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Clinical and genetic analysis further delineates the phenotypic
spectrum of ALDH1A3-related anophthalmia and
microphthalmia
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Biallelic pathogenic variants in ALDH1A3 are responsible for approximately 11% of recessively inherited cases of severe
developmental eye anomalies. Some individuals can display variable neurodevelopmental features, but the relationship to the
ALDH1A3 variants remains unclear. Here, we describe seven unrelated families with biallelic pathogenic ALDH1A3 variants: four
compound heterozygous and three homozygous. All affected individuals had bilateral anophthalmia/microphthalmia (A/M), three
with additional intellectual or developmental delay, one with autism and seizures and three with facial dysmorphic features. This
study confirms that individuals with biallelic pathogenic ALDH1A3 variants consistently manifest A/M, but additionally display
neurodevelopmental features with significant intra- and interfamilial variability. Furthermore, we describe the first case with
cataract and highlight the importance of screening ALDH1A3 variants in nonconsanguineous families with A/M.

European Journal of Human Genetics (2023) 31:1175–1180; https://doi.org/10.1038/s41431-023-01342-8

INTRODUCTION
Anophthalmia (absence of visible ocular tissue) and microphthal-
mia (reduced ocular size) (A/M) are developmental eye anomalies
affecting around 11.9 per 100,000 live births [1]. More than half of
affected individuals exhibit variable extraocular features [2].
Pathogenic variants in at least 120 genes are known to underlie
A/M, including several in the retinoic acid pathway: STRA6, RBP4,
RARB and ALDH1A3 [3]. ALDH1A3 (Aldehyde dehydrogenase 1
family member A3) catalyses retinoic acid formation, playing a key
role in embryonic eye development [4]. Pathogenic biallelic
variants in ALDH1A3 are responsible for ∼11% of cases in
consanguineous families [5–8]. To date, the majority of ALDH1A3
variants are reported in individuals from consanguineous families
and are consistently associated with bilateral A/M, with additional
systemic features described in some cases [6, 8, 9]. However,
genotype-phenotype correlations are unclear, with particular
uncertainty surrounding whether the neurodevelopmental man-
ifestations are solely linked to these variants.
Herein, we report nine cases with biallelic ALDH1A3 variants

from seven families. All affected individuals display bilateral A/M,
with variable additional neurodevelopmental anomalies in some
cases, providing further insights into the phenotypic spectrum.

MATERIALS AND METHODS
We identified seven families from a cohort of 202 undiagnosed UK,
French and Spanish families with A/M. Families 1, 2, 4 and 7 are from
research studies: UK ‘Genetics of Eye and Brain anomalies’ (Cambridge
East Ethics Committee (04/Q0104/12)), Deciphering Developmental
Disorders (DDD) Study (Cambridge South Research Ethics Committee
(10/H0305/83), Republic of Ireland (GEN/284/12)) and Genetics of
Congenital Ocular Disorders, Fundación Jimenez Díaz University Hospital
(Ethics Research Committee FJD (PIC015-18)), respectively. Families 3, 5
and 6 were identified through diagnostic testing. Informed consent was
obtained from all individuals in accordance with the Declaration of
Helsinki.
ALDH1A3 (NM_000693.4) variants were identified from the cohort

(n= 202) using whole genome (n= 20)/exome (n= 88) sequencing
(WGS/WES), customized NGS panels (n= 91) and Sanger sequencing
(n= 3). WGS/WES was performed using TruSeq Nano DNA Sample Prep
(Illumina Inc., San Diego, CA, USA) and Agilent SureSelect Human All Exon
V6 (Agilent Technologies, Santa Clara, CA, USA) kits, respectively. The
majority of individuals (n= 181) received copy number variant screening
using SNP-Array or array-CGH. WGS/WES data were annotated and filtered
using an in-house pipeline. We used SIFT [10], Polyphen-2 [11] and CADD
[12] in silico tools to predict pathogenicity, and Human Splicing Finder [13]
to identify splicing effects. Variants were classified according to the ACMG
guidelines [14], and confirmed by Sanger sequencing with segregation
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analysis when samples were available. Variants were submitted to
the ClinVar database (SCV002761233, SCV002761243). Details of in silico
predictions and ACMG/AMP classifications are described in Supplementary
Table S1.

