Skip to main content
Frontiers in Bioinformatics logoLink to Frontiers in Bioinformatics
. 2023 Sep 19;3:1248732. doi: 10.3389/fbinf.2023.1248732

VariBench, new variation benchmark categories and data sets

Niloofar Shirvanizadeh 1,, Mauno Vihinen 1,*
PMCID: PMC10546188  PMID: 37795169

1 Introduction

Genetic variation data is nowadays easy to generate. Variation interpretation means the description of the significance of variations, often in relation to disease. This is substantially more difficult a problem than sequence generation. Experimental methods provide verified interpretations; however, due to huge amounts of variations in every individual, computational approaches are widely used. The length of human genome is over 3 billion base pairs (Nurk et al., 2022). Due to individual genetic heterogeneity, 4.1–5.0 million sites differ from the reference genome (Auton et al., 2015). Various types of prediction methods are widely used to interpret the variations, see (Niroula and Vihinen, 2016). Benchmark studies have indicated large differences in the performance of methods developed for the same type of variation prediction tasks, see e.g., (Thusberg et al., 2011; Niroula and Vihinen, 2019; Zhang et al., 2019; Marabotti et al., 2021; Anderson and Lassmann, 2022). Both predictor development and performance assessment are largely dependent on high-quality data. One might think that there is a large number of verified variations as the genetic diagnosis is widely applied; however, that is not the case, especially when considering specific types of variations or mechanisms.

The development and testing of computational methods are dependent on experimental data. Accurate prediction methods can be developed only with reliable experimentally verified cases with a systematic approach and using relevant measures (Vihinen, 2012; Vihinen, 2013). Method performance has to be assessed in comparison to existing knowledge. For that purpose, benchmark data sets with known and verified outcomes are needed. Such data sets can be time-consuming and costly to collect and require many manual steps. Therefore, it is important that the produced data are distributed and reused.

In the variation interpretation field, two databases deliver such data sets. VariBench (Nair et al., 2013; Sarkar et al., 2020) and VariSNP (Schaafsma et al., 2015) contain variation benchmark data. VariSNP is a version of the dbSNP database (Sherry et al., 2001) for short variations from where known disease-causing variants have been filtered away. VariBench is a generic database that contains all types of variations with all kinds of effects. These resources have been widely used for prediction method training and testing.

What requirements and criteria should benchmark data sets fulfill in relation to variation interpretation and in general? We have defined five criteria, discussed in (Nair et al., 2013). They include relevance, representativeness, non-redundancy, inclusion of both positive and negative cases and reusability. VariBench subscribes to the criteria and collects data sets and distributes them freely. VariBench data sets are frequently used to train and test method performance. These sets facilitate also post-publication comparison of methods to published benchmarks (Sarkar et al., 2020).

The bottleneck in sequencing projects has shifted from sequencing to interpretation of obtained results. Experimental studies of variant effects are the gold standard approaches. They are not feasible in many instances and therefore, various computational approaches have been developed. We divide the prediction methods into five categories in VariBench.

First, pathogenicity, also called tolerance, predictions aim to identify disease-related alterations of various types (for details see Table 1).These methods aim just to detect harmful or disease-related variants. Second, effect-specific methods are for the prediction of various effects at DNA, RNA and protein levels. Third, there are also predictors specific for certain molecules or families of molecules, typically for proteins. Fourth, some methods are dedicated to certain diseases. Fifth, some tools predict the phenotype, typically the severity of the variant effect.

TABLE 1.

Types of data sets in VariBench.

Data set Data sets in previous version New data sets
Variation type data sets
Insertions and deletions 4 2
Substitutions coding region
Training data sets 23 9
Test data sets 5 3
Structure mapped variations
General structural data sets 2 3
Transmembrane protein data sets 0 4
Synonymous and unsense variants 2 5
Benign variants 2 0
Structural variants 0 1
Effect specific data sets
DNA regulatory elements 7 4
RNA splicing 15 6
Protein aggregation 2 0
Binding free energy 2 1
Protein disorder 1 1
Protein solubility 1 1
Protein stability 31 9
Single variants 21 9
Double variants 1 0
Protein folding rate 0 5
Protein binding affinity
Generic protein-protein interactions 1 13
Antibody-antigen affinity changes 0 5
Protein-nucleic acid interactions 0 7
Functional effects
Gain of function variants 0 1
Deep mutational data sets 0 7
Molecule-specific data sets 18 7
Disease-specific data sets
Cancer variation data sets 4 4
Other diseases 8 2
Phenotype data sets 1 1

High-quality variation data sets are difficult and laborious to generate. VariBench collects, organizes, and integrates additional information and distributes different types of variation data sets. It is a unique database. We have updated the resource with 143 new data sets, which include more than 90 million variants. During the update, some new categories of variations and effects have been included. There are currently variations in 5 main categories, 17 subgroups and 11 groups.

2 Data sets and quality

VariBench collects from literature, databases and predictors data sets, which have been used to train methods or assess their performance. There are no selection criteria for the inclusion of data sets. This is because of several reasons. The data sets can be used as such, or they can be further cleaned and pruned to use in additional tasks, be extended with new cases, etc. A good benchmark data set should fulfill several requirements (Vihinen, 2012; Vihinen, 2013), including good coverage, representativeness and containing both positive and negative cases that are experimentally determined. The representativeness of amino acid substitution data sets was investigated (Schaafsma and Vihinen, 2018) and found not to be optimal.

The quality of data sets in VariBench is variable. We include even known low-quality data sets, since they may be valuable when building new data sets and for other applications. We have performed some quality tests, including consistency; however, it is the duty of the users of the data to evaluate whether the data are suitable for intended use. One of the goals of VariBench is to provide existing data sets, even when problematic, e.g., for comparative purposes.

Systematics is an integral part of data and database quality. It is quite common that due to errors and lack of systematics, all variants in an existing data set cannot be reused as they cannot be mapped to reference sequences.

An example of the importance of data quality is in the field of protein stability predictions. Most of the existing predictors are based on a single database, ProTherm, which was shown to contain numerous problems (Yang et al., 2018). Recently, new and higher-quality databases have emerged in this field (Stourac et al., 2021; Turina et al., 2021).

3 Uses of VariBench data

VariBench data sets have been widely used especially to train and test variation interpretation predictors (pathogenicity/tolerance, protein stability, solubility, melting temperature, gene/protein/disease-specific predictors, and interaction and structural effects on folded and disordered regions and proteins), but also in the benchmarking performance of tools for various types and effects. In addition to human, plant and animal-related predictors and benchmarks have benefitted from VariBench (Yang et al., 2022). The data has also facilitated the interpretation of variants according to the guidelines of American College of Medical Genetics and Genomics, and the Association for Molecular Pathology (ACMG/AMP) (Richards et al., 2015) and benchmarking such annotations.

