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In the past few years, both the number of CT examina-
tions performed and the available computing power have 

steadily increased (1,2). Moreover, the capability of image 
analysis algorithms has vastly improved given advances in 
deep learning techniques (3,4). The resulting increases in 
data, computational power, and algorithm quality have en-
abled radiologic studies using large sample sizes. For many 
of these studies, segmentation of anatomic structures plays 
an important role. Segmentation is useful for extracting ad-
vanced biomarkers based on radiologic images, automati-
cally detecting abnormalities, or quantifying tumor load 
(5). In routine clinical analysis, segmentation is already 
used for applications such as surgical and radiation therapy 
planning (6). Thus, the associated algorithms could ulti-
mately enter routine clinical use to improve the quality of 
radiologic reports and reduce radiologist workload.

For most applications, segmentation of the relevant ana-
tomic structure is the first step. Building and training a seg-
mentation algorithm, however, are complex because they 
require tedious manual annotation of training data and 
technical expertise for training the algorithm. Providing a 

ready-to-use segmentation toolkit that enables automatic 
segmentation of most of the major anatomic structures on 
CT images would considerably simplify many radiology 
studies, thereby accelerating research in the field.

Several publicly available segmentation models are cur-
rently available. However, these models are generally spe-
cific for a single organ (eg, the pancreas, spleen, colon, or 
lung) (7–11). They cover only a small subset of relevant an-
atomic structures and are trained on relatively small data-
sets that are not representative of routine clinical imaging, 
which is characterized by differences in contrast phases, 
acquisition settings, and diverse abnormalities. Thus, re-
searchers must often build and train their own segmenta-
tion models, which can be costly.

To overcome this problem, we aimed to develop a 
model with the following characteristics: (a) publicly 
available (including its training data), (b) easy to use, (c) 
segments most anatomically relevant structures through-
out the body, and (d) exhibits robust performance in any 
clinical setting. As an example application, we applied our 
segmentation model to a large dataset of 4004 patients 
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Purpose:  To present a deep learning segmentation model that can automatically and robustly segment all major anatomic structures on 
body CT images.

Materials and Methods:  In this retrospective study, 1204 CT examinations (from 2012, 2016, and 2020) were used to segment 104 
anatomic structures (27 organs, 59 bones, 10 muscles, and eight vessels) relevant for use cases such as organ volumetry, disease charac-
terization, and surgical or radiation therapy planning. The CT images were randomly sampled from routine clinical studies and thus 
represent a real-world dataset (different ages, abnormalities, scanners, body parts, sequences, and sites). The authors trained an nnU-
Net segmentation algorithm on this dataset and calculated Dice similarity coefficients to evaluate the model’s performance. The trained 
algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age-dependent volume and attenuation 
changes.

Results:  The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major 
abnormalities. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 
0.932 vs 0.871; P < .001). The aging study demonstrated significant correlations between age and volume and mean attenuation for a 
variety of organ groups (eg, age and aortic volume [rs = 0.64; P < .001]; age and mean attenuation of the autochthonous dorsal muscu-
lature [rs = −0.74; P < .001]).

Conclusion:  The developed model enables robust and accurate segmentation of 104 anatomic structures. The annotated dataset (https://
doi.org/10.5281/zenodo.6802613) and toolkit (https://www.github.com/wasserth/TotalSegmentator) are publicly available.
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unknown age (n = 30) or incomplete images (n = 33) or who 
underwent studies without administration of a contrast agent 
(n = 35) were excluded. In all patients, the same examination 
protocol was applied: contrast-enhanced, whole-body CT in an 
arteriovenous split-bolus phase, with a similar amount of con-
trast agent. Thus, we assumed that variation of attenuation (in 
Hounsfield units) due to the contrast agent was minimal for all 
images and that the attenuation values were comparable.

Data Annotation
We identified 104 anatomic structures for segmentation (Fig 
2, Appendix S1). The Nora Imaging Platform was used for 
manual segmentation or further refinement of generated seg-
mentations (12). Segmentation was supervised by two physi-
cians with 3 (M.S.) and 6 (H.C.B.) years of experience in body 
imaging, respectively. The work was split between them.

If an existing model for a given structure was publicly avail-
able (Appendix S2), that model was used to create a first seg-
mentation, which was then validated and refined manually 
(10,13–16).

To speed the process further, we used an iterative learning 
approach, as follows. After manual segmentation of the first five 
patients was completed, a preliminary nnU-Net was trained, and 
its predictions were manually refined, if necessary. The nnU-Net 
was retrained after review and refinement of five patients, 20 pa-
tients, and 100 patients (Fig 1B).

