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Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expan
sions in the DMPK 3′ untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs 
that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic 
dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, 
including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. 
To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a 
mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected 
by the expression of toxic CUG expansion RNAs.
To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lat
eral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were eval
uated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if 
transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from 
neurologically unaffected (two females, three males; ages 50–70 years) and myotonic dystrophy type 1 (one female, 
three males; ages 50–70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF 
composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five 
males; ages 35–55 years) and non-myotonic dystrophy patients (three females, four males; ages 26–51 years), and west
ern blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis.
We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in 
mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns dur
ing choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in 
Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed dis
ease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion 
homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. 
Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated 
contributor to myotonic dystrophy type 1 CNS pathogenesis.
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Introduction
The alternative splicing (AS) of mammalian RNAs plays a key role in 
the expression and timing of RNA and protein isoforms required at 
each stage of embryonic and postnatal development. To achieve 
this precise expression program, AS is regulated by coordinated in
teractions between nascent RNA sequences/structures, numerous 
RNA splicing factors and the spliceosome.1–4 The importance of AS 
regulation during development is exemplified by the autosomal 
dominant hereditary disease myotonic dystrophy type 1 (DM1), 
which is caused by CTG short tandem repeat expansions (CTGexp) 
in the DMPK 3′ untranslated region.5,6 Transcription of the DM1 mu
tant allele results in CUGexp RNAs that alter the activities of the CELF 
and MBNL splicing factor families. During development, MBNL1 and 
MBNL2 promote foetal-to-adult isoform switching by preferential 
binding to structurally organized compound YGCY (Y = pyrimidines) 
motifs on its target RNAs.7–10 Since the density of this binding motif is 
exceptionally high on CUGexp RNAs, MBNL is sequestered by these 
mutant RNAs in nuclear ribonucleoprotein (RNP) foci, which results 
in impaired MBNL activity, reversion to foetal isoform patterns for 
its RNA targets and disease manifestations.11 Inhibition of MBNL ac
tivity due to both germline and somatic CTGexp mutations leads to se
vere deficits in the CNS, including early onset tau neurofibrillary 
tangles (NFTs), altered sleep regulation, impaired executive function, 
progressive cerebral atrophy with coordinate ventricle/CSF volume 
increases and intellectual disability in congenital myotonic dys
trophy.12–18 Interestingly, several adult-onset myotonic dystrophy 
disease symptoms appear to model accelerated brain ageing,19,20 al
though how the reversion to foetal splicing patterns due to loss of 
MBNL activity can lead to these CNS manifestations is unclear.

While previous studies on transcriptomic alterations in the DM1 
brain have focused on neuronal AS,21,22 we recently generated Dmpk 
CTGexp knock-in (KI) mouse models for this disease and determined 
that the initial impact of CUGexp expression on molecular pathology 
occurs in the choroid plexus (ChP) due to the relatively high level of 
Dmpk expression in this tissue.23 The ChP, a highly active fenestrated 
capillary network responsible for producing CSF, is composed of spe
cialized epithelial (ependymal) cells that envelope a capillary and con
nective tissue core.24,25 The four ChPs are located in the two lateral 
(telencephalic), third (diencephalic) and fourth (hindbrain) ventricles, 

where each ChP plays distinct roles through differences in their secre
tome.26,27 In addition to ChP spatial specificity, their functions are 
temporally controlled with a major switch from regulating CNS devel
opment during embryogenesis and postnatal development to a main
tenance function in adults.27–29 ChP-CSF axis functions range from 
providing nutrients, growth factors, clearing metabolites, circadian 
rhythm regulation and CNS immune surveillance to the regulation 
of neural stem cells (NSCs) in the subventricular zone.28–32

Interestingly, mouse models of other late adult-onset short tandem 
repeat expansion (STRexp) diseases, such as fragile-X tremor/ataxia 
syndrome and Huntington’s disease, have provided evidence that re
peat expansions in the lower pathogenic range can affect neurodeve
lopment, which may influence disease onset and progression later in 
life.33,34 It is possible that a similar phenomenon occurs in myotonic 
dystrophy by affecting neurodevelopment through the ChP-CSF axis.

Overall, the ChP is in a unique position to elicit global changes to 
the CNS, since it may regulate pronounced shifts from foetal to 
adult CSF composition. Based on this possibility, we investigated 
the pathology of the ChP in human patients with DM1 as well as 
mouse models, to further understand how ChP-CSF axis alterations 
might impact the brain. Here, we show splicing patterns are most 
affected in the lateral ventricle ChP (LVChP) and are primarily regu
lated by MBNL2 in our Dmpk CTGexp mouse model, and a similar set 
of mis-splicing events occurs in the human DM1 LVChP. 
Furthermore, RNA-seq analysis of DM1 versus control LVChP re
vealed alterations in ion channel homeostasis as well as specific 
neurotrophic and growth factor mis-splicing with coordinate 
downstream effects on CSF composition. Our results demonstrate 
that the ChP is a particularly vulnerable tissue in DM1 and implicate 
ChP mis-splicing in disease-relevant CSF alterations.

Materials and methods
Human choroid plexus and CSF samples

Human ChP tissues (Alzheimer’s disease and neurologically un
affected controls) were obtained from the NIH NeuroBioBank.35

DM1 ChP tissues were obtained both from the University of 
Florida (UF) Center for NeuroGenetics and the Stanford University 
Neuromuscular BioBanks. All human ChP tissues used in this study 
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were pre-existing and deidentified. Human CSF samples were ob
tained (details below) from 10 patients with DM1, who suffered 
from hypersomnolence, and seven non-myotonic dystrophy pa
tients at the University of Rochester Medical Center, under a proto
col approved by the Institutional Review Board (IRB 
#STUDY00004736). Details of the human patient tissues and CSF 
with relevant information are included in Supplementary Table 1.