RESULTS
We identified nine affected individuals with eleven biallelic
ALDH1A3 variants from seven unrelated families (Table 1 and
Fig. 1). Unless stated, no other likely pathogenic variants relevant
to the individuals’ phenotypes were identified.

Compound heterozygous variants
Family 1. The proband (II:2) had bilateral anophthalmia, a right
lower lid cyst and normal development. His brother (II:4)
presented with bilateral anophthalmia, and mildly delayed
development until 2 years-of-age after which it gradually slowed.
He was diagnosed with nonverbal autism at 3–4 years-of-age.
Both brothers have a large sandal gap between the first and
second toe. They carried compound heterozygous missense
ALDH1A3 variants (c.874G>T, p.(Asp292Tyr), maternal; c.1393A>T,
p.(Ile465Phe), paternal). Both variants were absent in gnomAD and
reported in DECIPHER. The proband had a normal SNP-Array and
his brother had a normal array-CGH. A similar family has been
published by Patel et al. [15], however it is unclear if this is the
same family as described here.

Family 2. The proband (II:1) presented with bilateral anophthal-
mia with lower lid cysts. He had developmental delay and severe
learning difficulties, delayed speech, autistic features, and tonic-
clonic seizures (onset 13 years-of-age). He carries compound
heterozygous missense variants (rs547918064, c.845G>C,
p.(Gly282Ala), maternal, gnomAD MAF: 0.000019; c.1459A>G,
p.(Arg487Gly), paternal, absent in gnomAD). The p.(Gly282Ala)
variant was reported in the homozygous state by Alabdullatif
et al. [16]. The parents are healthy with no family history of
seizures.

Family 3. The proband (II:1) presented with bilateral micro-
phthalmia and coloboma, bilateral retinal detachments with
microcalcifications and vascularization at 1 month-of-age and
normal development. She carries compound heterozygous
variants: an inframe deletion of a highly conserved amino acid
(c.847_849del, p.(Gly283del), maternal) and a missense (c.953C>A,
p.(Ser318Tyr), paternal) variant. Both variants are absent in
gnomAD. She had a normal array-CGH.

Family 4. The proband (II:1) presented with bilateral micro-
phthalmia and normal development. We identified compound
heterozygous nonsense (c.566G>A, p.(Trp189*), maternal, absent
in gnomAD) and splice (rs1422193527, c.100-2A>G, paternal,
gnomAD MAF: 0.00003183) variants.

Homozygous variants
Family 5. The proband (II:1), born to consanguineous parents,
presented with bilateral microphthalmia (extreme on the left)
and additional coloboma and cataract of the right eye. He had
normal development. He carries a homozygous splice variant
(c.1233+ 2T>C, absent in gnomAD). His parents are heterozygous
carriers. A paternal aunt had bilateral anophthalmia, but was
unavailable for testing.

Family 6. The proband (II:2), born to consanguineous parents,
presented with bilateral anophthalmia and mild intellectual
delay. Her sister (II:4) had bilateral anophthalmia and normal
development. Both carry a homozygous missense variant
(c.1144G>A, p.(Gly382Arg), absent in gnomAD). Both parents
were heterozygous carriers.

Family 7. The proband (II:1) presented with bilateral micro-
phthalmia, iris and chorioretinal coloboma, abnormal anterior
segment morphology and facial dysmorphic features, including
high forehead, telecanthus, epicanthic folds, ptosis, full cheeks,
everted upper lip, and micrognathia. He carries a homozygous
missense variant (c.434C>T, p.(Ala145Val), gnomAD MAF:
0.000004). His parents are heterozygous carriers. There was no
history of parental consanguinity, but the parents come from the
same small town. Array-CGH was normal.

DISCUSSION
We report nine individuals from seven families with biallelic
ALDH1A3 variants (Fig. 1). In each case the variants were predicted
disease-causing, with no other variants detected in genes
associated with developmental eye disorders by WES/WGS/
panel/CNV analysis. This study describes further cases with
compound heterozygous ALDH1A3 variants in A/M and highlights
inter- and intrafamilial phenotypic variability.
Since many developmental eye genes are critical in the

