,8 Owing to 
the availability of this tau-PET tracer, we can investigate the contri
bution of functional and structural network characteristics and the 
propagation of tau non-invasively.

Previous studies have combined functional MRI (fMRI) and 
tau-PET to investigate if, and how, tau deposition is related to func

tional connectivity and brain networks. These studies have pro

vided evidence that tau topographies show spatial overlap with 

functional brain networks.9-12 Additionally, studies have shown 

that strongly connected regions accrue more tau pathology,13,14

yet the strength of the connections decreases with increasing tau 

pathology.13 These findings suggest that there is a close correlation 

between functional connectivity and tau levels shared by function
ally connected brain regions. In another paper, Franzmeier and col

leagues15 were able to improve tau spreading predictions over 

Braak staging methods by using functional connectivity networks. 

They found that tau accumulation rates correlated with connectiv

ity strength to patient-specific tau epicentres. Interestingly, by 

using atlases based on either anatomical or fMRI-based functional 

connectivity to simulate tau spread, Vogel and colleagues16 found 

that a model based on anatomical connectivity performed better 

than the one based on functional connectivity, predicting 70% of 

the variance of the observed tau PET pattern while the functional 
connectivity model explained 58% of the observed variance.

In contrast to fMRI, magnetoencephalography (MEG) has the 
capability to directly assess neuronal activity of functional brain 
networks with high temporal resolution.17,18 Beamforming ap
proaches make it possible to reconstruct functional networks of os
cillatory activity at source level, enabling a direct comparison with 
18F-flortaucipir PET. In a recent study, Ranasinghe and colleagues19

evaluated the association between 18F-flortaucipir PET and an MEG 
measure of functional connectivity between neuronal populations 
(imaginary coherence), and observed that 18F-flortaucipir uptake 
strongly co-localized with alpha band hypo-synchrony and 
delta-theta band hyper-synchrony. In a small early AD sample, an
other MEG study found that higher tau burden was related to a sig
nificant decline in both local and global efficiency of information 
transfer, as well as loss of functional connectivity and global level 
communication in higher frequency bands, whereas functional 
connectivity in the lower frequency bands increased.20 However, 
these studies were correlational, comparing tau-PET signal with 
brain-wide functional connectivity, and did not model spread 
over anatomical pathways or via functional connections. 
Additionally, both studies focused on functional connectivity, but 
did not study structural connectivity, which was found to be the 
best predictor of tau deposition by Vogel and colleagues.16

The main objective of the present pseudo-longitudinal study 
was to investigate the contribution of different types of network 
connectivity to the stereotypical spread of tau pathology 
(18F-flortaucipir retention) in the different stages of AD, i.e. preclin
ical AD, mild cognitive impairment due to AD, and dementia due to 
AD. Based on previous studies, we hypothesized that several me
chanisms could be involved in this process: spreading between 
brain regions that interact strongly (functional connectivity); 
spreading through the pattern of anatomical/axonal connections 
(structural connectivity); or, as null hypothesis, simple diffusion 
through the extracellular space to spatially adjacent regions. We in
vestigated this by modelling the tau propagation process on these 
different networks using an epidemic spreading model (ESM), a 
mathematical model that simulates the propagation of an agent 
from some given location to other connected areas.21 Such models 
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have been used previously to study the spreading of pathological 
proteins on brain networks16,22 or propagation of seizure activ
ity.23,24 We subsequently compared the modelled tau depositions 
with in vivo tau depositions at several stages of the AD continuum 
as measured with 18F-flortaucipir PET. Based on the strong corre
lates between tau and functional connectivity, as well as neuronal 
activity, we expected that tau propagates over anatomical connec
tions, but that this is propagation is strongest for connections that 
are most used functionally. We therefore expected a higher correl
ation between the simulated tau load and tau-PET binding poten
tials for the functional network model than for the structural or 
diffusion network models.

Materials and methods
Subjects

Subjects were recruited from the Amsterdam Dementia Cohort, 
consisting of patients who visited the memory clinic at Alzheimer 
Centre Amsterdam, Amsterdam UMC. All subjects received a stan
dardized diagnostic work-up including medical history taking, 
neurological and neuropsychological examination, laboratory test
ing, MRI, EEG or MEG and, if possible, a lumbar puncture to collect 
CSF.25 Cognitive function was assessed through a battery of neuro
psychological tests, including the Mini-Mental State Examination 
(MMSE26) and Montreal Cognitive Assessment (MoCA27).

Diagnoses were generated during a multidisciplinary consensus 
meeting, according to recent international guidelines. Subjects 
were diagnosed with subjective cognitive decline (SCD) when re
ported cognitive complaints remained undetected through formal 
neuropsychological testing. Patients with mild cognitive impair
ment (MCI) due to AD exhibited objectively detectable cognitive 
deficits with preserved functional independence. A diagnosis of 
‘probable AD dementia’ was assigned according to criteria of the 
National Institute on Aging-Alzheimer’s Association.28 The pres
ence or absence of AD pathology was confirmed using CSF and/or 
amyloid-PET. To classify as amyloid-positive, subjects had to 
have either positive CSF amyloid-β1–42 and/or positive 
amyloid-PET. For CSF amyloid-β1–42, drift-corrected values were 
used; the cut-off was set at 813 pg/ml.29 When both amyloid-PET 
and CSF data were available, amyloid-PET was decisive.

To be eligible to participate in this study, subjects needed to ful
fil the diagnostic criteria for SCD, MCI due to AD or probable AD de
mentia; be at least 50 years of age; and have known amyloid status 
(in the case of MCI and probable AD dementia, amyloid-positivity 
was required). Subjects were excluded when they met any of the 
following criteria: having a cardiac pacemaker, implantable 
cardioverter-defibrillator (ICD) or other intra-corporal devices 
interfering with MEG signals; severe claustrophobia; evidence of 
structural abnormality on MRI scan; females of childbearing poten
tial who were using reliable methods for contraception; relevant 
history of severe drug allergy or hypersensitivity; participation in 
an experimental study with a tau or amyloid targeting agent; his
tory of moderate or severe traumatic brain injury; and/or specific 
exclusion criteria for MRI scanning.