In the end, all 1204 CT examinations had annotations that 
were manually reviewed and corrected whenever necessary. 
These final annotations served as the ground truth for training 
and testing. The model was trained on the dataset of 1082 pa-
tients, validated on the dataset of 57 patients, and tested on the 
dataset of 65 patients. This final model was independent of the 
intermediate models trained during the annotation workflow, 
which reduced bias in the test set to a minimum. Using com-
pletely manual annotations in the test set would have introduced 
a distribution shift and thus greater bias.

Model
We used the model from the nnU-Net framework, which is a 
U-Net–based implementation that automatically configures all 
hyperparameters based on the dataset characteristics (17,18). 
One model was trained on CT scans with 1.5-mm isotropic 
resolution. To allow for lower technical requirements (RAM 
and GPU memory), we also trained a second model on 3-mm 
isotropic resolution (for more details on the training, see Ap-
pendix S4). The runtime for the prediction of one case was 
measured on a local workstation with an Intel Core i9 3.5-
GHz CPU and NVIDIA GeForce RTX 3090 GPU.

Statistical Analysis

Training dataset.— As evaluation metrics, the Dice similarity 
coefficient, a commonly used spatial overlap index, and the 
normalized surface distance (NSD), which measures how often 
the surface distance is less than 3 mm, were calculated between 
the predicted segmentations and the human approved ground 

with whole-body CT scans collected in a polytrauma setting and 
analyzed age-dependent changes of the volume and attenuation 
of different structures.

Materials and Methods
The Ethics Committee Northwest and Central Switzerland ap-
proved the ethics waiver for this retrospective study (EKNZ 
BASEC Req-2022–00495).

Datasets
Two datasets were aggregated for this study: one dataset for train-
ing the proposed model (training dataset) and a second dataset 
for the aging study example application (aging study dataset).

Training dataset.— To generate a comprehensive and highly 
variant dataset, 1368 CT examinations were randomly sam-
pled from 2012, 2016, and 2020 from the University Hospital 
Basel picture archiving and communication system. CT series 
of upper and lower extremities (n = 37), CT series with missing 
slices (n = 87), and CT series for which the human annotator 
could not segment certain structures because of high ambigu-
ity (eg, structures highly distorted as a result of abnormality) 
(n = 40) were excluded. The CT series were sampled randomly 
from each examination to obtain a wide variety of data. All im-
ages were resampled to 1.5-mm isotropic resolution. The final 
dataset of 1204 CT series was divided into a training dataset of 
1082 patients (90%), a validation dataset of 57 patients (5%), 
and a test dataset of 65 patients (5%) (Fig 1A).

Aging study dataset.— All patients with polytrauma who under-
went whole-body CT between 2011 and 2020 at the University 
Hospital Basel were initially included (n = 4102). Patients with 
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BTCV = Multi-Atlas Labeling Beyond the Cranial Vault – Work-
shop and Challenge, NSD = normalized surface distance

Summary
TotalSegmentator provides automatic, easily accessible segmentations 
of major anatomic structures on CT images.

Key Points
	■ The proposed model was trained on a diverse dataset of 1204 CT 

examinations randomly sampled from routine clinical studies; the 
dataset contained segmentations of 104 anatomic structures (27 
organs, 59 bones, 10 muscles, and eight vessels) that are relevant 
for use cases such as organ volumetry, disease characterization, and 
surgical or radiation therapy planning.

	■ The model achieved a high Dice similarity coefficient (0.943; 95% 
CI: 0.938, 0.947) on the test set encompassing a wide range of 
clinical data, including major abnormalities, and outperformed 
other publicly available segmentation models on a separate dataset 
(Dice score, 0.932 vs 0.871; P < .001).

	■ Both the training dataset (https://doi.org/10.5281/zenodo.6802613) 
and developed model (https://www.github.com/wasserth/
TotalSegmentator) are publicly available.
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model and the BTCV model. P values less than .05 were consid-
ered to indicate statistically significant differences.

Aging study dataset.— To evaluate the effect of age on differ-
ent structures, the correlation between age and volume and 
the mean attenuation in Hounsfield units were calculated for 
all structures, excluding structures with failed segmentations. 
The segmentation of a body structure was assumed as failed 
if the volume of the respective body structure was too small 
to be anatomically plausible given by a lower bound (Table 
S1). The Kolmogorov-Smirnov test was used to evaluate 
whether continuous variables were normally distributed. The 
association between continuous variables was examined using 

truth segmentations. Both metrics range between 0 (worst) and 
1 (best) and were calculated on the test set.