4 Data sets in VariBench

VariBench contains now 559 files for separate data sets from 295 studies and covers a wide range of variations (Tables 1, 2). The data sets were collected from literature, websites and databases. They have been used for predictive purposes, most often to develop novel predictors for different types or effects of variants. Some data sets have been specifically collected for benchmarking purposes.

TABLE 2.

New data sets in VariBench.

Origin of data a Dataset first used for Number of variants in each dataset Number of different genes, transcripts or proteins in each dataset References
Variation type datasets
Insertions and deletions
HGMD, gnomAD MutPredIndel 231963, 4679, 1203 3556, 4679, 802 Pagel et al. (2019)
HGMD, gnomAD MutPredLof 98095, 8840 13648, 1239 Pagel et al. (2019)
Substitutions, coding region
Training datasets
VariBench PON-All 45573, 306, 5360, 324, 3836, 1109, 48176, 4154 14765, 232, 1261, 233, 704, 287, 13383, 1149 Yang et al. (2022)
HumDiv, HumVar, MGI, Disease Ontology Database, OMIA, UniProtKB, Ensembl Mammalian diseases 377, 207, 62 131, 315, 51 Plekhanova et al. (2019)
http://www.arabidopsis.org, UniProt/Swiss-Prot, Ensembl Arabidopsis thaliana 13707 999 Kono et al. (2018)
UniProt, SwissProt Arabidopsis 4410 994 Kovalev et al. (2018)
HGMD, SwissVar, dbSNP MutPred2 20643 Pejaver et al. (2020)
ClinVar, UniProt DeepSav 43000, 43000 3386, 10974 Pei et al. (2020)
dbNSFP, ClinVar, HumsaVar, HGMD VARITY 157708, 157708 3912, 3912 Wu et al. (2021)
ClinVar, gnomAD MutScore 66037 Quinodoz et al. (2022)
HGMD, gnomAD MutFormer 69159160 Jiang et al. (2021)
Test datasets
ClinVar, HGMD, OMIM, gnomAD Benchmarking with clinical data set 1757 Gunning et al. (2021)
ClinVar, VariBench Benchmarking study 35167, 29173 3349, 8562 Anderson and Lassmann (2022)
ClinVar Rett syndrome benchmark 4354 3217 Ganakammal and Alexov (2019)
Structure mapped variants
General structural datasets
ClinVar, ExAC, HumsaVar Missense3D 1965, 2134 Ittisoponpisan et al. (2019)
UniProt Protein structural analysis 6025, 4536 3782, 8211 Gao et al. (2015)
HumsaVar Solvent accessibility 10760, 69385 1283, 12494 Savojardo et al. (2020)
Transmembrane proteins
VariBench, ExAC Transmembrane protein analysis 2058, 5422, 508, 1289, 1289 870, 5422, 508, 1289, 1289 Orioli and Vihinen (2019)
PDB mCSM-membrane 347, 138/38, 16 Pires et al. (2020)
ClinVar, gnomAD TMSNP 2624, 196 705 Garcia-Recio et al. (2021)
BorodaTM, PredMutHTP, TMSNP MutTMPredictor 21379, 10031, 3706, 7374, 546 3341, 2114, 1183, 1848, 62 Ge et al. (2021)
Synonymous and unsense variations
1KGP Silva 33 Buske et al. (2013)
Silva, OMIM TraP 75 376, 96, 102 Gelfman et al. (2017)
HGMD, dbDSM usDSM 239358, 2400, 4502, 665, 5085 Tang et al. (2021)
ClinVar Ensemble predictor 243, 243 Ganakammal and Alexov (2020)
1KGP, ExAC, gnomAD, generated data Predictor review 1048576 Zeng and Bromberg (2019)
Structural variations
ClinVar, gnomAD, ape sequences, 1KGP StrVCTVRE 7669 5119 Sharo et al. (2022)
Effect-specific datasets
DNA regulatory elements
DNaseI-seq, ChIP-seq data deltaSVM 45 Lee et al. (2015)
dbSNP, ClinVar, OMIM ncVarDB 7228, 722 Biggs et al. (2020)
PRVCS, 1KGP, GTEx, GWAS catalogue regBase 108, 67635, 796, 60393, 21725, 3105, 102, 7513, 61170, 5023, 11436, 61170 Zhang et al. (2019)
HGMD, ClinVar, OregAnno, GWAS catalog WEVar 2874, 29 Wang et al. (2021)
RNA splicing
BIC EX-SKIP and HOT-SKIP 74, 42 Raponi et al. (2011)
ClinVar, literature SQUIRLS 8322 Danis et al. (2021)
ClinVar, literature, InSiGHT Cancer gene analysis 12, 347, 18 3, 32, 13 Moles-Fernández et al. (2018)
HGMD, SpliceDisease, DBASS scdbNSFP 2959, 45 Jian et al. (2014)
Experimental data SPiCE 142, 163,90 2, 2, 9 Leman et al. (2018)
ClinVar CADD-Splice 1688852, 14011296, 1688852, 14011296 Rentzsch et al. (2021)
Binding free energy
Skempi, literature SAAMBE 2041, 1327 81, 43 Petukh et al. (2016)
Protein disorder
SwissProt, VariBench IDRMutPred 3348, 559, 5794, 5027 321, 26, 2562, 2390 Zhou et al. (2020)
Protein solubility
VariBench, literature PON-Sol2 5666, 46, 662 66, 9, 34 Yang et al. (2021)
Protein stability
Single variants
ProTherm PreTherMut 836, 2530 Tian et al. (2010)
ProTherm iStable 3131 Chen et al. (2013)
Experimental data CAGI frataxin benchmark 8 Strokach et al. (2021)
ProTherm iStable2 1564, 1495, 759, 265, 363, 129 Chen et al. (2020)
VariBench, ProtTherm Benchmarking study 1024 Marabotti et al. (2021)
ProTherm Thermonet 3214, 3214, 3214, 1744, 1744, 1744 148, 148, 148, 127, 127, 127 Li et al. (2020)