For the purpose of the study, subjects were finally split into four 
groups: amyloid-negative SCD (henceforth referred to as controls); 
amyloid-positive SCD (henceforth referred to as preclinical AD); 
MCI due to AD; and AD dementia. As a result of a shift in diagnoses 
at the Alzheimer Center Amsterdam (‘MCI due to AD’ was often la
belled as ‘early phase probable AD dementia’), MCI due to AD and 
probable AD dementia were taken together and subsequently 

divided into MCI and dementia using a median split based on 
MMSE. The local Institutional Review Board of the VUmc 
(Amsterdam, The Netherlands) approved the study protocol 
(2018.070). Subjects’ consent was obtained according to the 
Declaration of Helsinki and all subjects provided written informed 
consent prior to participating in the study.

In total, 85 subjects received both an MEG measurement and 
18F-flortaucipir PET in the context of the study. Three 
18F-flortaucipir PET scans did not meet scan quality criteria for tra
cer quantification, leaving a final study population of 82 subjects.

MRI acquisition procedure

Three-dimensional T1-weighted MRI scans were acquired for all pa
tients on a 3.0 T Ingenuity TF PET/MR system (Philips Medical 
Systems) in the context of the memory clinic screening, within a 
maximum of 6 months from the 18F-flortaucipir PET scan. If the 
MRI scan and MEG measurement took place on the same day, the 
MRI was performed after the MEG measurement, to prevent arte
facts arising from magnetization of, for instance, dental implants. 
If an MRI scan had been performed more than 6 months before 
the 18F-flortaucipir PET scan, or had not been performed on the 
PET/MR Ingenuity system, the MRI scan was repeated for this study.

18F-flortaucipir PET acquisition procedure

Subjects underwent a dual time point dynamic 18F-flortaucipir PET 
scan starting immediately after injection of 229 ± 12 MBq 
18F-flortaucipir and including at least the 0–30 min and 80– 
100 min post-injection time interval as previously described.30,31

Scans were acquired on an Ingenuity TF PET/CT scanner (Philips 
Medical Systems), preceded by a low-dose CT scan for attenuation 
correction purposes. All PET data were 3D reconstructed using the 
vendor provided image reconstruction method (RAMLA) with a ma
trix size of 128 × 128 × 90 and a final voxel size of 2 × 2 × 2 m3. All 
standard corrections for attenuation, scatter, randoms, decay and 
dead time were performed.

MEG acquisition procedure

Subjects underwent MEG measurement within 6 months from the 
18F-flortaucipir PET scan [median: 135 days, interquartile range 
(IQR): 81–159 days]. MEG data were acquired with a 306-channel 
whole-head MEG-system (Elekta Neuromag Oy), while subjects 
were in supine position inside a magnetically shielded room 
(VacuumSchmelze GmbH). For each subject, two 5-min eyes-closed 
resting state recordings were made. Subjects were instructed to 
open and close their eyes several times during the recordings to 
prevent drowsiness. Magnetic fields were recorded at a sample fre
quency of 1250 Hz, with an anti-aliasing filter of 410 Hz and a high- 
pass filter of 0.1 Hz. The subject’s head position in relation to the 
MEG sensors was recorded using signals from five head-localization 
coils.

PET and MEG analyses

Structural 3D T1-weighted magnetic resonance images were 
co-registered to the PET images using Vinci software (Max Planck 
Institute, Cologne, Germany). For each subject, regions of interest 
(ROIs) were defined on the co-registered MRI scan with the 
Hammers template,32 which is incorporated in PVElab, a software 
programme that uses a probability map of delineated (grey matter) 
ROIs that has been validated previously.33 These ROIs were then 
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superimposed onto the dynamic PET scans to extract regional time 
activity curves (TACs). For 18F-flortaucipir, receptor parametric 
mapping (RPM)-derived binding potential (BPND), with grey matter 
cerebellum as reference region, were obtained, which is a validated 
method to quantify tau load.30,31 A partial volume correction meth
od that combines iterative deconvolution methods with highly con
strained back projection (HYPR) was applied to the 18F-flortaucipir 
BPND data for a better quantification of the dynamic PET signal.34

Raw MEG data were visually inspected (A.N. and D.N.S.) for mal
functioning and noisy channels, which were subsequently re
moved, after which the temporal extension of Signal Space 
Separation (tSSS) in MaxFilter software (Elekta Neuromag Oy, ver
sion 2.2.12)35 was applied to remove artefacts from the data.36

Data were subsequently filtered in the 0.5–48 Hz band using 
MaxFilter software. Each subject’s MEG data were co-registered 
with the PET co-registered MRI using surface matching, after which 
the same transformation was applied to the subject-space 
Hammers template. In order to reconstruct neuronal activity at 
source level, an atlas-based beamforming approach was applied 
to each 5-min resting state recording,37 using the centroids38 of 50 
parcels in an adjusted version of the Hammers template 
(Supplementary Table 1). For each of these centroid voxels, 
time series of neuronal activity (so-called virtual electrodes) were 
reconstructed by projecting the sensor signals to source space. 
Broadband data (0.5–48 Hz) were used for the estimation of the 
beamformer weights, to avoid overestimation of covariance be
tween channels,39 as well as a unity noise covariance matrix, a 
spherical head model (fitted to the scalp surface as extracted from 
the co-registered MRI), and an equivalent current dipole as source 
model. On average 302 s of data (range: 297–394 s) were used for 
the estimation of the data covariance matrix, which was regularized 
using singular value truncation with the default setting of 1 × 10−6 

times the maximum singular value. The optimum orientation of 
the equivalent current dipole was found using singular value de
composition.40 The broadband sensor-level data were subsequently 
and sequentially projected through the normalized beamformer 
weights41 resulting in a time series for each ROI. The time series 
for these ROIs were subsequently used for further analysis.

For each subject, 10 non-overlapping, artefact-free, drowsiness- 
free, eyes-closed, down-sampled (factor 4) epochs of 4096 samples 
(13.1072 s) were selected (D.N.S. and A.A.G.), based on careful visual 
inspection. Inspection, cutting of epochs and calculation of the 
functional connectivity measure (see below) was done using in- 
house software Brainwave (version 0.9.152.12.26, available from 
http://home.kpn.nl/stam7883/brainwave.html). Further analyses 
were done in MATLAB version R2018b.