Animal experiments

All animal procedures were conducted in accordance with National 
Institutes of Health Guidelines and approved by the UF IACUC. 
Timed matings were performed to obtain wild-type FVB/NJ prenatal 
time point embryos, and embryonic time points [embryonic Day (E) 
13.5, E15.5 and E18.5] were collected followed by ChP isolation for 
RNA analysis (2–4 samples were pooled for sufficient RNA). 
Postnatal time point [postnatal Day (P)0, P1, P3, P7, P14, P21 and 
P63] mice were euthanized and the ChP isolated for RNA (P0, P1 
and P3 were 2–4 sample pools) or imaging. DmpkCTG480 knock-in 
(Dmpk CTGexp KI)23 and Mbnl2Δe2/Δe2 knockout (Mbnl2 KO)36 mice 
were generated previously and bred to obtain congenic (N10) ani
mals on the FVB/NJ background. Genotyping methods are described 
in the Supplementary material, and the primers are listed in 
Supplementary Table 2. Embryonic time point E13.5 was obtained 
as described above and ChP postnatal time points (P1, P14, P63 
and P54–P84) were isolated for RNA or imaging. All experiments 
prior to P21 were composed of equal numbers of males/females, 
in contrast to P21+, which were all males. Females were needed to 
generate additional embryonic time points. For ChP isolation, adult 
wild-type FVB mice were euthanized, and the brain carefully trans
ferred to cold PBS. To isolate the LVChP, the brain was cut coronally 
approximately one-third from the top to open the lateral ventricles. 
The lateral ventricles were identified and carefully opened to allow 
visualization and removal of the LVChP by gentle separation along 
the base. To isolate the fourth ventricle (4V)ChP, the hindbrain in
cluding cerebellum and brainstem was separated from the rest of 
the brain to open the fourth ventricle. The 4VChP was identified 
and removed gently but firmly with forceps, carefully breaking the 
connection to other tissues at the base of the ChP.

CSF collection and western blotting

CSF samples from DM1 and control patients were obtained in a 
seated position and fluid was processed immediately after collec
tion. One control patient sample was excluded from further ana
lysis due to diagnosis of chronic inflammatory demyelinating 
polyneuropathy and cerebellar stroke, both of which result in CSF 
protein alterations, including increased total protein.37,38 Fluid 
was moved to separate tubes and centrifuged at 2500g for 10 min 
at 4°C; then, supernatants were removed into aliquots of approxi
mately 1.5 ml and stored at −80°C. Time to freezer on average did 
not exceed 1 h. Protein concentration in CSF samples was assayed 
using the Qubit 4 Fluorometer protein assay (Invitrogen) and sam
ple loading was normalized to approximately 10 μg per lysate 
load. Samples were lysed in protein lysis buffer (50 mM Tris-HCl 
pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% Igepal, 0.25% sodium 
deoxycholate and protease inhibitors). Protein lysates were sepa
rated on 7.5% TGX Stain-Free Criterion gels (Bio-Rad), imaged in a 
ChemiDoc+ system (Bio-Rad) for total protein loading and trans
ferred to a PVDF membrane (Millipore). Blotting was performed 
using primary antibodies (Supplementary Table 3) diluted in 4% fat- 
free milk in PBS. Horseradish peroxidase (HRP)-conjugated anti- 

mouse and anti-rabbit secondaries were used at 1:10 000. Signals 
were developed with ProSignal Dura ECL substrate (Prometheus). 
Images were captured using the Amersham Imager 680 (GE) and 
signal intensity was calculated using ImageLab software (Bio-Rad).

Immunofluorescence and RNA-fluorescence in situ 
hybridization

ChPs were isolated intact and fixed in 4% paraformaldehyde (PFA) 
for 10 min. For fluorescence in situ hybridization (FISH), samples 
were permeabilized in 70% ethanol overnight at −20°C. Samples 
were rehydrated in 2× saline-sodium citrate (SSC)/40% formamide 
for 1 h at room temperature (RT), then blocked with pre- 
hybridization solution for 1 h at 50°C. The probe used was 
TYE563-LNA-CAG10 (400 ng/ml), which was denatured in hybridiza
tion solution (2× SSC, 40% formamide, 100 mg/ml dextran sulfate, 
1 mg/ml yeast tRNA, 0.2 mg/ml BSA and 2 mM ribonucleoside vana
dyl complex) before adding to the samples for overnight hybridiza
tion at 50°C. The following day, slides were washed twice for 30 min 
each in 2× SSC/40% formamide at 60°C, counterstained with DAPI 
and mounted in slides using ProLong Glass anti-fade mountant 
(Invitrogen). For immunofluorescence processing, samples were 
permeabilized in 0.2% Triton X-100 and blocked in Background 
Sniper (Biocare Medical) for 30 min at RT. Primary and secondary 
antibodies were diluted in 10% Background Sniper/PBS 
(Supplementary Table 3). Samples were counterstained with DAPI 
and mounted in slides using ProLong Glass anti-fade mountant 
(Invitrogen). All images were collected using a Zeiss LSM 880 con
focal laser scanning microscope.

RNA-sequencing

Total RNA was isolated as described in the Supplementary material, 
DNase digested and quality checked using a Fragment Analyzer 
(Agilent). RNA was depleted of rRNA (rRNA Depletion Kit v2 
Human/Mouse/Rat, NEB) and cDNA libraries prepared (Ultra II 
Directional RNA Library, NEB). Mouse developmental ChP libraries 
were generated using 168 ng, and human ChP libraries using 
500 ng, of total RNA input, and sequenced on Illumina NextSeq500 
and NextSeq2000 platforms. Demultiplexed fastq files were in
spected using FastQC, aligned to the mouse (GRCm38/mm10) or hu
man (GRCh38/hg38) genomes using STAR (v2.7.10a).39 Alignments 
were processed using DESeq2 (v1.36.0) for differential expression 
(DE) and rMATS turbo (v4.1.2) for AS analysis.40 rMATS outputs 
were filtered using the R package maser, using cut-off criteria of 
mean reads ≥5, false discovery rate (FDR) < 0.05 and a minimum 
change in AS events of 10% (|ΔΨ| ≥ 0.1). Multiple sclerosis patient 
ChP RNA-seq datasets are publicly available online (GSE137619).

Protein structure modelling and prediction

Protein structures for the Saposin-B region of PSAP (1N69) and the 
central domains of PGF (1FZV) are publicly available on Protein 
Data Bank (PDB).41 The modelled structures for alterations due to 
splicing changes were predicted using the UCSF ChimeraX 
AlphaFold tool with the use of ColabFold, an optimized version of 
AlphaFold2, with default parameters.42,43 Protein structures mod
elled with AlphaFold2 are included in Supplementary Table 4.