ProTherm, literature ACDC-NN [2197, 2050, 2046, 2231, 2042, 2094, 2300, 1933, 2007, 2284] [268, 183, 415, 187, 230, 376, 178, 170, 545, 96] [183, 415, 187, 230, 376, 178, 170, 545, 96, 268] [5, 199, 21, 75, 7, 1, 33 ] [5, 1, 199, 21, 75, 7, 1, 33] [1013, 813, 924, 1080, 1157, 1296, 1219, 1235, 1180] [268, 176, 398, 65, 143, 164, 66, 25, 143, 9] [176, 398, 65, 143, 164, 66, 25, 143, 9, 198] [104, 107, 105, 103, 103, 103, 107, 111, 109, 104] [15, 13, 12, 15, 14, 15, 14, 11, 10, 13] [13, 12, 15, 14, 15, 14, 11, 10, 13, 15] [1, 4, 2, 2, 2, 1, 2] [5, 1, 199, 21, 75, 7, 1, 33] [63, 60, 60, 55, 56, 65, 65, 69, 69] [16, 7, 11, 7, 9, 14, 8, 5, 8, 1] [7, 11, 7, 9, 14, 8, 5, 8, 1, 8] Benevenuta et al. (2021)
ThermoMutDB, ProTherm, VariBench Benchmarking study 352 Pancotti et al. (2022)
Protein folding rate
Experimental data Kinetic data 806 Naganathan and Muñoz (2010)
Literature, PFD, kineticDB KD-FREEDOM 467 15, 4 Huang and Gromiha (2010)
PFD, kineticDB Fora 467, 154 Huang and Gromiha (2012)
PFD, kineticDB, literature FREEDOM 467 Huang (2014)
Literature UnfoldingRaCe and FoldingRaCe 790, 16, 60 26, 10, 5 Chaudhary et al. (2015), Chaudhary et al. (2016)
Protein interaction
Generic protein-protein interactions
Literature CC/PBSA 582, 592 9, 57 Benedix et al. (2009)
SKEMPI, literature Protein-protein binding affinity 123, 242, 574,1844 5, 9, 29, 81 Li et al. (2014)
SKEMPI MutaBind 1925 Li et al. (2016)
SKEMPI BindProfX 1 402 Xiong et al. (2017)
DACUM, SKEMPI, literature iSEE 1102 Geng et al. (2019)
SKEMPI, ABbind, PROXiMATE, dbMPIKT mCSM-PPI2 4196, 378 319, 19 Rodrigues et al. (2019)
SKEMPI, literature MutaBind2 4191, 1707 319, 19 Zhang et al. (2020)
SKEMPI, CAPRI SSIPe 1470, 734, 888, 190, 152 319, 19 Huang et al. (2020)
SKEMPI NetTree 645, 1131, 4947, 4169, 8338, 787 29, 112, 319, 319, 319, 21 Wang et al. (2020)
PROXiMATE ProAffiMuSeq 1061, 112 104, 53 Jemimah et al. (2020)
ClinVar, ProTherm, SKEMP, literature ELASPIC2 16189, 2563 14227, 2378 Strokach et al. (2019)
SKEMPI mmCSM-PPI 1340, 595, 272 296, 68, 24 Rodrigues et al. (2021)
TCGA, ICGC e-MutPath 59712 Li et al. (2021a)
Antibody-antigen affinity
AB-Bind mCSM-AB 558 Pires and Ascher (2016)
Literature SiPMAB 212 Sulea et al. (2016)
Literature Free energy perturbation method 200 Clark et al. (2019)
SiPMAB Consensus predictor 46 Kurumida et al. (2020)
AB-BIND, PROXiMATE, SKEMPI mCSM-AB2 1810 Myung et al. (2020)
Protein-nucleic acid interactions
ProNIT mCSM-NA 662 369 Pires and Ascher (2017)
ProNIT SAMPDI 104 13 Peng et al. (2018)
ProNIT, dbAMEPNI PremPDI 219 49 Zhang et al. (2018)
ENCODE, POSTAR2 DeepClip 81 32 Grønning et al. (2020)
dbAMEMPNI iPNHOT 293 105 Zhu et al. (2020)
ProNIT, dbAMEMPNI SAMPDI-3D 101, 463, 200, 419, 227 26, 30, 49, 96, 18 Li et al. (2021b)
PDB, literture Nabe 2506 473 Liu et al. (2021)
Functional effects
Gain of function data sets
Literature fuNCion 3794, 6930 Heyne et al. (2020)
Deep mutational data sets
Literature DeepSequence 712218 31 Riesselman et al. (2018)
Literature fuNTRp 303, 75, 102, 286, 56 Miller et al. (2019)
Literature Functional effects 183204 Reeb et al. (2020)
Literature Deep mutational landscape 6357, 6357 Dunham and Beltrao (2021)
Literature Benchmarking study 230033 10 Livesey and Marsh (2020)
Literature LacI 102, 4303 1, 1 Miller et al. (2017)
Literature Liver pyruvate kinase 126 1 Martin et al. (2020)
Molecule-specific data sets
CFTR-MetaPred 1899, 1210 Rychkova et al. (2017)
Literature CYSMA 141 Sasorith et al. (2020)
SwissProt, BTKbase KinMutRF 3689 459 Pons et al. (2016)
SwissVar, HumsaVar, Ensembl Variation, ClinVar Cardiac sodium channel variants 1392 1 Tarnovskaya et al. (2020)
Literature SCN9A variants 85 1 Toffano et al. (2020)
Literature Troponin variants 136 1 Shakur et al. (2021)
Literature, ClinVar, HGMD IDUA 147 1 Borges et al. (2021)
Disease-specific data sets
Cancer variation data sets
Literature dbCID 57, 153, 728 22, 39, 46 Yue et al. (2019)
Literature dbCPM 108, 863, 1109 11, 71, 130 Yue et al. (2018)
ICGC, TCGA, Pediatric Cancer Genome Project MutaGene 5276 58 Goncearenco et al. (2017)
UMD_TP53, TP53MULTLOAD TP53_PROF 1362, 1295 1, 1 Ben-Cohen et al. (2022)
Other diseases
ClinVar, gnomAD, literature CardioBoost 1237, 215, 154, 308, 532 218, 289, 2003,2578 218, 289, 2003, 2578 347, 463, 170 106, 106, 35 157, 227, 75 157, 227, 75 7, 6,6,7, 9 16, 16, 16, 21 16, 16, 16, 21 12, 8, 11 1, 1, 1 1, 1, 1 1, 1, 1 Zhang et al. (2021)
HGMD, dbSNP Steroid metabolism diseases 797 12 Chan (2013)
COSMIC Benchmarking cancer variants 164 11 Petrosino et al. (2021)
Phenotype data sets
ClinVar VusPrize 45749, 25080, 684, 4843, 51091 2106, 1615, 244, 1239, 2828 Mahecha et al. (2022)
a

Abbreviations: 1KGP, thousand genomes project; HGMD, human gene mutation database; ICGC, international cancer genome consortium; PDB, protein data bank; TCGA, the cancer genome atlas.