Network construction

Functional network

Functional connectivity was estimated for each epoch using the 
corrected amplitude envelope correlation (AEC-c) in the alpha (8– 
13 Hz) and beta (13–30 Hz) frequency bands, based on previous 
work that identified these two bands as most robust, for the 
AEC-c, for AD.42,43 The amplitude envelope correlation44 is an 
amplitude-based metric that estimates the coupling between two 
time series by computing the Pearson correlation between the amp
litude envelopes of these time series. The AEC-c overcomes the ef
fects of spatial leakage by using pair-wise orthogonalization prior 
to the AEC estimation for each pair of band-pass filtered time series. 
The correction is performed in two directions by means of linear 

regression, meaning that time series x is regressed out from time 
series y, and time series y is regressed out from time series x and 
the AEC values for both directions are computed and averaged.45

A value of 1 was added to all AEC-c values, which were then divided 
by two in order to obtain values in the range (0–1). AEC-c values 
were averaged over epochs for each subject.

For each band separately, AEC-c values were computed for all 
pair-wise combinations between ROIs, resulting in a symmetric 
50 × 50 connectivity matrix, and subsequently averaged over rows 
(i.e. resulting in one connectivity value for each ROI, denoting the 
connectivity strength of that ROI with the rest of the brain). 
Finally, the matrices were averaged over all epochs and all subjects 
in each group, to create one group-level functional connectivity 
matrix for each band.

Structural network

Since diffusion tensor imaging (DTI) data were not available for our 
patient cohort, we used the well validated Exponential Distance 
Rule (EDR) as an approximation of structural connectivity. While 
structural connectivity is usually obtained from DTI tractography, 
tract tracing studies in non-human primates have shown that the 
core of anatomical structural brain connectivity can be fairly well 
described by a simple rule, the EDR. Based on animal studies, the 
EDR specifies that the weights of structural connections in the 
brain, wij, decay exponentially with distance dij,

46-48 i.e. wij ∼ 
exp(−αdij), where α is the decay exponent. Recent studies have re
peatedly shown that the EDR also reproduces human DTI data 
well.49,50 Rather than the 0.188 exponent used in Deco and 
Kringelbach’s work, we used an exponent of 0.052 as validated by 
Millán and colleagues24 for an atlas with a comparable resolution 
to the Hammers atlas (whereas Deco and Kringelbach used a brain 
parcelation with 1000 ROIs). Similar to the functional networks, a 
group-level symmetric 50 × 50 connectivity matrix was used in 
the analyses, using the ROI centroids for the computation of dij. 
Additionally, in order to further validate our choice of structural 
network proxy, we compared EDR-MEG networks to DTI networks 
in an external dataset of n = 18 epilepsy subjects, obtaining a correl
ation of r = 0.61 (Supplementary material).

Diffusion network

To simulate tau diffusion to nearby ROIs, we defined the diffusion 
network such that two ROIs were connected if they were adjacent 
in the atlas. This network was defined as binary: two ROIs were ei
ther adjacent (and therefore connected) or not.

Analysis I: functional connectivity differences 
between groups

To investigate functional connectivity differences between clinical 
stages along the AD continuum, the AEC-c in the alpha and beta 
band for each ROI was compared between patient groups using 
the ANOVA test with Bonferroni post hoc testing for pairwise com
parisons between groups. Results were corrected for multiple com
parisons using the false discovery rate (FDR).51

Analysis II: epidemic spreading model

To simulate the spreading of tau protein on brain networks we used 
the susceptible-infected (SI) model.21 Each brain region (nodes in 
the network) can be in one of two states. Initially, all regions are 
in the susceptible state S (inactive), except for a (set of) seed re
gion(s) in the infected state I (active). Each infected region j can 
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then propagate the infected state to each of its susceptible neigh
bours i with independent probability βij, where βij is the local 
spreading rate. This model does not include any deactivation or re
covery mechanisms (once a region becomes infected, it stays in
fected). Eventually all connected regions will be in the infected 
state and the spreading ends.

Here we considered two factors in the local spreading rate, βij = 
βwij, where β is the global spreading rate characterizing the speed 
and temporal structure of the spreading process and wij is the coup
ling strength between ROIs i and j, and it characterizes the spatial 
structure of the spreading process. In this manner wij couples tau 
spreading with the underlying network structure, so that different 
connectivity profiles will lead to different spreading profiles. In or
der to reduce the effect of spurious or weak connections, the func
tional connectivity matrices were rescaled such that w′ij = wn

ij, with ν 
≥ 1. In this manner the contribution of weak connections became 
negligible, but the functional networks always remained fully con
nected. The EDR weights already decay exponentially so more scal
ing is not needed, and the diffusion network is binary so again no 
re-scaling is needed.

To simulate the SI dynamics we made use of Monte Carlo algo
rithms and custom-made MATLAB codes (available from Github).

We defined the simulated tau load mi(t) for each model configur
ation by iterating 104 times and measuring the fraction of iterations 
during which node i was infected at step t. The simulated tau load 
was compared with the corresponding group level tau binding pat
tern, as observed in the 18F-flortaucipir PET scans in each of the 
three disease stages of the AD continuum: preclinical AD, MCI 
due to AD, or AD dementia in order to fit the model parameters to 
the data. In particular, for each model configuration and group- 
level tau pattern, we identified the values of the control parameters 
ν, β and t (range: until all connected nodes were infected) that best 
reproduced the observed tau pattern. For this, we used a range 
of ν and β values, with ν = 1,  2, …, 10, and β = 10−x, x = − 2 + 2i/9, 
with i = 1, 2, …, 10. Then, we simulated the SI dynamics for each par
ameter configuration and measured the goodness of fit of the model 
for each simulation step as:

r(t, m(t)) = C(t, m(t)) · (1 − d(t, m(t)))3 (1) 

where τ is the measured PET-tau load, C(x, y) is the Pearson’s correl
ation coefficient, d(x, y) is the L1 distance between x and y, and bold 
symbols indicate vectors. In this manner we consider both the total 
tau load (through the distance) and the spatial pattern of the tau load 
(through the correlation). Since the correlation is sensitive to small 
changes, to avoid the correlation from dominating the goodness of 
fit metric the distance has to be weighted. The exponent of 3 was in
cluded to weigh the different contributions based on preliminary 
analyses indicating most robust results for an exponent equal to 3. 
The optimal fit was defined as the set of model parameters (β, ν, t) 
leading to the maximum value of r, r*. We also measured the corre
sponding correlation, C*. The significance of the correlation was 
computed by transforming the correlation to create a t-statistic hav
ing n − 2 degrees of freedom, where n is the number of ROIs. Each cor
responding P-value is the probability of getting a correlation as large 
as the observed value by random chance, when the true correlation 
is zero.