Osmolarity

CSF was obtained from DM1 and non-myotonic dystrophy patients 
as described above. The total solute concentration (any charged 
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molecule: ions, metabolites, etc.) was analysed using the Vapro va
pour pressure osmometer model 5600 (EliTech Group Biomedical 
Sciences). Three readings of 10 μl each were made per sample, 
and the average of these three replicates was used as one data- 
point. Samples were analysed at random in groups of four, and after 
every fourth reading, the osmometer was recalibrated to ensure no 
drift occurred by using 100, 290 and 1000 mOsm standards (EliTech 
Group Biomedical Sciences).

Statistical analysis

Statistical significance was determined in GraphPad Prism 
(v9.5.0.525) by ordinary one-way ANOVA with Tukey’s multiple 
comparisons test. A t-test (two-tailed) was used for either paired 
or unpaired comparisons of two groups as stated in the figure le
gends. Standard deviation (SD) was used for graphing of error 
bars throughout the figures. All statistical analysis was performed 
using at least three biologically independent samples.

Data availability

All data are openly available at the Gene Expression Omnibus 
(GEO)44 (https://www.ncbi.nlm.nih.gov/geo/) under the SuperSeries 
GSE228459. Mbnl2 KO mouse ChP developmental RNA-seq datasets 
are deposited under the SubSeries GSE228314; human patient ChP 
RNA-seq datasets for neurologically unaffected controls, DM1 and 
Alzheimer’s disease are deposited in the GEO under SubSeries 
GSE228458. All code used to process, analyse and visualize data is 
openly available at https://github.com/helmutcarter/Nutter_et_al_ 
2023.

Results
Lateral ventricle choroid plexus spliceopathy in 
Dmpk CTGexp knock-in mice

Using a mouse Dmpk CTGexp KI model for DM1, we recently demon
strated that expression of toxic CUGexp RNAs in the brain has the 
greatest impact on RNA mis-splicing in ChP epithelial cells,23 which 
produce the majority of CSF.24,45 While these findings suggested 
that CSF alterations induced by ChP dysfunction play a role in 
DM1 CNS aetiology,23 this study only evaluated ChP mis-splicing 
in the adult 4VChP omitting the LVChP (Fig. 1A).46,47 Since progres
sive cerebral atrophy is a major feature of DM1 brain pathology, the 
LVChP is of particular interest due to its regulation of neural stem 
cell proliferation/differentiation in the subventricular zone and 
the subgranular layer of the hippocampal dentate gyrus.27,48 We 
first isolated and tested if there are differences in the molecular 
pathology of toxic RNA foci between 4VChP and LVChP (Fig. 1B). 
Our analysis of CUGexp RNA revealed larger and more intense 
RNA foci in the LVChP compared to the 4VChP (Fig. 1C), suggesting 
either longer repeats or more prevalent Dmpk transcripts contain
ing toxic repeats in the LVChP. Repeat length was not the cause 
since somatic expansion between tissues or different ChP ventricu
lar regions was not detected (Supplementary Fig. 1A). To test if 
Dmpk expression was higher, we used reverse transcription quanti
tative PCR (RT-qPCR) and found that, while wild-type mice exhib
ited a small increase in Dmpk RNA levels in the LVChP compared 
to 4VChP, there was a greater increase in the KI mice (Fig. 1D). 
Furthermore, RNA steady-state levels of Mbnl1 and Mbnl3, but not 
Mbnl2, were higher in 4VChP versus LVChP in both wild-type and 
Dmpk CTGexp KI mice (Fig. 1D). This resulted in a Dmpk/Mbnl ratio 
exhibiting a nearly 2-fold increase in KI mice LVChP compared to 

KI 4VChP or wild-type LVChP (Fig. 1D). Since this ratio increase 
was expected to further impair splicing, we compared Dmpk 
CTGexp KI mis-splicing of several previously identified 
DM1-relevant genes (Mbnl2, Mbnl1, Inf2, Kif13a) in the LVChP versus 
the 4VChP (Fig. 1E). We observed that the magnitude of spliceopa
thy increased approximately 2-fold in LVChP compared to 4VChP 
(Fig. 1E and Supplementary Fig. 1B), which coincided with the 
2-fold increase in Dmpk/Mbnl ratio (Fig. 1D). In conclusion, the 
LVChP was more severely affected in this mouse model of DM1.

Alternative splicing regulation during choroid plexus 
development

Since a hallmark of DM1 spliceopathy is the reversion of splicing to 
earlier developmental patterns,49 and the LVChP showed a more se
vere molecular pathology (Fig. 1), we next investigated LVChP tem
poral RNA processing. Splicing changes throughout ChP 
development have not been investigated previously, so we ana
lysed RNA AS and DE during wild-type LVChP development to iden
tify the period when CUGexp RNA toxicity might be the most severe. 
Using the mouse developmental Allen Brain Atlas collection47,50,51

and expression of ChP-specific genes (Ttr, Aqp1, Kl), we determined 
that the earliest stage to reproducibly isolate wild-type LVChP 
based on tissue morphology was E13.5 (Supplementary Fig. 2A). 
To positively identify the tissue as LVChP, we used morphology52