There are 247 new data files that contain total 90,886,959 variants. Together with previous versions, there are 105,181,219 variants, the increase is more than seven-fold from the original number of 14,294,260 variants. The number of data sets is high because many articles contain more than one data set. Many of the data sets are redundant as they contain data from the same origin. The most common sources of variants are ClinVar (Landrum et al., 2018) database of variants and their disease relationship, ProTherm thermodynamic database (Kumar et al., 2006), and VariBench itself. The number of unique variants is significantly lower than the sum of the variants in the data sets.

The data sets are divided into 5 categories, 17 subgroups and 11 groups (Table 1). The amount of data items varies for independent sets and is dependent on the original data. Data items irrelevant to VariBench (i.e., not describing variants or their effects) were removed when sets were included to the database. In many data sets, variants are described at three molecular levels (DNA, RNA and protein) and sometimes also at protein structural level. One of the aims of VariBench is to facilitate the reuse of existing data sets, therefore the data are provided in as many levels as possible. Further, the data can be used for various purposes, beyond the original application, such as benchmarking, developing different types of predictors, bioinformatics reviews and analyses of variation types, clinical variation interpretation, etc. When doing such an extension, the users must be cautious and aware of the possible limitations of the data sets and to understand how they have been collected.

The main categories of variation type data sets are insertions and deletions, substitutions in coding and non-coding regions, structure-mapped variants, synonymous and unsense variants, benign variants, and DNA structural variants (See Tables 1, 2). Unsense variants are a new category for exonic alterations that may look synonymous, but affect the protein or its expression, typically due to aberrant splicing or miRNA binding alterations (Vihinen, 2022; Vihinen, 2023a; Vihinen, 2023b). Effect-specific data sets include DNA regulatory elements, RNA splicing, and protein property for aggregation, binding free energy, disorder, solubility, stability, folding rate, interactions, and functional effects. Molecule- and disease-specific data sets include information for individual genes, proteins, gene/protein families or diseases. Phenotype data sets are for a disease feature, severity of the phenotype.

Almost all the categories contain new data sets. In addition, we have 6 new variation categories including structural variations in DNA (1 data set), protein folding rate (5 data sets in six publications), antibody-antigen affinity changes (5 articles and sets), protein-nucleic acid interactions (6 articles), gain of function variants (Nurk et al., 2022), and deep mutational data sets (7 studies).

One of the new categories is for functional effects under the effect-specific category. These sets are mainly for massively parallel reporter assays (saturation mutagenesis) experiments. Users of these data have to be careful since the included data sets display a measured effect; however, their relevance to biological effect is not always clear, see (Vihinen, 2021). The functional effect does not necessarily mean biological effect. One would likely say that a reduction of more than 50% of e.g., enzyme activity has a functional effect. There are several diseases where 90% or more of the normal activity has to be lost for an individual to have a disease and show the effect on biological activity (Vihinen, 2021). Examples include hemophilias due to factor II, VII, IX, X or XII variations and severe immunodeficiency caused by adenosine deaminase alterations.

Funding Statement

Financial support from Vetenskapsrådet (2019-01403) and the Swedish Cancer Society (grant number CAN 20 1350) is gratefully acknowledged.

Data availability statement

Publicly available datasets were analyzed in this study. This data can be found here: http://structure.bmc.lu.se/VariBench.