Model 1: Control network and one seed region

We first ran the susceptible-infected model over the previously de
scribed networks (functional in two bands, one structural, one 

diffusion) using the group-level network of the control group (Figs 
1 and 2). Tau propagation was modelled to start from one a priori de
fined seed region (left middle and inferior temporal gyri), which was 
selected based on the reliability to accurately measure tau depos
ition at that location and its proximity to the hypothesized origin 
of tau pathology, the entorhinal cortex.32,52

Model 2: previous disease stage network

We expected that in the course of the disease the network would 
deteriorate as the result of neurodegeneration. We therefore inves
tigated, as a second model, whether using the network of the previ
ous disease stage (i.e. preclinical AD to predict MCI, and MCI to 
predict AD dementia) would give a better prediction than using 
the network of the controls to predict all subsequent stages (Fig. 2).

Model 3: previous disease stage network and alternative 
seeds

Finally, it can be assumed that as tau spreads through the brain, 
more regions become saturated with tau and thus begin seeding 
tau as well. In the third model, in addition to using the previous dis
ease stage networks, we therefore added alternative seed regions 
based on a 18F-flortaucipir cut-off (Fig. 2). Regions above this cut-off 
were considered tau-infected and were entered as seeds into 
the model. To determine the cut-offs, we used the actual 
18F-flortaucipir data of the control group (for preclinical AD) and 
preclinical AD (for MCI). We averaged the tau-binding across each 
ROI, and selected all ROIs with tau binding cut-off of 1.96 standard 
deviation (SD) (P = 0.05/95% confidence level) above the mean as 
‘infected’. To clarify, in order to predict tau binding in the MCI stage, 
we used the preclinical AD network, and as seeds we used the 
‘infected’ ROIs from this disease stage. The tau binding cut-off for 
preclinical AD was based on the 18F-flortaucipir from the control 
group. To predict the AD dementia stage we used the MCI network, 
and defined the ‘infected’ ROIs in the MCI stage based on the 
18F-flortaucipir data of the preclinical AD stage.

Data availability

Due to the clinical nature of the data, the data that support the find
ings of this study are not freely available but can be made available 
by the corresponding author, upon reasonable request. A formal 
data sharing agreement is needed before any data can be shared. 
MATLAB codes for the ESM model are available on Github.

Results
Demographic characteristics

Table 1 presents the demographic characteristics of the four diag
nosis groups. Functional connectivity differences between groups 
(Analysis I) are shown in the Supplementary material.

Analysis II: epidemic spreading model

We constructed a tau propagation pattern using the ESM for each 
network and disease stage. An exemplary susceptible-infected 
propagation process for the alpha band AEC-c network, predicting 
preclinical AD, can be found in Fig. 3.
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Model 1: control network and one seed region

When using the control network as backbone for the susceptible- 
infected model, and the left middle and inferior temporal gyri as 
seed, we found that the best reproduction of the tau propagation 

patterns was for the alpha and beta band AEC-c functional network 

models (see Table 2 and Fig. 4 for the spreading patterns and 

Supplementary Table 6 for specific model details). When predicting 

tau deposition in the preclinical AD stage, the alpha band AEC-c 

A

C

B

Figure 1 Workflow visualizing the prediction model. (A) The group level connectivity between 50 regions of interest (ROIs) of the adjusted Hammers 
atlas serves as the basis for the functional (AEC-c in alpha and beta band), structural (EDR) and diffusion (adjacent ROIs) networks. (B) The networks are 
used as the backbone for the epidemic spreading model (SI model), where the fraction of newly infected nodes (red line), is represented as a function of 
time. (C) For each network and each disease stage, the spreading dynamics were simulated and the propagation pattern was constructed across all 50 
ROIs, and compared with the actual 18F-flortaucipir pattern. AD = Alzheimer’s disease; AEC-c = corrected amplitude envelope correlation; MCI = mild 
cognitive impairment.

Figure 2 Visual representation of the prediction models of tau spread. Model 1: starting from the seed region (red), in the control group (amyloid- 
negative SCD) tau spread is modelled to the different stages of the Alzheimer’s disease (AD) continuum: preclinical AD (amyloid-positive SCD), MCI 
due to AD, and dementia due to AD. Orange nodes represent tau-infected areas, whereas green nodes represent non-infected areas. Model 2: to account 
for neurodegeneration in later disease stages, models were repeated with magnetoencephalography networks of the preceding disease stage. Model 3: 
alternative seed regions were added in the preclinical and mild cognitive impairment (MCI) stage, based on a 18F-flortaucipir cut-off, in order to model 
tau seeding from previously infected regions. Regions above this cut-off were considered tau-positive and were entered as seeds into the model. SCD 
= subjective cognitive decline.
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network model showed an optimal correlation of C = 0.584, and for 
the beta band C = 0.569. For the structural network model, the cor
relation was C = 0.451; the diffusion model also showed an optimal 
correlation of C = 0.451. These model fits were all statistically sig
nificant (P < 0.001, P < 0.001, P = 0.001 and P = 0.001, respectively). 
The functional networks also spread to the contralateral temporal 
lobe, in contrast to the structural and diffusion networks.

In the MCI stage, the optimal correlation was lower compared to 
the preclinical AD stage (C = 0.384; P = 0.005 and C = 0.376; P = 0.007 
for the alpha and beta band AEC-c network models, respectively), 
but remained statistically significant. For the structural network 
model, the correlation dropped to C = 0.271; P = 0.130, and for the dif
fusion network model the correlation declined to C = 0.228; P = 0.110. 
Both the structural and diffusion models lost statistical significance.