development of other organ systems, extraocular features are often
observed in individuals with variants in developmental eye genes,
such as SOX2, OTX2 and STRA6 [17]. Individuals with biallelic
ALDH1A3 variants have been previously reported with additional
variable systemic features, including severe neurodevelopmental
delay and autism, in addition to bilateral A/M [6, 9, 18]. Similarly, our
nine cases consistently exhibited bilateral A/M; two with facial
dysmorphic features (Families 6 and 7), and three also manifesting
neurodevelopmental anomalies, including intellectual disability
(Families 1, 2 and 6), autism (Families 1 and 2) and seizures
(Family 2). Importantly, while additional ocular features are
frequently reported in ALDH1A3 cases, our study represents the
first report of the presence of cataract (Family 5). The facial
dysmorphic features described in individuals with ALDH1A3 variants
include bilateral small palpebral fissures or blepharophimosis
[8, 9, 19, 20], which is often seen in individuals with small eye
sockets secondary to severe A/M, irrespective of the genetic cause.
However, broad eyebrows, synophrys and high arched palate are
also reported in some cases [8]. Interestingly, one of our cases
(Family 7, II:1) displayed multiple additional dysmorphic features,
although it remains unclear if these are related to the ALDH1A3
variants.
ALDH1A3 is a member of the retinoic acid pathway, encoding

aldehyde dehydrogenase involved in oxidation of retinaldehyde
to retinoic acid (RA). RA levels are tightly regulated during
embryonic development and are essential for normal eye
morphogenesis [4]. Including this study, 32 pathogenic ALDH1A3
variants have been reported: 18 missense, 7 splicing, 4 nonsense,
2 frameshift and 1 inframe deletion. Some of the missense
(p.(Arg89Cys), p.(Ala493Pro), p.(Arg96His), p.(Gly237Arg)) and
nonsense (p.(Lys190*), p.(Lys389*)) variants have been shown to
impair protein production and cause loss of function and were
reported in patients with variable additional neurodevelopmental
phenotypes in the A/M spectrum [6, 19, 21].
To date, even with the growing evidence from cases, there is

no consistent genotype-phenotype correlation. The majority of
variants (16) are located in the catalytic domain, followed by the
NAD binding domains (13) and the oligomerization domains (3)
(Fig. 1). However, the location of variants does not appear to
correlate with distinct phenotypic features or differences in
severity. Furthermore, there is also striking inter- and intrafami-
lial variation even for the same variants. For example, Roos et al.
[9] described neurodevelopmental intrafamilial variability in a
large consanguineous family with microphthalmia/coloboma
and a homozygous ALDH1A3 variant (p.(Cys174Tyr)). Similarly,
the affected brothers in Family 1, carrying the same compound
heterozygous variants, had variable phenotypes: the older
brother had isolated bilateral anophthalmia with normal intellect
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while the younger had severe neurodevelopmental delay.
Furthermore, of the two affected sisters presenting with bilateral
anophthalmia and facial dysmorphic features in Family 6
(p.(Gly382Arg)) the proband has mild intellectual delay whereas
her younger sister has normal cognition. Interestingly, the same
variant has been previously reported in four affected members
of a family who presented with bilateral anophthalmia and facial
dysmorphism, but normal psychomotor development [8], bring-
ing into question the link between ALDH1A3 variants and
intellectual and developmental delay. In addition, the proband
in Family 7 has the same variant (p.(Ala145Val)) that had been
previously described in individuals from 3 independent families
and a simplex case, all with isolated bilateral microphthalmia
[5, 22], whereas he had some additional facial dysmorphic
features. Therefore, the presence of inter- and intrafamilial
variability suggests a more complex interplay between ALDH1A3
variants and genetic and/or environmental factors, as might be
expected for such a fundamentally important gene.
In conclusion, we present the clinical and genetic analysis of nine

cases with biallelic ALDH1A3 variants from seven families. Our data
confirms that pathogenic ALDH1A3 variants are consistently
associated with bilateral A/M and highlights additional susceptibility
to neurodevelopmental manifestations, with significant intra- and
interfamilial variability. Moreover, one individual displayed micro-
phthalmia with coloboma and cataract, broadening the ocular
phenotype, and suggesting that it would be important to include
this gene on cataract gene panels. Finally, the identification of four
families with compound heterozygous variants underscores the
importance of ALDH1A3 screening in nonconsanguineous families.

DATA AVAILABILITY
Data will be made available upon reasonable request. Variants were submitted to
ClinVAR database (SCV002761233, SCV002761243).
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