Author contributions

MV conceived the project; NS collected the data sets and developed the web site; NS and MV wrote the manuscript. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Anderson D., Lassmann T. (2022). An expanded phenotype centric benchmark of variant prioritisation tools. Hum. Mutat. 43, 539–546. 10.1002/humu.24362 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auton A., Brooks L. D., Durbin R. M., Garrison E. P., Kang H. M., Korbel J. O., et al. (2015). A global reference for human genetic variation. Nature 526, 68–74. 10.1038/nature15393 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Cohen G., Doffe F., Devir M., Leroy B., Soussi T., Rosenberg S. (2022). TP53_PROF: A machine learning model to predict impact of missense mutations in TP53. Brief. Bioinform 23, bbab524. 10.1093/bib/bbab524 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benedix A., Becker C. M., de Groot B. L., Caflisch A., Böckmann R. A. (2009). Predicting free energy changes using structural ensembles. Nat. Methods 6, 3–4. 10.1038/nmeth0109-3 [DOI] [PubMed] [Google Scholar]
  5. Benevenuta S., Pancotti C., Fariselli P., Birolo G., Sanavia T. (2021). An antisymmetric neural network to predict free energy changes in protein variants. J. Phys. D. Appl. Phys. 54, 245403. 10.1088/1361-6463/abedfb [DOI] [Google Scholar]
  6. Biggs H., Parthasarathy P., Gavryushkina A., Gardner P. P. (2020). ncVarDB: a manually curated database for pathogenic non-coding variants and benign controls. Oxford: Database, 2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borges P., Pasqualim G., Matte U. (2021). Which is the best in silico program for the missense variations in idua gene? A comparison of 33 programs plus a conservation score and evaluation of 586 missense variants. Front. Mol. Biosci. 8, 752797. 10.3389/fmolb.2021.752797 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buske O. J., Manickaraj A., Mital S., Ray P. N., Brudno M. (2013). Identification of deleterious synonymous variants in human genomes. Bioinformatics 29, 1843–1850. 10.1093/bioinformatics/btt308 [DOI] [PubMed] [Google Scholar]
  9. Chan A. O. (2013). Performance of in silico analysis in predicting the effect of non-synonymous variants in inherited steroid metabolic diseases. Steroids 78, 726–730. 10.1016/j.steroids.2013.04.002 [DOI] [PubMed] [Google Scholar]
  10. Chaudhary P., Naganathan A. N., Gromiha M. M. (2015). Folding RaCe: A robust method for predicting changes in protein folding rates upon point mutations. Bioinformatics 31, 2091–2097. 10.1093/bioinformatics/btv091 [DOI] [PubMed] [Google Scholar]
  11. Chaudhary P., Naganathan A. N., Gromiha M. M. (2016). Prediction of change in protein unfolding rates upon point mutations in two state proteins. Biochim. Biophys. Acta 1864, 1104–1109. 10.1016/j.bbapap.2016.06.001 [DOI] [PubMed] [Google Scholar]
  12. Chen C. W., Lin J., Chu Y. W. (2013). iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinforma. 14, S5. Suppl 2. 10.1186/1471-2105-14-s2-s5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen C. W., Lin M. H., Liao C. C., Chang H. P., Chu Y. W. (2020). iStable 2.0: predicting protein thermal stability changes by integrating various characteristic modules. Comput. Struct. Biotechnol. J. 18, 622–630. 10.1016/j.csbj.2020.02.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clark A. J., Negron C., Hauser K., Sun M., Wang L., Abel R., et al. (2019). Relative binding affinity prediction of charge-changing sequence mutations with FEP in protein-protein interfaces. J. Mol. Biol. 431, 1481–1493. 10.1016/j.jmb.2019.02.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Danis D., Jacobsen J. O. B., Carmody L. C., Gargano M. A., McMurry J. A., Hegde A., et al. (2021). Interpretable prioritization of splice variants in diagnostic next-generation sequencing. Am. J. Hum. Genet. 108, 1564–1577. 10.1016/j.ajhg.2021.06.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dunham A. S., Beltrao P. (2021). Exploring amino acid functions in a deep mutational landscape. Mol. Syst. Biol. 17, e10305. 10.15252/msb.202110305 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ganakammal S. R., Alexov E. (2020). An ensemble approach to predict the pathogenicity of synonymous variants. Genes. (Basel), 11. 10.3390/genes11091102 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ganakammal S. R., Alexov E. (2019). Evaluation of performance of leading algorithms for variant pathogenicity predictions and designing a combinatory predictor method: application to rett syndrome variants. PeerJ 7, e8106. 10.7717/peerj.8106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gao M., Zhou H., Skolnick J. (2015). Insights into disease-associated mutations in the human proteome through protein structural analysis. Structure 23, 1362–1369. 10.1016/j.str.2015.03.028 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Garcia-Recio A., Gómez-Tamayo J. C., Reina I., Campillo M., Cordomí A., Olivella M., et al. (2021). Tmsnp: A web server to predict pathogenesis of missense mutations in the transmembrane region of membrane proteins. Nar. Genom Bioinform 3, lqab008. 10.1093/nargab/lqab008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ge F., Zhu Y. H., Xu J., Muhammad A., Song J., Yu D. J. (2021). MutTMPredictor: robust and accurate cascade xgboost classifier for prediction of mutations in transmembrane proteins. Comput. Struct. Biotechnol. J. 19, 6400–6416. 10.1016/j.csbj.2021.11.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gelfman S., Wang Q., McSweeney K. M., Ren Z., La Carpia F., Halvorsen M., et al. (2017). Annotating pathogenic non-coding variants in genic regions. Nat. Commun. 8, 236. 10.1038/s41467-017-00141-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Geng C., Vangone A., Folkers G. E., Xue L. C., Bonvin A. (2019). iSEE: interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations. Proteins 87, 110–119. 10.1002/prot.25630 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goncearenco A., Rager S. L., Li M., Sang Q. X., Rogozin I. B., Panchenko A. R. (2017). Exploring background mutational processes to decipher cancer genetic heterogeneity. Nucleic Acids Res. 45, W514–w522. 10.1093/nar/gkx367 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Grønning A. G. B., Doktor T. K., Larsen S. J., Petersen U. S. S., Holm L. L., Bruun G. H., et al. (2020). DeepCLIP: predicting the effect of mutations on protein-rna binding with deep learning. Nucleic Acids Res. 48, 7099–7118. 10.1093/nar/gkaa530 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gunning A. C., Fryer V., Fasham J., Crosby A. H., Ellard S., Baple E. L., et al. (2021). Assessing performance of pathogenicity predictors using clinically relevant variant datasets. J. Med. Genet. 58, 547–555. 10.1136/jmedgenet-2020-107003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Heyne H. O., Baez-Nieto D., Iqbal S., Palmer D. S., Brunklaus A., May P., et al. (2020). Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci. Transl. Med. 12, eaay6848. 10.1126/scitranslmed.aay6848 [DOI] [PubMed] [Google Scholar]
  28. Huang L. T. (2014). Finding simple rules for discriminating folding rate change upon single mutation by statistical and learning methods. Protein Pept. Lett. 21, 743–751. 10.2174/09298665113209990070 [DOI] [PubMed] [Google Scholar]
  29. Huang L. T., Gromiha M. M. (2010). First insight into the prediction of protein folding rate change upon point mutation. Bioinformatics 26, 2121–2127. 10.1093/bioinformatics/btq350 [DOI] [PubMed] [Google Scholar]