Table 1 Baseline characteristics

Controls (n = 25) Preclinical AD (n = 16) MCI (n = 16) AD dementia (n = 25)

Age in years, mean (SD)a 64.7 (7.0) 70.5 (6.9) 65.8 (7.2) 66.7 (7.8)
Sex, female (%) 12 (48.0%) 7 (43.8%) 10 (62.5%) 10 (39.1%)
Education level, median (IQR)b 6 (5–7) 6 (5–6) 6 (5–7) 5 (4–6)
MMSE score, median (IQR) 30 (28–30) 29 (27–30) 26 (25–27) 22 (19–23)
Global 18F-flortaucipir BPND, mean (SD)c 0.034 (0.085) 0.082 (0.130) 0.260 (0.283) 0.307 (0.349)

Depicted are mean values (standard deviation, SD) or median with the interquartile range (IQR) where appropriate. AD = Alzheimer’s disease; MCI = mild cognitive impairment; 
MMSE = Mini-Mental State Examination. 
aAge at time of MEG measurement. 
bEducation level according to Verhage score. 
cVolume-weighted mean cortical 18F-flortaucipir BPND over 50 regions of interest.

A B

C D

Figure 3 Exemplary susceptible-infected propagation process for the functional network (AEC-c, alpha band) predicting tau spread in the preclinical 
Alzheimer’s disease stage using the control network. (A) Correlation between actual and predicted tau deposition for different spreading rates (β) and 
different weightings (v) of the functional connections. The optimum fit is indicated with an asterisk. (B) Model propagation pattern showing the prob
ability pi(t), that a given region of interest (ROI) i (y-axis) is infected at simulation step t (x-axis). The seed (‘left middle and inferior temporal gyri’, ROI 14) 
is by definition infected at simulation Step 0. (C) Goodness of model fit, considering the total tau load [distance d(t)], the spatial pattern of the tau load 
[correlation C(t)], and final model fit [r(t)] for each simulation step (t). The dashed vertical line indicates the simulation step with the optimum model fit, 
in this case t = 8. (D) Simulated tau spread and observed tau spread by ROI (top), and the predicted tau spread versus observed tau spread for the optimal 
time point (t = 8), with the corresponding correlation and P-value (bottom).
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In the AD dementia stage, the correlation between modelled 
and observed tau deposition declined further for the alpha band 
AEC-c, to C = 0.238, whereas for the beta band, interestingly, it de
clined only slightly to C = 0.349. For the structural and diffusion net
work model the correlation remained approximately equal to the 
MCI stage. Only the correlation for beta band AEC-c reached statis
tical significance (P = 0.012). Thus, for all stages, the models with 
tau propagation via the functional network were the best-fitting 
models, with the best prediction of tau deposition in the preclinical 
AD stage on the basis of the functional network of the healthy 
group.

Model 2: previous disease stage network

Next, we constructed a tau propagation pattern using the 
susceptible-infected model on the network of the previous disease 
stage instead of the control group, to account for neurodegenera
tion in later disease stages (Figs 2 and 5 and Table 2). For specific 
model details see Supplementary Table 7. In the MCI stage, the re
sults for the alpha band AEC-c network model improved from C =  
0.384 to C = 0.456; P < 0.001. The optimal correlation for the beta 
band AEC-c network-model declined, from C = 0.376 to C = 0.311; 
P = 0.030. The structural network model declined as well, to C =  
0.227, and the diffusion model remained the same. The models 
based on the functional networks remained the best predictors 
and were the only ones to reach statistical significance. For the 

AD dementia stage, using the networks from the MCI stage did 
not improve the model performance for any of the networks except 
the alpha band AEC-c (from C = 0.238 to C = 0.262), and the 
correlations between modelled and measured tau patterns re
mained low. The correlations did not reach significance for any of 
the networks.

Model 3: previous disease stage network and alternative 
seeds

Finally, in the third model we used alternative seed regions in the 
MCI and AD dementia stage, based on cut-off that was based on 
the observed 18F-flortaucipir tau deposition from the clinical stage 
before the stage on which the networks were constructed. 
Regions above this cut-off were entered as seeds into the model 
(Fig. 2). The calculation of the tau cut-offs and resulting seeds can 
be found in Supplementary Tables 4 and 5. Table 2 and Fig. 6
show the resultant tau propagation patterns (the pattern for the 
preclinical AD stage remains unaltered). For specific model details, 
see Supplementary Table 8. For the MCI stage, the optimal correl
ation for the functional alpha band AEC-c network-model im
proved compared to Model 1, but not compared to Model 2, from 
C = 0.384 and C = 0.456 to C = 0.469; P < 0.001, respectively. The cor
relation for the beta band AEC-c network model was, similar to 
Model 2, not improved compared to Model 1. The structural net
work model showed slight improvement compared to Models 1 

Table 2 Model performance

Model Disease stage Network Correlation, C 
(mean ± SD)

Model fit, r 
(mean ± SD)

P-value

Model 1 Preclinical AD AEC-c alpha 0.584 ± 0.004 0.360 ± 0.003 <0.001*
AEC-c beta 0.569 ± 0.003 0.354 ± 0.002 <0.001*
EDR 0.451 ± 0.002 0.243 ± 0.002 0.001*
Diffusion 0.451 ± 0.002 0.196 ± 0.001 0.001*

MCI due to AD AEC-c alpha 0.384 ± 0.004 0.212 ± 0.002 0.005*
AEC-c beta 0.376 ± 0.008 0.212 ± 0.004 0.007*
EDR 0.271 ± 0.003 0.080 ± 0.001 0.130
Diffusion 0.228 ± 0.001 0.064 ± 0.001 0.110

Dementia due to AD AEC-c alpha 0.238 ± 0.004 0.113 ± 0.002 0.090
AEC-c beta 0.349 ± 0.009 0.185 ± 0.005 0.012*
EDR 0.226 ± 0.001 0.033 ± 0.001 0.115
Diffusion 0.240 ± 0.001 0.035 ± 0.002 0.090

Model 2 MCI due to AD AEC-c alpha 0.456 ± 0.003 0.257 ± 0.002 <0.001*
AEC-c beta 0.311 ± 0.006 0.168 ± 0.004 0.030*
EDR 0.227 ± 0.003 0.077 ± 0.001 0.112
Diffusion 0.233 ± 0.002 0.058 ± 0.001 0.103