(Fig. 2A) and expression analysis of the ChP marker Ttr 
(Supplementary Fig. 2B). Next, we used RNA-sequencing 
(RNA-seq) (Supplementary material) to determine the splicing of 
wild-type LVChP isolated from E13.5 versus postnatal (P1, P14) 
(Supplementary Fig. 2C) and adult (P63) stages (Fig. 2B). The devel
opmental transition that occurred between E13.5 and P1 showed 
the most splicing changes, in comparison to more modest additive 
increases with each progressive stage of development (P14 and 
adult), including considerable overlap between time points 
(Supplementary Fig. 2D). Developmental splicing changes (Fig. 2C) 
were validated by RT-PCR, including Numa1 exon 15, Picalm exon 
18, Postn exon 18 and Ndrg2 exon 3 (Fig. 2D). We further analysed 
the RNA-seq to look at the DE changes (Supplementary Fig. 2E and 
F). Significantly DE genes in E13.5 versus adult LVChPs revealed 
that nearly all annotated mRNA binding/splicing factors had de
creased RNA levels, including Nova1, Srrm4, Celf2 and Ptbp2 (Fig. 2E
and Supplementary Table 5). In contrast, Mbnl2 was the only mRNA 
binding/splicing factor with significantly increased expression in 
adulthood. RT-qPCR validated that Mbnl2 RNA expression increased 
approximately 4-fold from E13.5 to P63, with more moderate changes 
in Mbnl1 and Mbnl3 expression (Supplementary Fig. 2G). Particularly 
relevant to DM1, Dmpk RNA levels were observed to be dynamically 
regulated during LVChP development, staying relatively level until 
P3, then increasing steadily to adult (P63) stages (Supplementary 
Fig. 2G). The cumulative changes in Mbnl and Dmpk expression re
sulted in a clear increase in the Dmpk/Mbnl ratio over development, 
which reached its peak at P14 to adult (Fig. 2F). Since these results in
dicated that higher MBNL2 levels promote adult specific splicing pat
terns during LVChP development and that impaired MBNL activity in 
DM1 may occur as early as P14, we next assessed the effects of MBNL2 
loss in ChP development using Mbnl2 KO mice.

MBNL2 promotes adult splicing events during 
choroid plexus development

Mbnl2 KO mice have been previously evaluated as a model for CNS 
symptoms of myotonic dystrophy, since MBNL2 is the major MBNL 
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Figure 1 LVChP spliceopathy in Dmpk CTGexp KI mice. (A) In situ hybridization (dark stain) showing localization of LVChP and 4VChP in a sagittal brain 
section from an adult C57BL6 mouse using Ttr expression as the ChP marker (Allen Brain Atlas Mouse database). Scale = 839 μm. (B) Morphological com
parison of isolated LVChP and 4VChP. Scale = 1 mm. (C) RNA-FISH of CUG repeat expansion (CUGexp) showing RNA foci (red) in the nucleus (blue, DAPI) 
of adult Dmpk+/+ FVB control versus Dmpk480/480 LVChP and 4VChP. Scale = 8 μm. WT = wild-type. (D) Mbnl1, Mbnl2, Mbnl3, and Dmpk RNA expression by 
RT-qPCR in LVChP (white) and 4VChP (blue) isolated from wild-type FVB littermate mice and Dmpk480/480 KI (thick crosshatch). Normalized RNA expres
sion is based on the geometric mean of three housekeeping genes (Gorasp1, Psmb4, Rpl38) while the ratio of Dmpk/Mbnl expression was calculated as the 
normalized expression of Dmpk/(Mbnl1 + Mbnl2 + Mbnl3). (E) RT-PCR gels (representative top) and analysis (graph bottom) of myotonic dystrophy asso
ciated AS events (Mbnl2 exon 5, Mbnl1 exon 5, Inf2 exon 22, Kif13a exon 26) from LVChP (white) and 4VChP (blue) isolated from adult littermate Dmpk+/+ 

wild-type FVB (outlined), Dmpk+/480 KI (thin crosshatch), and Dmpk480/480 KI (thick crosshatch) mice *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, one- 
way ANOVA or paired t-test. 4V ChP = fourth ventricle choroid plexus; DE = differential expression; LV ChP = lateral ventricle choroid plexus.
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paralogue in brain and neurons.36 Indeed, Mbnl2 KO mice exhibit 

sleep dysfunction and cerebral atrophy, similar to symptoms ob

served in human DM1.19,36,53 Therefore, our goal was to analyse 

how Mbnl2 KO influences LVChP, especially whether transitions 

to adult splicing patterns are impaired. Using isolated LVChP tissue, 

we first determined that MBNL2 protein primarily localized to the 

nucleus of both LV and 4VChP epithelial cells in wild-type mice, 

while nuclear MBNL2 was undetectable in Mbnl2 KO mice (Fig. 3A

and Supplementary Fig. 3A). RNA-seq was performed on LVChP 

from both Mbnl2 KO and wild-type littermate mice at developmen

tal stages E13.5, P1, P14 and adult (P63) (Supplementary material). 

MBNL2 loss did not cause a reduction in the expression of ChP mar

kers, including Ttr (Supplementary Fig. 3B). MBNL2 loss was asso

ciated with significant shifts at different developmental stages, 

Figure 2 Alternative splicing regulation during ChP development. (A) Developmental stage- (E13.5, P1, P14, adult) specific variations in size and morph
ology of LVChP. Scale = 1 mm. (B) Plot of AS events (Ψ) in wild-type FVB mice ChP comparing E13.5 to adult per cent spliced in (PSI) with the significant 
events in blue. (C) Numa1 exon 15 AS RNA-seq reads during development (E13.5, P0, P14, adult, light grey to black gradient). (D) RT-PCR gels (represen
tative) and analysis (bar graph) validations for E13.5, P0, P14 and adult stages of Numa1 exon 15, Picalm exon 18, Postn exon 18 and Ndrg2 exon 3. (E) In 
contrast to other splicing factors, Mbnl2 expression increases during postnatal development. Relative expression (RNA-seq) is plotted for significant 
differentially expressed genes during LVChP development. (F) The ratio of Dmpk/Mbnl expression was calculated as the normalized expression of 
Dmpk/(Mbnl1 + Mbnl2 + Mbnl3) for each developmental stage. #Significance of at least P < 0.05 for all the compared stages, *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001, one-way ANOVA. LVChP = lateral ventricle choroid plexus.
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for splicing this varied between 121 and 265 splicing events (Fig. 3B), 
while for DE there were between 286 and 709 expression changes 
(Supplementary Fig. 3C). Supporting our hypothesis, throughout 
development Mbnl2 KOs showed an impaired shift to adult splicing 
patterns for MBNL targets Numa1 exon 15 and Postn exon 18, in con
trast to non-MBNL targets Picalm exon 18 and Ndrg2 exon 3 
(Supplementary Fig. 3D). Additionally, genes mis-spliced in Dmpk 
CTGexp KI mice (Fig. 1E) were mis-spliced in Mbnl2 KO mice at al
most all stages of development. Interestingly, in three of four 
events (Mbnl2 exon 5, Mbnl1 exon 5 and Kif13a exon 26) the Mbnl2 
KO essentially maintained splicing at E13.5 patterns, while Inf2 
exon 22 was further repressed even at E13.5 (Fig. 3C). In adult 
Mbnl2 KOs, RT-PCR validated these mis-splicing events in both 
LVChP and 4VChP (Supplementary Fig. 3E). Since MBNL2 is seques
tered in DM1, resulting in a loss of splicing activity, this strongly 
suggested that ChP mis-splicing could revert to embryonic patterns 
in patients with DM1 or possibly fail to transition to adult patterns 
in congenital myotonic dystrophy patients.