For additional evaluation, we compared our model to a nnU-
Net trained on the dataset from the Multi-Atlas Labeling Be-
yond the Cranial Vault – Workshop and Challenge (https://www.
synapse.org/#!Synapse:syn3193805/wiki/217780) (BTCV dataset) 
acquired at Vanderbilt University Medical Center. Because that 
dataset provided labels for only 13 structures (Appendix S5), the 
comparison was limited to those 13 structures. We ran two com-
parisons: one on our test set and one on the BTCV dataset. The 
95% CIs were calculated using nonparametric percentile boot-
strapping with 10 000 iterations. A Wilcoxon signed rank test 
was used to compare the Dice and NSD metrics between our 

Figure 1:  (A) Diagram shows the inclusion of patients 
into the study. (B) Diagram shows the iterative annotation 
workflow of the training dataset. Steps involving manual 
annotation are shown in green. In step 9, a completely new 
model was trained independently of the intermediate models 
(steps 2, 4, and 6). This avoids leakage of information from 
the test set into the training set. PACS = picture archiving and 
communication system.

https://www.synapse.org/#!Synapse:syn3193805/wiki/217780
https://www.synapse.org/#!Synapse:syn3193805/wiki/217780
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trauma, inflammation, bleeding, and other). Information on 
presence of abnormalities was not available for 155 patients 
because of missing radiology reports (Fig 3).

The aging study dataset of CT scans from 4004 patients 
showed uniform age distribution, ranging from 18 to 100 years 
(Fig S2). The sex distribution was less balanced (2543 men 
[63.5%] and 1461 women [36.5%]).

Segmentation Evaluation
The model trained on CT images with a resolution of 1.5 
mm showed high accuracy. The Dice score was 0.943 (95% 
CI: 0.938, 0.947), and the NSD was 0.966 (95% CI: 0.962, 
0.971). The 3-mm model showed a lower Dice score of 0.840 
(95% CI: 0.836, 0.844), but the NSD was 0.966 (95% CI: 
0.962, 0.969) because minor inaccuracies introduced by the 
lower resolution were still within the bounds of the 3-mm 
distance threshold. Thus, the 3-mm model still delivered cor-
rect results, but the borders were less precise. Results for each 
structure independently are shown in Figure S1 and at https://
github.com/wasserth/TotalSegmentator/blob/master/resources/re-
sults_all_classes.json.

In a direct comparison of our 1.5-mm model to an nnU-Net 
trained on the BTCV  dataset, our model achieved a significantly 

Spearman rank correlation coefficient. Patients were grouped 
into four age quartiles and compared using the Kruskal-Wallis 
test. Post hoc analysis was performed using the Wilcoxon 
rank sum test. Bonferroni correction was performed, and P 
values less than .0001 were considered to indicate statistically 
significant differences. Outliers are not shown in the figures 
to maintain scaling.

Results

Characteristics of the Study Sample
Data on basic demographic characteristics of patients included 
in the training dataset of 1204 CT images are shown in Fig-
ure 3. The dataset contained a wide variety of CT images, 
with differences in slice thickness, resolution, and contrast 
phase (native, arterial, portal venous, late phase, and others). 
Dual-energy CT images obtained using different tube voltages 
were also included. Different kernels (soft-tissue kernel, bone 
kernel), as well as CT images from eight different sites and 
16 different scanners, were included in the dataset; however, 
most images were acquired using a Siemens manufacturer. A 
total of 404 patients showed no signs of abnormality, whereas 
645 showed different types of abnormality (tumor, vascular, 

Figure 2:  Overview of all 104 anatomic structures segmented by the TotalSegmentator. autochthon = autochthonous dorsal musculature. 

http://radiology-ai.rsna.org
https://github.com/wasserth/TotalSegmentator/blob/master/resources/results_all_classes.json
https://github.com/wasserth/TotalSegmentator/blob/master/resources/results_all_classes.json
https://github.com/wasserth/TotalSegmentator/blob/master/resources/results_all_classes.json
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Performance on pathologic cases.— Because our model was 
trained on a diverse dataset, it generated robust results on pa-
tients with major abnormalities. Figure 5 shows qualitative re-
sults for several abnormalities.

Runtime.— The Table shows an overview of the runtime, RAM 
requirements, and GPU memory requirements of the high-
resolution (1.5 mm) and low-resolution (3 mm) models for 
three CT studies with different dimensions: a small study of 
an abdomen with matrix size of 512 × 512 × 280 voxels, a 
medium-sized study of the thorax and abdomen with matrix 
size of 512 × 512 × 458 voxels, and a large study from head to 
knee with matrix size of 512 × 512 × 824 voxels.