Dementia due to AD AEC-c alpha 0.262 ± 0.005 0.135 ± 0.003 0.070
AEC-c beta 0.273 ± 0.007 0.142 ± 0.003 0.060
EDR 0.225 ± 0.001 0.033 ± 0.001 0.117
Diffusion 0.241 ± 0.001 0.035 ± 0.001 0.090

Model 3 MCI due to AD AEC-c alpha 0.469 ± 0.003 0.248 ± 0.002 <0.001*
AEC-c beta 0.329 ± 0.007 0.170 ± 0.002 0.020*
EDR 0.297 ± 0.002 0.111 ± 0.001 0.036*
Diffusion 0.290 ± 0.001 0.075 ± 0.002 0.041*

Dementia due to AD AEC-c alpha 0.368 ± 0.002 0.131 ± 0.001 0.008*
AEC-c beta 0.316 ± 0.001 0.096 ± 0.000 0.025*
EDR 0.206 ± 0.001 0.075 ± 0.001 0.150
Diffusion 0.256 ± 0.002 0.095 ± 0.001 0.072

For each group, the correlations and optimal model fit between the clinical and modelled 18F-flortaucipir PET patterns, and the corresponding P-values, are given for each 

network type separately. Model 1 used the baseline control network and one a priori defined seed region (from the control group). Model 2 used the network of the previous 

disease stage and one a priori defined seed region (from the control group). Since the pattern for the preclinical Alzheimer’s disease (AD) stage remained unaltered these results 
are not included. Model 3 used the network of the previous disease stage and alternative seed regions. Since the pattern for the preclinical AD stage remained unaltered these 

results are not included. AEC-c = corrected amplitude envelope correlation; EDR = exponential distance rule; MCI = mild cognitive impairment; SD = standard deviation. 

*Indicates a significant correlation (P < 0.05).
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and 2, from C = 0.271 and C = 0.227, to C = 0.297; P = 0.036, respect
ively as well as the diffusion network model, with C = 0.228 and C  
= 0.233 for the previous models, to C = 0.290; P = 0.041. The correla
tions reached statistical significance for all networks. For the AD 
dementia stage, adding the alternative seeds improved the model 
performance when using the alpha band AEC-c as functional net
work, from C = 0.238 (Model 1) and C = 0.262 (Model 2) to C = 0.368; 
P = 0.008. For the beta band AEC-c, model performance improved 
compared to Model 2 (from C = 0.273, to C = 0.316; P = 0.025) but 
not to Model 1. For the other network models prediction accuracy 
remained poor.

Discussion
Using the brain network topology of subjects without AD path
ology we were able to predict tau propagation in all pre-dementia 
stages of the AD continuum. The tau deposition patterns 

predicted by the spreading model that was based on functional 
networks showed highest correlations with observed 
18F-flortaucipir tau depositions, followed by those based on the 
structural network or the diffusion process. When taking into ac
count the ongoing neurodegeneration and tau spread in later dis
ease stages, namely by using the previous disease network and 
its regions where tau binding was most prominent, the model 
showed slight improvement for the functional network based 
on the alpha band AEC-c, but no or only marginal improvement 
for the other networks. The models based on the functional net
works remained the best predictors of tau spreading. These re
sults suggest that in addition to structural connections, 
functional connections play an important role in tau spread, 
and highlight that neuronal dynamics play a key role in promot
ing this pathological process. Aberrant neuronal communication 
patterns should be taken into account when identifying targets 
for future therapy that halt disease progression.

Figure 4 Observed versus predicted patterns of tau spreading in several stages of the Alzheimer’s disease continuum. The top row displays the ob
served clinical 18F-flortaucipir-PET BPND for each group. The other rows display the predicted spreading patterns for the different (functional, struc
tural, diffusion) networks, based on the group level control network and a single seed region, with the corresponding optimum correlation coefficient 
evaluating model performance. Warmer colours represent a higher proportion of regional tau-binding, or higher probability of infection. Note that in 
the predicted data, the seed region (ROI 14) is always infected with maximum tau binding (by definition). AD = Alzheimer’s disease; AEC-c = corrected 
amplitude envelope correlation; MCI = mild cognitive impairment.
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The role of functional connectivity in tau spread

Because of the current availability of specific tracers for PET im
aging of tau deposition, enabling the visualization of tau in living 

humans,5,6 we can investigate the relationships between net

work connectivity and the spread of tau throughout the brain. 

Multiple previous 18F-flortaucipir versus fMRI studies have pro

vided support for the possibility of a close relationship between 

tau deposition and functional connectivity.9-14,53 Interestingly, 

structural connectivity was found to be the best predictor of tau 

deposition in recent work by Vogel and colleagues, comparing 

fMRI-based functional networks to DTI-based structural net

works.16 MEG holds the possibility to expand upon fMRI-based 

functional connectivity research since it is a direct measure of 

neuronal activity with high temporal and spatial resolution. To 

our knowledge, only three studies have investigated MEG in 

relation to tau-PET, two of which opted to explore covariance be
tween tau patterns and brain networks of functional connectiv
ity.19,20 Both studies showed tau-related increases in functional 
connectivity in the lower frequencies (delta and theta bands) 
combined with a loss of functional connectivity in the higher fre
quency bands (alpha and beta). This is in agreement with previ
ous studies showing decreases in number and within-network 
connections of functional subnetworks for beta and gamma 
bands, but paradoxical increases in the delta and theta bands 
for MCI and AD patients.54 A third study from our group com
bined MEG and tau-PET with 11C-UCB-J-PET and showed that 
both higher 18F-flortaucipir and lower 11C-UCB-J uptake were 
associated with altered synaptic function, indicative of slowing 
of oscillatory activity, indicating that in AD, tau pathology is 
closely associated with reduced synaptic density and synaptic 
dysfunction.55