Choroid plexus spliceopathy in myotonic dystrophy 
type 1

Based on our findings from mouse models that LVChP is particular
ly susceptible to Dmpk CUG repeat expansions (Fig. 1) and MBNL2 
regulates transitions to adult specific splicing patterns (Figs 2
and 3), we hypothesized extensive transcriptomic alterations occur 
in DM1 LVChP. To test this hypothesis, LVChP was isolated from 
post-mortem DM1 patients (one female, three males; age 50–70 
years), neurologically unaffected patients (two females, three 
males; age 50–70 years) and disease control patients (Alzheimer’s 
disease; three females, one male; age 70–85 years) 
(Supplementary Table 1). To ensure accurate identification of ChP 
tissues, all samples were evaluated for positive expression of the 
ChP markers TTR, AQP1 and KL (Fig. 4A) and negative expression 
of the neuronal markers MAP2, RBFOX3/NEUN and SYN1 
(Supplementary Fig. 4A). Furthermore, ChP isolates were positively 
identified as LVChP by expression of SIX3 (Supplementary Fig. 4B) 
and excluded as the 4VChP by low expression of EN2 
(Supplementary Fig. 4C).26 Using RNA-seq (Supplementary 
material), we observed that DM1 LVChP had 912 significant splicing 
changes approximately equally distributed in terms of inclusion 
versus exclusion (Fig. 4B) in contrast to DE of 1776 genes with a 
bias toward increased expression (Fig. 4C and Supplementary Fig. 
4E). Notably, mis-splicing of MBNL2 exon 5, MBNL1 exon 5, INF2 
exon 22 and KIF13A exon 26 identified in the Dmpk CTGexp KI 
(Fig. 1E) and Mbnl2 KO (Fig. 3C and Supplementary Fig. 3C) mouse 
models also occurred in DM1 patients’ ChP (Fig. 4D, top row). This 
subset of AS events was not significantly affected in Alzheimer’s 
disease or multiple sclerosis patients’ ChP (Fig. 4D, top row and 
Supplementary Fig. 4F). To further support our hypothesis that 
the spliceopathy we identified in Dmpk CTGexp KI and Mbnl2 KO 
mouse models is representative of human myotonic dystrophy 
ChP, we generated heat maps of the conserved mis-splicing events 
in DM1 LV ChP (Supplementary Fig. 4G) and Mbnl2 KO mice LV ChP 
(Supplementary Fig. 4H).

Although Alzheimer’s disease samples did not show the same 
mis-splicing that was concordant between our KI mouse model 
and human DM1 patients’ ChP (Fig. 4D, top row), recent reports 
have implicated the ChP in Alzheimer’s disease pathology.54,55

Thus, we further analysed the RNA-seq data of Alzheimer’s disease 
ChP (Supplementary material). In contrast to myotonic dystrophy, 
this analysis revealed 1174 AS events, with a bias toward exclusion, 

and 1520 DE genes in Alzheimer’s disease ChP (Supplementary Fig. 
4I). We identified splicing events specific to Alzheimer’s disease 
ChP (Supplementary Fig. 4J). Unexpectedly, approximately half 
the splicing events with concordance in the RNA-seq reads and sta
tistics showed similar mis-splicing between Alzheimer’s disease 
and DM1 patients’ ChP (Supplementary Fig. 4K), including four we 
validated by RT-PCR (Fig. 4D, bottom row). We subsequently ana
lysed publicly available RNA-seq datasets of multiple sclerosis 
ChP56 as an additional neurological disease control, which exhib
ited 1030 splicing changes (Supplementary material and 
Supplementary Fig. 4L–N); however, the mis-splicing events we va
lidated for DM1 and Alzheimer’s disease ChP (Fig. 4D) were un
affected in multiple sclerosis ChP (Supplementary Fig. 4F and N). 
These findings indicated there is a specific mis-splicing program 
of myotonic dystrophy ChP, although some novel events overlap 
with Alzheimer’s disease.

Choroid plexus mis-splicing alters CSF composition

Choroid plexus transporters and channels

Dysregulation of chloride and calcium ion homeostasis are promin
ent features of myotonic dystrophy. For example, skeletal muscle 
myotonia is caused by mis-splicing of the chloride channel 
CLCN1, resulting in its depletion due to nonsense mediated de
cay.57–59 Thus, we next investigated if the AS and/or DE of ion chan
nels were impaired in DM1 ChP. We screened the RNA-seq datasets 
for ‘transporter’ or ‘voltage-gated ion channel’ annotated genes and 
identified 177 genes with altered RNA AS and/or DE (Supplementary 
Table 6). Since chloride homeostasis is of special interest in myo
tonic dystrophy, we further investigated mis-splicing of CLCN3, 
an outward rectifying chloride-proton exchanger related to 
CLCN1.60 Interestingly, constitutive Clcn3 KO mice have a severe 
CNS neurodegenerative phenotype61,62 and CLCN3 variants have 
been associated with human neurodevelopmental disorders.63 In 
DM1 ChP, we found increased inclusion of CLCN3 exon 13 (Fig. 5A) 
in the absence of a change in the RNA level (Supplementary Fig. 
5A). Splicing has been shown to influence CLCN3 localization; 
N-terminal isoforms have been shown to alter endosomal prefer
ences while C-terminal isoforms are implicated in plasma mem
brane localization.64,65 Splicing of CLCN3 exon 13 causes a 
frameshift to a longer C-terminal isoform that localizes to the 
plasma-membrane66 and while maintaining the core structure 
adds a 48 amino acid tail (Supplementary Fig. 5B). Another mis- 
spliced (top 1%) ion channel gene was TMEM63B, a calcium perme
able osmosensitive ion channel.67 Splicing and co-regulated Q/R 
RNA editing of TMEM63B regulates the osmosensitivity and calcium 
permeability of this channel.68 In DM1 ChP, decreased inclusion of 
TMEM63B exon 6 (Fig. 5B) occurred in the absence a change in the 
RNA levels (Supplementary Fig. 5A). Structural predictions suggest 
exon 6 modifies the intracellular regulatory region of TMEM63B, re
sulting in a hyper-osmosensitive isoform.68