  30. Huang L. T., Gromiha M. M. (2012). Real value prediction of protein folding rate change upon point mutation. J. Comput. Aided Mol. Des. 26, 339–347. 10.1007/s10822-012-9560-3 [DOI] [PubMed] [Google Scholar]
  31. Huang X., Zheng W., Pearce R., Zhang Y. (2020). SSIPe: accurately estimating protein-protein binding affinity change upon mutations using evolutionary profiles in combination with an optimized physical energy function. Bioinformatics 36, 2429–2437. 10.1093/bioinformatics/btz926 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ittisoponpisan S., Islam S. A., Khanna T., Alhuzimi E., David A., Sternberg M. J. E. (2019). Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J. Mol. Biol. 431, 2197–2212. 10.1016/j.jmb.2019.04.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jemimah S., Sekijima M., Gromiha M. M. (2020). ProAffiMuSeq: sequence-based method to predict the binding free energy change of protein-protein complexes upon mutation using functional classification. Bioinformatics 36, 1725–1730. 10.1093/bioinformatics/btz829 [DOI] [PubMed] [Google Scholar]
  34. Jian X., Boerwinkle E., Liu X. (2014). In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 42, 13534–13544. 10.1093/nar/gku1206 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jiang T., Fang L., Wang K. (2021). MutFormer: A context-dependent transformer-based model to predict pathogenic missense mutations. Available at: https://arxiv.org/abs/2110.14746. [Google Scholar]
  36. Kono T. J. Y., Lei L., Shih C. H., Hoffman P. J., Morrell P. L., Fay J. C. (2018). Comparative genomics approaches accurately predict deleterious variants in plants. G3 (Bethesda) 8, 3321–3329. 10.1534/g3.118.200563 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kovalev M. S., Igolkina A. A., Samsonova M. G., Nuzhdin S. V. (2018). A pipeline for classifying deleterious coding mutations in agricultural plants. Front. Plant Sci. 9, 1734. 10.3389/fpls.2018.01734 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kumar M. D., Bava K. A., Gromiha M. M., Prabakaran P., Kitajima K., Uedaira H., et al. (2006). ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Res. 34, D204–D206. 10.1093/nar/gkj103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kurumida Y., Saito Y., Kameda T. (2020). Predicting antibody affinity changes upon mutations by combining multiple predictors. Sci. Rep. 10, 19533. 10.1038/s41598-020-76369-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Landrum M. J., Lee J. M., Benson M., Brown G. R., Chao C., Chitipiralla S., et al. (2018). ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–d1067. 10.1093/nar/gkx1153 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lee D., Gorkin D. U., Baker M., Strober B. J., Asoni A. L., McCallion A. S., et al. (2015). A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet. 47, 955–961. 10.1038/ng.3331 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Leman R., Gaildrat P., Le Gac G., Ka C., Fichou Y., Audrezet M. P., et al. (2018). Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in silico/in vitro studies: an international collaborative effort. Nucleic Acids Res. 46, 7913–7923. 10.1093/nar/gky372 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Li B., Yang Y. T., Capra J. A., Gerstein M. B. (2020). Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks. PLoS Comput. Biol. 16, e1008291. 10.1371/journal.pcbi.1008291 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Li G., Panday S. K., Peng Y., Alexov E. (2021b). SAMPDI-3D: predicting the effects of protein and dna mutations on protein-dna interactions. Bioinformatics 37, 3760–3765. 10.1093/bioinformatics/btab567 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Li M., Petukh M., Alexov E., Panchenko A. R. (2014). Predicting the impact of missense mutations on protein-protein binding affinity. J. Chem. Theory Comput. 10, 1770–1780. 10.1021/ct401022c [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Li M., Simonetti F. L., Goncearenco A., Panchenko A. R. (2016). MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions. Nucleic Acids Res. 44, W494–W501. 10.1093/nar/gkw374 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Li Y., Burgman B., Khatri I. S., Pentaparthi S. R., Su Z., McGrail D. J., et al. (2021a). e-MutPath: computational modeling reveals the functional landscape of genetic mutations rewiring interactome networks. Nucleic Acids Res. 49, e2. 10.1093/nar/gkaa1015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Liu J., Liu S., Liu C., Zhang Y., Pan Y., Wang Z., et al. (2021). Nabe: An energetic database of amino acid mutations in protein-nucleic acid binding interfaces. Oxford: Database, 2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Livesey B. J., Marsh J. A. (2020). Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations. Mol. Syst. Biol. 16, e9380. 10.15252/msb.20199380 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Mahecha D., Nuñez H., Lattig M. C., Duitama J. (2022). Machine learning models for accurate prioritization of variants of uncertain significance. Hum. Mutat. 43, 449–460. 10.1002/humu.24339 [DOI] [PubMed] [Google Scholar]
  51. Marabotti A., Del Prete E., Scafuri B., Facchiano A. (2021). Performance of Web tools for predicting changes in protein stability caused by mutations. BMC Bioinforma. 22, 345. 10.1186/s12859-021-04238-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Martin T. A., Wu T., Tang Q., Dougherty L. L., Parente D. J., Swint-Kruse L., et al. (2020). Identification of biochemically neutral positions in liver pyruvate kinase. Proteins 88, 1340–1350. 10.1002/prot.25953 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Miller M., Bromberg Y., Swint-Kruse L. (2017). Computational predictors fail to identify amino acid substitution effects at rheostat positions. Sci. Rep. 7, 41329. 10.1038/srep41329 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Miller M., Vitale D., Kahn P. C., Rost B., Bromberg Y., funtrp (2019). funtrp: identifying protein positions for variation driven functional tuning. Nucleic Acids Res. 47, e142. 10.1093/nar/gkz818 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Moles-Fernández A., Duran-Lozano L., Montalban G., Bonache S., López-Perolio I., Menéndez M., et al. (2018). Computational tools for splicing defect prediction in breast/ovarian cancer genes: how efficient are they at predicting rna alterations? Front. Genet. 9, 366. 10.3389/fgene.2018.00366 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Myung Y., Rodrigues C. H. M., Ascher D. B., Pires D. E. V., mCSM-Ab2 (2020). mCSM-AB2: guiding rational antibody design using graph-based signatures. Bioinformatics 36, 1453–1459. 10.1093/bioinformatics/btz779 [DOI] [PubMed] [Google Scholar]
  57. Naganathan A. N., Muñoz V. (2010). Insights into protein folding mechanisms from large scale analysis of mutational effects. Proc. Natl. Acad. Sci. U. S. A. 107, 8611–8616. 10.1073/pnas.1000988107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Nair P. S., Vihinen M., VariBench (2013). VariBench: A benchmark database for variations. Hum. Mutat. 34, 42–49. 10.1002/humu.22204 [DOI] [PubMed] [Google Scholar]
  59. Niroula A., Vihinen M. (2019). How good are pathogenicity predictors in detecting benign variants? PLoS Comput. Biol. 15, e1006481. 10.1371/journal.pcbi.1006481 [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Niroula A., Vihinen M. (2016). Variation interpretation predictors: principles, types, performance, and choice. Hum. Mutat. 37, 579–597. 10.1002/humu.22987 [DOI] [PubMed] [Google Scholar]