Figure 5 Observed versus predicted patterns of tau spreading in several stages of the Alzheimer’s disease continuum, for the second model. The first 
and third columns show the original results from the first model, using the control network as backbone, with the second and fourth columns showing the 
new results, based on the networks of the preceding disease stage, with the corresponding fit evaluating model performance. The rows display the ob
served clinical 18F-flortaucipir-PET BPND, and the predicted spreading patterns for the different (functional, structural, diffusion) networks. Warmer 
colours represent higher proportion of regional tau-binding. Note that in the predicted data, the seed region (ROI 14) is always infected with maximum 
tau binding. AD = Alzheimer’s disease; AEC-c = corrected amplitude envelope correlation; MCI = mild cognitive impairment.
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Our study expands upon these previous works by introducing 
an MEG-based epidemic spreading model, a mathematical model 
that simulates the propagation of an agent from some given loca
tion to other connected areas, in this case designed to mimic the 
hypothetical spreading of tau. In this model, we evaluated both 
functional and structural networks, as well as a diffusion network 
as null hypothesis, in order to investigate the role of different net
work types in tau spread. In our spreading model, functional net
works in two frequency bands were the best predictors of tau 
spread, outperforming the structural and diffusion networks. In 
other words, the spread of tau may be strongly determined by the 
way neurons are interacting, and strong functional interactions 
with neurons at the initial seeding site may be more important 
than simple anatomical connections. While structural networks 
are believed to shape and provide constraints for the dynamics of 
functional connectivity56-58 (and to an extent, functional networks 

can be predicted from the underlying structural connectome),59-62

functional networks are not merely a one-to-one reflection of the 
underlying structural network.63 Interestingly, multiple sclerosis 
patients with cognitive problems may show functional network 
changes without severe structural damage.64 Functional imaging 
may therefore provide another layer of information by identifying 
the role of aberrant neuronal dynamics in the pathogenesis of AD 
and subsequent tau spread through the brain.

While our model could capture the early stages of tau spreading 
accurately, later disease stages were modelled less precisely. 
Possible explanations for this include the initial use of the control 
network as a backbone to predict all subsequent stages of the AD 
continuum, which does not take into account the decline of con
nectivity or network degradation due to neurodegeneration in later 
disease stages. However, when adding the previous disease stage 
network to account for this, only the prediction for the alpha 

Figure 6 Observed versus predicted patterns of tau spreading in several stages of the Alzheimer’s disease continuum, for the third model. The first and 
third columns show the original results from the first model, using the control network as backbone, with the second and fourth columns showing the new 
results, based on the networks of the preceding disease stage and alternative seed regions (based on tau cut-offs), with the corresponding correlation 
evaluating model performance. The rows again display the observed clinical 18F-flortaucipir-PET BPND, and the predicted spreading patterns for the 
different (functional, structural, diffusion) networks. Warmer colours represent higher proportion of regional tau-binding. Note that in the predicted 
data, the seed regions are always infected with maximum tau binding. AD = Alzheimer’s disease; AEC-c = corrected amplitude envelope correlation; 
MCI = mild cognitive impairment.
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band functional network improved, and the prediction for the beta 
band network and the structural network did not. A possible ex
planation (Supplementary Fig. 1) is that, as a result of neurodegen
erative loss of connectivity, the networks of subsequent disease 
stages lose ‘structure’, i.e. display less hierarchy in connectivity va
lues, which makes it harder for the model to predict which connec
tions are important for tau spread. The beta band functional 
network, even in the control and preclinical AD stage, shows less 
structure than the alpha band, which may explain why prediction 
accuracy did not improve for this band when the previous disease 
stage networks were used, as it did for the alpha band. A similar ex
planation may explain the results for the structural network. The 
diffusion network, as a network of adjacent ROIs, is most likely little 
affected by neurodegeneration, which may be why prediction ac
curacy in later stages was largely unaltered when using the previ
ous disease stage network. Another relevant explanation for the 
lack of accuracy in later stages is the use of a relatively low- 
resolution atlas, which may not capture the subtleties in network 
degeneration as the disease progresses and allows fewer para
meters to be fit to the data, resulting in less accurate predictions.

When adding additional tau-infected regions at starting point 
into the model in order to model tau seeding from previously in
fected regions, model performance showed some improvement 
for most networks in the MCI stage, and only for the alpha band 
in the dementia stage. Possible explanations for the limited im
provements are that by adding more seeds to the model, a larger 
percentage of the total number of ROIs is used as seed (for instance, 
in the AD dementia stage 14 ROIs were entered as seeds, which is 
28% of the total number of ROIs), which the model compensates 
for by adjusting the spreading rate, resulting in either over- or un
derestimates of tau spread.

This is not the first study that uses a spreading model in an at
tempt to explain tau pathology in AD. Vogel and colleagues16 pro
vided valuable insights in a recent paper that used ESM to model 
the spread of tau tangles across the brain using atlases based on ei
ther anatomical (DTI) or functional connectivity (fMRI) maps, and 
then compared the resulting patterns with actual data from 
tau-PET scans of 312 people. Both maps fit the data, but, contrary 
to our results, the model based on structural connectivity per
formed best, explaining 70% of the observed pattern of tangles 
within the brain. A possible explanation for these discrepant re
sults is the measures used to estimate connectivity. In fMRI, a 
change in brain activity is inferred via measurement of local 
changes in haemodynamics, which necessarily assumes a relation
ship between neuronal activity and the haemodynamic response 
[blood oxygen level-dependent (BOLD) signal]. The dependence of 
the BOLD signal on haemodynamic and neurovascular coupling 
parameters means that it must be viewed with some caution as a 
quantitative metric of brain activity. A change in the BOLD signal 
could arise from a change in neuronal activity, neurovascular coup
ling, haemodynamic state or a combination of these.65 In contrast, 
MEG measurements of electrical current in the brain are inferred 
directly via measurement of extracranial magnetic fields. Since 
DTI data were not available for our cohort, we used a well validated 
surrogate model for structural connectivity: the EDR, which has re
peatedly been shown to reproduce human DTI data well.49,50,66

Future work may expand upon the current model by adding long- 
range connections.66 Using EDR-MEG networks to define the back
bone for the dynamical model allows for more versatility, as well 
as the ability to use our approach in patients for whom DTI data 
are not available, reducing the burden associated with the use of 
computational models in clinical practice.