In addition to controlling the production of CSF content, the ChP 
also plays a role in the clearance of waste and other by-products 
from the CSF.29 Among the 177 genes screened from DM1 ChP 
RNA-seq datasets for ‘transporter’ annotation (Supplementary 
Table 6), we identified several genes with roles in CSF clearance. 
The #1 mis-splicing event was SCARB1, which encodes the high- 
density lipoprotein (HDL) scavenger receptor BI (SR-BI) that med
iates HDL binding and selective lipid uptake at the cell surface.69

SCARB1 has two primary isoforms regulated by exclusion of exon 
12, resulting in differential localization and a switch to HDL 

Choroid plexus mis-splicing and disease                                                                               BRAIN 2023: 146; 4217–4232 | 4223

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad148#supplementary-data


endocytosis for lipid uptake.70 We identified a shift from RNA en
coding SR-BI (exon 12 inclusion) to SR-BII (exon 12 exclusion) 
(Fig. 5C), without a change in the RNA levels (Supplementary Fig. 
5A). Skipping of exon 12 leads to expression of the HDL endocytosis 

isoform, which is predicted to drastically alter the C-terminal struc
ture of the protein due to a frameshift.71 Another interesting (#15) 
DE event for annotated ‘transporters’ was SLC14A1, which encodes 
the primary urea transporter for the brain, UT-B.72 We detected a 

Figure 3 MBNL2 promotes adult splicing events during ChP development. (A) MBNL2 is the major MBNL paralogue in ChP. Immunofluorescence of nu
clear MBNL2 (green) and the choroid plexus (ChP) apical membrane marker AQP1 (magenta) in the LVChP of wild-type (WT) (left) versus Mbnl2 KO (right) 
mice. Localization of AQP1 and DAPI (blue, nucleus). Scale = 8 μm. (B) LVChP RNA splicing events (Ψ) in Mbnl2−/− (Mbnl2 KO) compared to wild-type FVB 
(WT) littermate mice at E13.5, P1, P14 and adult (P63), with significant events in blue. (C) LVChP AS changes by RNA-seq in Mbnl2 KO compared to FVB 
WT littermate mice at developmental stages E13.5, P1, P14 and P63 (gradient of light to dark grey with crosshatch for Mbnl2KO) for Mbnl2 exon 5, Mbnl1 
exon 5, Inf2 exon 22 and Kif13a exon 26. Right: Mbnl1 exon 5 AS RNA-seq reads during development (E13.5, P0, P14, adult) for FVB WT littermates (light 
grey) compared to Mbnl2 KO (black). *P < 0.05, **P < 0.01, ****P < 0.0001, unpaired t-test.
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Figure 4 ChP spliceopathy in DM1. (A) Normalized RNA expression (RNA-seq) for choroid plexus (ChP) markers TTR, AQP1 and KL for neurologically 
unaffected controls (CTL), myotonic dystrophy type 1 (DM1) and Alzheimer’s disease (AD), together with non-ChP brain tissues (brain). (B) Violin plots 
of AS events (Ψ) quantified by change in per cent spliced in (ΔPSI). A5SS = alternative 5′ splice site; A3SS = alternative 3′ splice site; MXE = mutually ex
clusive exon; SE = skipped exon. (C) DE of RNA transcripts showing the log2 transformed fold change plotted against significance (P-value). (D) RT-PCR 
validations of splicing changes in DM1 ChP compared to CTL and AD for MBNL2 exon 5, MBNL1 exon 5, INF2 exon 22, KIF13A exon 26, ITGAV exons 5 and 
6, NFAT5 exons 4 and 5, HSPH1 exon 12 and MID1 alternative first exon (afe). *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA.
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>3-fold increase in SLC14A1 expression in DM1 patients’ ChP 
(Fig. 5D). These RNA processing changes suggested an imbalance 
in ion homeostasis and metabolic molecule trafficking that is con
sistent with other myotonic dystrophy molecular changes in tis
sues like skeletal muscle and heart that lead to symptoms such 
as myotonia, arrythmias and insulin resistance.58,73–76

Choroid plexus secretome

ChP secretion of a variety of factors into the CSF is required to sup
port proper CNS development, function and maintenance.24,45,77 In 
our transcriptome analysis of DM1 ChP, 373 genes annotated as 
‘secreted’ were significantly mis-spliced or showed DE changes 
(Supplementary Table 7), which could alter secretion levels and/ 
or function of the corresponding proteins. The #1 mis-spliced event 
among secreted genes was in prosaposin (PSAP), a multifunctional 
protein that either acts intracellularly as a regulator of lysosomal 
enzyme activity78–80 or is secreted as a signalling factor to protect 
neuronal and glial cell health.78,81,82 The neurotrophic effect of se
creted PSAP originates from a short 18–21 amino acid peptide 

sequence that binds to G-protein receptors on neurons82–84 and 
when mutated results in neurodegeneration in mice.85,86 RT-PCR 
of DM1 ChP validated exclusion of PSAP exon 8 (Fig. 6A) in the ab
sence of expression changes (Supplementary Fig. 6A). Splicing of 
PSAP exon 8 is associated with targeting of the protein to either 
the lysosome (−exon 8) for intracellular use or to vesicles (+exon 
8) for secretory export.87–91 The residues encoded by exon 8 include 
an aspartate positioned on the surface of the saposin-B region of 
PSAP, which is a substrate for N-glycosylation, facilitating subse
quent PSAP oligomerization, which inhibits lysosomal sorting and 
promotes secretion (PDB: 1N69; Fig. 6B).87,92