  61. Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A. V., Mikheenko A., et al. (2022). The complete sequence of a human genome. Science 376, 44–53. 10.1126/science.abj6987 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Orioli T., Vihinen M. (2019). Benchmarking membrane proteins: subcellular localization and variant tolerance predictors. BMC Genomics 20, 547. 10.1186/s12864-019-5865-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Pagel K. A., Antaki D., Lian A., Mort M., Cooper D. N., Sebat J., et al. (2019). Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. PLoS Comput. Biol. 15, e1007112. 10.1371/journal.pcbi.1007112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Pancotti C., Benevenuta S., Birolo G., Alberini V., Repetto V., Sanavia T., et al. (2022). Predicting protein stability changes upon single-point mutation: A thorough comparison of the available tools on a new dataset. Brief. Bioinform 23, bbab555. 10.1093/bib/bbab555 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Pei J., Kinch L. N., Otwinowski Z., Grishin N. V. (2020). Mutation severity spectrum of rare alleles in the human genome is predictive of disease type. PLoS Comput. Biol. 16, e1007775. 10.1371/journal.pcbi.1007775 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Pejaver V., Urresti J., Lugo-Martinez J., Pagel K. A., Lin G. N., Nam H. J., et al. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun. 11, 5918. 10.1038/s41467-020-19669-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Peng Y., Sun L., Jia Z., Li L., Alexov E. (2018). Predicting protein-DNA binding free energy change upon missense mutations using modified MM/PBSA approach: SAMPDI webserver. Bioinformatics 34, 779–786. 10.1093/bioinformatics/btx698 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Petrosino M., Novak L., Pasquo A., Chiaraluce R., Turina P., Capriotti E., et al. (2021). Analysis and interpretation of the impact of missense variants in cancer. Int. J. Mol. Sci., 22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Petukh M., Dai L., Alexov E. (2016). Saambe: webserver to predict the charge of binding free energy caused by amino acids mutations. Int. J. Mol. Sci. 17, 547. 10.3390/ijms17040547 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Pires D. E., Ascher D. B. (2016). mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res. 44, W469–W473. 10.1093/nar/gkw458 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Pires D. E. V., Ascher D. B. (2017). mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions. Nucleic Acids Res. 45, W241–w246. 10.1093/nar/gkx236 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Pires D. E. V., Rodrigues C. H. M., Ascher D. B. (2020). mCSM-membrane: predicting the effects of mutations on transmembrane proteins. Nucleic Acids Res. 48, W147–w153. 10.1093/nar/gkaa416 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Plekhanova E., Nuzhdin S. V., Utkin L. V., Samsonova M. G. (2019). Prediction of deleterious mutations in coding regions of mammals with transfer learning. Evol. Appl. 12, 18–28. 10.1111/eva.12607 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Pons T., Vazquez M., Matey-Hernandez M. L., Brunak S., Valencia A., Izarzugaza J. M. (2016). KinMutRF: A random forest classifier of sequence variants in the human protein kinase superfamily. BMC Genomics 17, 396. Suppl 2. 10.1186/s12864-016-2723-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Quinodoz M., Peter V. G., Cisarova K., Royer-Bertrand B., Stenson P. D., Cooper D. N., et al. (2022). Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity. Am. J. Hum. Genet. 109, 457–470. 10.1016/j.ajhg.2022.01.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Raponi M., Kralovicova J., Copson E., Divina P., Eccles D., Johnson P., et al. (2011). Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in brca1 exon 6. Hum. Mutat. 32, 436–444. 10.1002/humu.21458 [DOI] [PubMed] [Google Scholar]
  77. Reeb J., Wirth T., Rost B. (2020). Variant effect predictions capture some aspects of deep mutational scanning experiments. BMC Bioinforma. 21, 107. 10.1186/s12859-020-3439-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Rentzsch P., Schubach M., Shendure J., Kircher M. (2021). CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 13, 31. 10.1186/s13073-021-00835-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., et al. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular Pathology. Genet. Med. 17, 405–424. 10.1038/gim.2015.30 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Riesselman A. J., Ingraham J. B., Marks D. S. (2018). Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 15, 816–822. 10.1038/s41592-018-0138-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Rodrigues C. H. M., Myung Y., Pires D. E. V., Ascher D. B., mCSM-Ppi2 (2019). mCSM-PPI2: predicting the effects of mutations on protein–protein interactions. Nucleic Acids Res. 47, W338–w344. 10.1093/nar/gkz383 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Rodrigues C. H. M., Pires D. E. V., Ascher D. B., mmCSM-Ppi (2021). mmCSM-PPI: predicting the effects of multiple point mutations on protein–protein interactions. Nucleic Acids Res. 49, W417–w424. 10.1093/nar/gkab273 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Rychkova A., Buu M., Scharfe C., Lefterova M., Odegaard J., Schrijver I., et al. (2017). Developing gene-specific meta-predictor of variant pathogenicity. [Google Scholar]
  84. Sarkar A., Yang Y., Vihinen M. (2020). Variation benchmark datasets: update, criteria, quality and applications. Database 2020, baz117. 10.1093/database/baz117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Sasorith S., Baux D., Bergougnoux A., Paulet D., Lahure A., Bareil C., et al. (2020). The CYSMA web server: an example of integrative tool for in silico analysis of missense variants identified in mendelian disorders. Hum. Mutat. 41, 375–386. 10.1002/humu.23941 [DOI] [PubMed] [Google Scholar]
  86. Savojardo C., Manfredi M., Martelli P. L., Casadio R. (2020). Solvent accessibility of residues undergoing pathogenic variations in humans: from protein structures to protein sequences. Front. Mol. Biosci. 7, 626363. 10.3389/fmolb.2020.626363 [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Schaafsma G. C., Vihinen M. (2018). Representativeness of variation benchmark datasets. BMC Bioinforma. 19 (1), 461. 10.1186/s12859-018-2478-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Schaafsma G. C., Vihinen M., VariSNP (2015). VariSNP, A benchmark database for variations from dbSNP. Hum. Mutat. 36, 161–166. 10.1002/humu.22727 [DOI] [PubMed] [Google Scholar]
  89. Shakur R., Ochoa J. P., Robinson A. J., Niroula A., Chandran A., Rahman T., et al. (2021). Prognostic implications of troponin T variations in inherited cardiomyopathies using systems biology. NPJ Genom Med. 6, 47. 10.1038/s41525-021-00204-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Sharo A. G., Hu Z., Sunyaev S. R., Brenner S. E. (2022). StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants. Am. J. Hum. Genet. 109, 195–209. 10.1016/j.ajhg.2021.12.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Sherry S. T., Ward M. H., Kholodov M., Baker J., Phan L., Smigielski E. M., et al. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311. 10.1093/nar/29.1.308 [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Stourac J., Dubrava J., Musil M., Horackova J., Damborsky J., Mazurenko S., et al. (2021). FireProtDB: database of manually curated protein stability data. Nucleic Acids Res. 49, D319–d324. 10.1093/nar/gkaa981 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Strokach A., Corbi-Verge C., Kim P. M. (2019). Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge. Hum. Mutat. 40, 1414–1423. 10.1002/humu.23852 [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Strokach A., Lu T. Y., Kim P. M. (2021). ELASPIC2 (EL2): combining contextualized language models and graph neural networks to predict effects of mutations. J. Mol. Biol. 433, 166810. 10.1016/j.jmb.2021.166810 [DOI] [PubMed] [Google Scholar]