Our understanding of the pathological mechanisms underlying 
AD has grown over the past years. Tau pathology has long been con
sidered to appear late in the disease course, but it may actually be 
one of the earliest signs of the disease. Pathological studies indicate 
that early stage tau deposits can present locally in the medial tem
poral lobe before the first amyloid plaques appear.67,68 Contrary to 
amyloid-β studies, previous tau studies have shown that tau load 
correlates strongly with cognitive decline, preferentially accumu
lates in functionally relevant brain areas and co-localizes with hy
pometabolic regions and atrophy.11,69-72 These relationships 
indicate that tau may well be a very important factor in the devel
opment of AD. Preclinical studies in several brain diseases indicate 
that tau proteins transfer trans-synaptically from neuron to neu
ron.73-75 Studies in transgenic mice expressing human tau in the 
entorhinal cortex found age-dependent tau accumulation in synap
tically downstream regions,73 not only locally, but also in distant re
gions with strong synaptic connections to the initial site.76 These 
studies suggest that the spread of tau is determined by the way 
neurons are interconnected. Our current findings are in line with 
these studies, and propose that tau pathology spreads through 
neuronal connections, principally those that are heavily used 
functionally. Interestingly, recent work found evidence that 
from Braak stage III onward, local replication rather than 
spreading between brain regions, is the main process controlling 
the overall rate of accumulation of tau in neocortical regions, but 
which specific factors influence this process remains specula
tive.77 Possibly, the process of neurodegeneration, i.e. neurons 
that degenerate and show tau deposition, is mediated by local 
pathological neuronal activity that makes use of functional con
nections to influence downstream activity of other neurons, 
which in turn will start to exhibit pathological (hyper)activity 
and enhance tau deposition. This then gives rise to a self- 
perpetuating loop of further damage to inhibitory interneurons 
and neuronal hyperactivity in (sub)networks involved in mem
ory encoding, independently of amyloid. To which regions tau 
is spread is determined by trans-synaptic propagation of tau 
proteins. In later stages, disinhibition and tau deposition lead 
to massive loss of synapses and cell death, reflected by hypocon
nectivity of large scale networks. The present results may con
tribute to increased understanding of pathophysiological 
mechanisms in AD, as well as identify novel targets for future 
therapy that halt disease progression, for instance by manipu
lating the neuronal activity levels of target regions in early 
stages.

Strengths

An important strength of the current study is the inclusion of 
subjects from the full scale of the Alzheimer’s continuum, all 
with biomarker confirmation of AD pathology. All subjects re
ceived an elaborate work-up and diagnoses were generated dur
ing a multidisciplinary consensus meeting, according to recent 
international guidelines. For all subjects, we acquired data 
from different modalities: MEG, MRI and 18F-flortaucipir PET, 
and integrated them into a predictive model, with the simplicity 
of the model being a main advantage. ESMs do not intend to cap
ture the details of the underlying biological basis of tau spread
ing, only the stereotypical patterns of its propagation. This 
simplicity allows for faster calculations and fewer free para
meters, and also comes with a large body of theoretical and com
putational studies that can be used to design the study and 
interpret the results.
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Limitations

Our study comes with a number of limitations. First, due to atlas re
strictions, we were not able to model the initial spread of tau path
ology from the entorhinal cortex, which is generally accepted as 
the starting point of tau spread through the brain. However, while 
the entorhinal cortex plays a central role in the early appearance 
of tau, recent work has shown that it may be the inferior temporal 
cortex that is the critical region for rapid tau accumulation in pre
clinical AD,52 which was used as the seed in the current study. In a 
recent paper, Insel and colleagues52 used three large cohorts to iden
tify regions with high rates of tau accumulation, showing that the in
ferior temporal cortex, fusiform gyrus and middle temporal cortex 
had the largest effect sizes of tau accumulation longitudinally. 
They postulate that while the entorhinal cortex is the initial site to 
show abnormal levels of tau with age, this does not appear to be 
the result of a high rate of accumulation in the short term, but pos
sibly a more moderate rate occurring early as a result of ageing. The 
inferior temporal cortex in particular was shown to be a site of both 
amyloid-β deposition as well as rapid tau accumulation; it could thus 
subsequently act as a central hub for rapid, widespread tau propaga
tion due to local amyloid-β–tau interaction. Additionally, the limited 
resolution of the current atlas entails that fewer subtleties of the 
parameters of the dynamical model can be reliably fit to the data. 
Another possible limitation is the validation of the results: in order 
to assess model performance, we compared the model prediction 
with 18F-flortaucipir binding. However, it must be noted that the 
18F-flortaucipir tracer provides a measure for neurofibrillary tangle 
pathology, while most preclinical studies have shown oligomeric 
tau as the pathological tau isoform at the synapse. Finally, it must 
be noted that participants in the study were relatively young as 
the result of drawing from a tertiary memory clinic population, as 
well as selection bias due to the fact that participants had to be in 
sufficient condition to undergo 80–100 min of 18F-flortaucipir PET. 
Possibly, a single spreading model with a single epicentre may not 
be sufficiently adequate to describe patterns of tau spread, which 
have been shown to conform to several different patterns.78 One 
positive aspect of this young group is that the AD pathology may 
be less affected by other problems such as vascular changes. 
Future studies could improve upon our work and possibly improve 
correlations by testing multiple tau epicentres as original seeds.

Future studies

Future models may be able to improve upon the current results 
by using higher resolution networks, larger samples and incorp
orating more complex network features, such as centrality, in 
order to identify which network characteristics play an import
ant role in tau spread. Additionally, the role of neuronal (hy
per)activity in promoting tau spread requires further 
examination. Finally, we investigated only the alpha and beta 
bands, while other frequency bands could capture different as
pects of network pathology in AD. Given previous work showing 
the importance of theta and gamma waves for cognitive pro
cesses and the development of AD pathology,79 it would be inter
esting for future studies to investigate the role of these bands in 
tau spread.

Conclusion
In conclusion, our data support the concept that tau pathology 
spreads through neuronal connections, principally via functional 

connections. These results suggest that in addition to structural 
connections, neuronal dynamics play a key role in promoting tau 
spread. We hypothesize that aberrant neuronal activity, especially 
in highly functionally connected regions, could drive this process. 
These results may contribute to the identification of vulnerability 
factors for disease progression and identify potential targets for fu
ture therapy.
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