Two additional (#8 and #9 of 373) mis-splicing events in closely 
related genes annotated as secreted were placental growth factor 
(PGF) and vascular endothelial growth factor A (VEGFA).93,94 These 
genes are part of the highly conserved VEGF family of growth fac
tors, which are upregulated in CSF in response to numerous CNS in
juries (stroke, trauma) and neurodegenerative diseases (multiple 
sclerosis, Alzheimer’s disease, Parkinson’s disease).95–99 In addition 
to cell type-specific effects such as endothelial growth, signalling by 
these growth factors contributes to vascular permeability and can 

Figure 5 ChP mis-splicing alters transporters and ion channels. Neurologically unaffected (CTL) versus myotonic dystrophy type 1 (DM1) LVChP tran
scriptomic analysis of alternative splicing (AS) and differential expression (DE) was screened for either ‘ion channel’ or ‘transporter’ candidates. (A) 
CLCN3 was identified as a top ion channel candidate by RNA-seq (left) and validated (right) by RT-PCR gel (representative) and analysis (bar graph) of 
CLCN3 exon 13 (e13) AS in DM1 versus CTL and Alzheimer’s disease (AD) LVChP. (B) TMEM63B was also identified from RNA-seq and validated by 
RT-PCR for AS of exon 6. (C) SCARB1 was identified as a top transporter candidate and RNA-seq revealed SCARB1 exon 12 AS for DM1 versus CTL 
and AD LVChP. (D) Another transporter, SLC14A1, exhibited increased DE in DM1 versus CTL patients’ ChP. ***P < 0.001, ****P < 0.0001, one-way 
ANOVA or unpaired t-test. LVChP = lateral ventricle choroid plexus.
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Figure 6 Mis-splicing alters the ChP secretome and CSF composition. Neurologically unaffected (CTL) versus DM1 LVChP transcriptomic analysis of 
alternative splicing (AS) and differential expression (DE) was screened for ‘secreted’ GO annotation candidates. (A) PSAP was selected as a top secreted 
candidate and validated by RT-PCR gel (representative, top) and analysis (bar graph, bottom), which showed exclusion of exon 8 in DM1 ChP. (B) Predicted 
(AlphaFold2) protein structural changes due to PSAP exon 8 AS with the inclusion of a +QDQ (glutamine-aspartate-glutamine) in PSAP region SaposinB 
(PDB: 1N69). aa = amino acids. (C) Another top secreted candidate was PGF, which was validated by RT-PCR for increased exon 6 inclusion in DM1. (D) To 
test if ChP changes correlate with CSF composition, we obtained DM1 and non-DM1 (CTL) patient CSF for protein lysates and assayed top candidates, 
PSAP and PGF. Loading was normalized based on protein quantification, total protein signal and albumin western blot. (E) Western blot of PSAP and PGF 
proteins in DM1 patients’ CSF compared to CTLs was quantified as fold-change normalized over total protein signal. (F and G) To test if ChP changes also 
correlate with cumulative measures of CSF composition, CTL versus DM1 patients’ CSF was assayed for (F) total protein as well as (G) total osmolarity. 
*P < 0.05, ***P < 0.001, ****P < 0.0001, one-way ANOVA or unpaired t-test.
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lead to breakdown of the brain’s protective barriers.99–102 In DM1 
ChP, we identified exon 6 mis-splicing of PGF (Fig. 6C) and VEGFA 
(Supplementary Fig. 6B), with a trend towards increased expression 
(Supplementary Fig. 6C).103 Analysis of PGF -exon 6 suggests the 
C-terminal tail is unstructured; however, the +exon 6 tail is much 
longer, and predictions suggest interactions with the main protein 
structure (PDB: 1FZV; Supplementary Fig. 6D).

Mis-splicing of secreted proteins in DM1 ChP may alter their CSF le
vels, so we obtained patient CSF to test this possibility. Since PSAP 
switches from approximately equal expression of +/−exon 8 isoforms 
in control patients to primarily excluding exon 8 in DM1 patients, we 
predicted that PSAP CSF protein levels would decrease. This was con
firmed by western blot analysis, which detected an approximately 
2-fold decrease in PSAP protein levels in DM1 versus control CSF 
(Fig. 6D and E). PGF/VEGFA splicing of exon 6 regulates heparin binding 
and the formation of signalling gradients,94,104 and we predicted this 
would alter PGF protein levels. Since PGF splicing was more robust 
than VEGFA, we used an anti-PGF antibody for western blot analysis 
and tested DM1 patients’ CSF, which revealed an approximately 
1.5-fold increase in PGF protein levels (Fig. 6D and E).

Previous fluid biomarker analysis has shown elevation of neuro
filament light chain (NEFL) in DM1 blood and changes in Aβ42 and 
tau levels in DM1 CSF.105 Our prior studies have also shown APP 
and MAPT AS changes in the hippocampus and temporal cortex.106

For DM1 ChP, we detected decreased exon 7 inclusion (∼20%) of APP 
(Supplementary Fig. 6E) and increased expression (2.1 log2fold) of 
MAPT (Supplementary Fig. 6F).

Based on the occurrence of 177 transcriptomic changes in ChP 
transporters/ion channels involved in CSF production/clearance, 
as well as 373 genes that encode secreted proteins, we tested if 
the net levels of protein or solute were altered in DM1 CSF. Total 
protein levels were found to be increased significantly in DM1 pa
tients (Fig. 6F), which could be a marker of inflammation or neuro
degeneration. Since CSF osmolarity (total solutes) is tightly 
regulated,107 it was noteworthy that osmolarity consistently in
creased in DM1 CSF compared to control CSF (Fig. 6G). Overall, our 
results indicated that myotonic dystrophy ChP AS changes predict 
altered CSF composition and levels of secreted proteins implicated 
in neurodegeneration and neuronal response to damage.