  95. Sulea T., Vivcharuk V., Corbeil C. R., Deprez C., Purisima E. O. (2016). Assessment of solvated interaction energy function for ranking antibody-antigen binding affinities. J. Chem. Inf. Model. 56, 1292–1303. 10.1021/acs.jcim.6b00043 [DOI] [PubMed] [Google Scholar]
  96. Tang X., Zhang T., Cheng N., Wang H., Zheng C. H., Xia J., et al. (2021). usDSM: a novel method for deleterious synonymous mutation prediction using undersampling scheme. Brief. Bioinform 22, bbab123. 10.1093/bib/bbab123 [DOI] [PubMed] [Google Scholar]
  97. Tarnovskaya S. I., Korkosh V. S., Zhorov B. S., Frishman D. (2020). Predicting novel disease mutations in the cardiac sodium channel. Biochem. Biophys. Res. Commun. 521, 603–611. 10.1016/j.bbrc.2019.10.142 [DOI] [PubMed] [Google Scholar]
  98. Thusberg J., Olatubosun A., Vihinen M. (2011). Performance of mutation pathogenicity prediction methods on missense variants. Hum. Mutat. 32, 358–368. 10.1002/humu.21445 [DOI] [PubMed] [Google Scholar]
  99. Tian J., Wu N., Chu X., Fan Y. (2010). Predicting changes in protein thermostability brought about by single- or multi-site mutations. BMC Bioinforma. 11, 370. 10.1186/1471-2105-11-370 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Toffano A. A., Chiarot G., Zamuner S., Marchi M., Salvi E., Waxman S. G., et al. (2020). Computational pipeline to probe NaV1.7 gain-of-function variants in neuropathic painful syndromes. Sci. Rep. 10, 17930. 10.1038/s41598-020-74591-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Turina P., Fariselli P., Capriotti E. (2021). ThermoScan: semi-automatic identification of protein stability data from Pubmed. Front. Mol. Biosci. 8, 620475. 10.3389/fmolb.2021.620475 [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Vihinen M. (2021). Functional effects of protein variants. Biochimie 180, 104–120. 10.1016/j.biochi.2020.10.009 [DOI] [PubMed] [Google Scholar]
  103. Vihinen M. (2013). Guidelines for reporting and using prediction tools for genetic variation analysis. Hum. Mutat. 34, 275–282. 10.1002/humu.22253 [DOI] [PubMed] [Google Scholar]
  104. Vihinen M. (2012). How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics 13, S2. Suppl 4. 10.1186/1471-2164-13-s4-s2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Vihinen M. (2023b). Nonsynonymous synonymous variants demand for a paradigm shift in genetics. Curr. Genet. 24, 18–23. 10.2174/1389202924666230417101020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Vihinen M. (2023a). Systematic errors in annotations of truncations, loss-of-function and synonymous variants. Front. Genet. 14, 1015017. 10.3389/fgene.2023.1015017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Vihinen M. (2022). When a synonymous variant is nonsynonymous. Genes. (Basel), 13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Wang M., Cang Z., Wei G. W. (2020). A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation. Nat. Mach. Intell. 2, 116–123. 10.1038/s42256-020-0149-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Wang Y., Jiang Y., Yao B., Huang K., Liu Y., Wang Y., et al. (2021). WEVar: A novel statistical learning framework for predicting noncoding regulatory variants. Brief. Bioinform 22, bbab189. 10.1093/bib/bbab189 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Wu Y., Li R., Sun S., Weile J., Roth F. P. (2021). Improved pathogenicity prediction for rare human missense variants. Am. J. Hum. Genet. 108, 1891–1906. 10.1016/j.ajhg.2021.08.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Xiong P., Zhang C., Zheng W., Zhang Y. (2017). BindProfX: assessing mutation-induced binding affinity change by protein interface profiles with pseudo-counts. J. Mol. Biol. 429, 426–434. 10.1016/j.jmb.2016.11.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Yang Y., Shao A., Vihinen M. (2022). PON-All, amino acid substitution tolerance predictor for all organisms. Front. Mol. Biosci. 9, 867572. 10.3389/fmolb.2022.867572 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Yang Y., Urolagin S., Niroula A., Ding X., Shen B., Vihinen M. (2018). PON-Tstab: protein variant stability predictor importance of training data quality. Int. J. Mol. Sci. 19, 1009. 10.3390/ijms19041009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Yang Y., Zeng L., Vihinen M., Pon-Sol2 (2021). Prediction of effects of variants on protein solubility. Int. J. Mol. Sci., 22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Yue Z., Zhao L., Cheng N., Yan H., Xia J. (2019). dbCID: a manually curated resource for exploring the driver indels in human cancer. Brief. Bioinform 20, 1925–1933. 10.1093/bib/bby059 [DOI] [PubMed] [Google Scholar]
  116. Yue Z., Zhao L., Xia J. (2018). dbCPM: a manually curated database for exploring the cancer passenger mutations. Brief. Bioinform 21, 309–317. 10.1093/bib/bby105 [DOI] [PubMed] [Google Scholar]
  117. Zeng Z., Bromberg Y. (2019). Predicting functional effects of synonymous variants: A systematic review and perspectives. Front. Genet. 10, 914. 10.3389/fgene.2019.00914 [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Zhang N., Chen Y., Lu H., Zhao F., Alvarez R. V., Goncearenco A., et al. (2020). MutaBind2: predicting the impacts of single and multiple mutations on protein-protein interactions. iScience 23, 100939. 10.1016/j.isci.2020.100939 [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Zhang N., Chen Y., Zhao F., Yang Q., Simonetti F. L., Li M. (2018). PremPDI estimates and interprets the effects of missense mutations on protein-DNA interactions. PLoS Comput. Biol. 14, e1006615. 10.1371/journal.pcbi.1006615 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Zhang S., He Y., Liu H., Zhai H., Huang D., Yi X., et al. (2019). regBase: whole genome base-wise aggregation and functional prediction for human non-coding regulatory variants. Nucleic Acids Res. 47, e134. 10.1093/nar/gkz774 [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Zhang X., Walsh R., Whiffin N., Buchan R., Midwinter W., Wilk A., et al. (2021). Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions. Genet. Med. 23, 69–79. 10.1038/s41436-020-00972-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Zhou J. B., Xiong Y., An K., Ye Z. Q., Wu Y. D. (2020). IDRMutPred: predicting disease-associated germline nonsynonymous single nucleotide variants (nssnvs) in intrinsically disordered regions. Bioinformatics 36, 4977–4983. 10.1093/bioinformatics/btaa618 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Zhu X., Liu L., He J., Fang T., Xiong Y., Mitchell J. C. (2020). iPNHOT: a knowledge-based approach for identifying protein-nucleic acid interaction hot spots. BMC Bioinforma. 21, 289. 10.1186/s12859-020-03636-w [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found here: http://structure.bmc.lu.se/VariBench.


Articles from Frontiers in Bioinformatics are provided here courtesy of Frontiers Media SA

RESOURCES