Discussion
Pathomechanistic studies of neurodegenerative diseases have gen
erally overlooked the choroid plexus in favor of neuronal and other 
cell types in the brain. This has certainly been the case for DM1 
which is characterized by widespread CNS symptoms of uncertain 
origin,11,14,15 with most prior studies focusing on neuronal spliceo
pathy and some addressing potential glial origins.21,22,36,108 Our 
prior development of Dmpk CTGexp mouse models for DM1 enabled 
the discovery that the ChP is highly susceptible to Dmpk CUG repeat 
expansions.23 In this study, we first demonstrated that AS in the 
LVChP is more severely affected compared to 4VChP in this Dmpk 
CTGexp mouse model. Mis-splicing in the LVChP has important 
pathomechanistic implications, since this ventricular region has 
specific functions that impact neural development and the 
regulation of NSCs in the subventricular zone.24 Second, we showed 
that loss of MBNL2 function, previously implicated in neuronal 
AS, also represses LVChP developmental splicing transitions. 
Developmental splicing regulation by MBNL has important implica
tions for tissue-specific mechanisms, since inappropriate expres
sion of developmental isoforms has been shown as a primary 
cause of myotonic dystrophy symptoms.49,57–59,73,75,76 Third, we 

confirmed that the spliceopathy detected in our Dmpk CTGexp KI 
model also occurs in the human DM1 LVChP. Fourth, we showed 
that ChP mis-splicing results in downstream alterations in CSF 
composition and factors that are known to have detrimental im
pacts on CNS development and health (Fig. 7).

Our study revealed ChP ion channel dysregulation that we hy
pothesized alters CSF content directly as well as indirectly through 
dysregulation of ChP secretory cycles, which is supported by the in
creased osmolarity we identified in patient CSF. Splicing changes in 
ion channels were also revealed during this study that are predicted 
to elicit a similar ion dyshomeostasis as seen in myotonic muscle, 
where mis-splicing of CLCN1 results in myotonia.57,59 The inappro
priate inclusion of CLCN3 exon 13, which occurs in DM1 ChP, is pre
dicted to increase chloride export into the CSF,66 which could impair 
ChP ependymal cell recovery after an initial depolarization signal
ling event. The TMEM63B splicing shift to a more active and osmo
sensitive isoform in DM1 ChP suggests increased intracellular 
calcium storage. In myotonic muscle there is an increase in calcium 
and decrease in chloride ions which, upon depolarization, leads to 
prolonged contraction with impaired hyperpolarization necessary 
for recovery.58,73 Mis-splicing in DM1 ChP of CLCN3, TMEM63B and 
other ion channels or regulators could have a similarly detrimental 
effect. Dyshomeostasis of ion channels or regulators in the ChP could 
impair CSF production, flux and secretory release patterns such as 
those that occur differentially during day versus night,30 which in 
turn could be a primary contributor to insomnia and hypersomnia 
symptoms in myotonic dystrophy patients.

DM1 is associated with white matter abnormalities, altered 
sleep regulation, impaired executive function, progressive cere
bral atrophy with parallel ventricle/CSF volume increases, as 
well as intellectual disability in congenital myotonic dys
trophy.11,14,15,17,18 Since the choroid plexus plays a major role in 
CSF volume, flow and composition,29 we pursued the hypothesis 
that ChP spliceopathy alters these critical functions and uncov
ered mis-splicing events in DM1 patients’ LVChP and CSF that 
support this possibility. For example, mis-splicing of PSAP (a 
neurotrophic factor) in ChP correlates with decreased PSAP secre
tion into the CSF of DM1 patients. Secreted PSAP has been shown 
to promote the proliferation and survival of a wide range of cells, 
including in the CNS, where it has important functions for devel
opment as well as maintenance/protection.80–83,85,109 We predict 
that CSF loss of secreted PSAP, in conjunction with changes in 
other ChP secreted proteins, could be detrimental to the survival 
and resilience of neurons/glia, resulting in a major contribution 
to the CNS symptoms of DM1. Further, we suggest a compound ef
fect with symptoms of early-onset ageing such that decreased 
PSAP in CSF leads to an imbalance of NSC proliferation in the sub
ventricular zone and results in early-onset depletion of NSCs and 
inability to replenish glial cells and possibly neurons.27,31,48,110

By understanding ChP changes in DM1, we can predict and ra
tionally select CSF biomarkers that are relevant for CNS health. 
Since previous biomarker analysis has shown consistent elevation 
of NEFL in DM1 blood,105 it would be interesting to determine if this 
also occurs in CSF. Our prior studies have also shown APP and 
MAPT AS changes in the hippocampus and temporal cortex,106

while other studies have indicated decreased Aβ42 and increased 
total tau levels in DM1 CSF.105 For DM1 ChP, we detected mis- 
splicing of APP and increased expression of MAPT, which is consist
ent with the previously reported CSF changes. The ChP transcrip
tomic alterations we report here in human DM1 and mouse DM1 
models may be involved in abnormal levels of these disease bio
markers in CSF, but this possibility requires further study.
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Since the choroid plexus is a barrier between blood and the CSF, 
it is both more accessible to drug treatments and a useful avenue to 
deliver treatments to the rest of the brain. This is an important con
sideration for DM1, since this disease has unanticipated effects on 
ChP functions. Potentially, ChP targeting or systemic treatments for 
DM1 which correct ChP mis-splicing could have the added benefit 
of restoring proper CSF composition and thus potentially improve 
CNS symptoms.
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ChP AS of CLCN3 exon 13, TMEM63B exon 6, SCARB1 exon 12, SLC14A1 DE, PSAP exon 8 and PGF exon 6, as well as potential influences on CSF content. 
Both CLCN3 and TMEM63B are involved in ChP regulation of ion homeostasis. CLCN3 exon 13 is associated with a localization switch from endosomal to 
plasma membrane, leading to a gain in outward rectifying chloride ion flow. TMEM63B exon 6 loss is associated with a switch to a more osmosensitive 
isoform of the calcium permeable ion channel. Both SCARB1 and SLC14A1 are involved in clearance of the CSF. SCARB1 exon 12 loss is associated with a 
switch to isoform SR-BII, which has been shown to promote endocytosis of high-density lipoprotein (HDL) particles. SLC14A1 encodes urea transporter 
B, the primary transport protein for urea in the CNS, whose increased expression has been reported in neurodegenerative diseases. Both PSAP and PGF 
are highly expressed secretory proteins produced by the ChP to modulate signalling throughout the CSF. PSAP exon 8 skipping is associated with a 
switch from trafficking of the protein to vesicles for secretion to primarily lysosomal for non-signalling functions. PGF exon 6 splicing is associated 
with a change in heparin binding activity and thus altered distribution gradients.
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