Evaluation of age-related differences.— For the aging study 
dataset, we observed a negative correlation between age and 

higher Dice coefficient (0.932 [95% CI: 0.920, 0.942] vs 0.871 
[95% CI: 0.855, 0.887], respectively; P < .001) and NSD score 
(0.971 [95% CI: 0.961, 0.979] vs 0.921 [95% CI: 0.907, 0.936]; 
P < .001) on our test set. When we tested our 1.5-mm model on 
the BTCV dataset, it achieved a Dice coefficient of 0.849 (95% CI: 
0.833, 0.862) and NSD score of 0.932 (95% CI : 0.920, 0.943), 
showing generalizability to CT studies from a different continent. 
Our model achieved higher values (P < .001) than the nnU-Net 
trained on the BTCV dataset itself (Dice coefficient, 0.839 [95% 
CI: 0.821, 0.856]; NSD score, 0.915 [95% CI: 0.900, 0.930]) 
(for more information, see Appendix S7).

Typical failure cases.— Despite the high Dice coefficient and 
NSD score, our model failed in some cases. Figure 4 shows the 
most typical failure cases, such as missing small parts of the colon 
or iliac arteries and mixing up neighboring vertebrae and ribs.

Figure 3:  Graphs show the distribution of different parameters of the training dataset, demonstrating the dataset’s high diversity.
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attenuation in the clavicle (rs = −0.53; P < .0001), hips (rs = 
−0.61; P < .0001 [Fig 6]), and all ribs and the scapula (Fig S3). 
A moderately negative correlation was observed between age 
and mean attenuation of the lumbar vertebrae (lumbar verte-
bra 4, rs = −0.55; P < .0001).

Negative correlations between age and attenuation were also 
observed for the musculature, with moderate to strong correla-
tions for the autochthonous dorsal musculature (rs = −0.74; 
P < .0001) and gluteal musculature (gluteus maximus: rs = 

−0.51 [P < .0001]; gluteus medius: rs = −0.61 [P < .0001]; glu-
teus minimus: rs = −0.79 [P < .0001]). Age was moderately to 
strongly negatively correlated with CT attenuation and volume 
of the iliopsoas muscle, respectively (rs = −0.57 [P < .0001] and 
rs = −0.61 [P < .0001]) (Fig 6).

A positive correlation was observed between the volume of 
the aorta and patient age (rs = 0.64; P < .0001) (Fig 6), most 
likely due to aneurysm development. The correlation was less 
positive for the iliac arteries (rs = 0.33; P < .0001).

Figure 4:  Overview of typical failure cases of the proposed model. Users should be aware that these problems may occur.

Figure 5:  Overview of performance of the proposed model on different abnormalities on the test set. Our model showed robust, accurate results even when structures 
were distorted (broken bones), displaced (bowels displaced by inguinal hernia), completely missing (splenectomy), or duplicated (transplant kidney).

http://radiology-ai.rsna.org
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Regarding organ volumetry, age was negatively correlated to 
kidney volume (rs = −0.49; P < .0001) and pancreas volume (rs 
= −0.49; P < .0001).

The same analysis was done for all 104 classes (Fig S3).

Discussion
In this study, we developed a tool for segmentation of 104 ana-
tomic structures on 1204 CT datasets obtained using different CT 
scanners, acquisition settings, and contrast phases. The tool dem-
onstrated high accuracy (Dice coefficient of 0.943) and works ro-
bustly on a wide range of clinical data, outperforming other freely 
available segmentation tools. Furthermore, we evaluated and re-
ported age-related changes in volume and attenuation in multiple 
organs using a large dataset of more than 4000 CT examinations.

Numerous models are available for segmentation of single or 
several organs on CT images (eg, the pancreas, spleen, colon, or 
lung), and work has also been conducted on segmenting several 
anatomic structures in one dataset and model (7–11). All previ-
ous models cover only a small subset of relevant anatomic struc-
tures and are trained on small datasets that are not representative 
of routine clinical imaging, which involves different contrast 
phases, acquisition settings, and diverse abnormalities (18).

To our knowledge, only three other studies have examined 
segmenting a larger number of structures on CT images. First, 
the algorithm reported by Chen et al (6) segments 50 different 
structures. Apart from the fact that many organs and anatomic 
structures are still not represented in that model, neither the 
dataset nor the model is publicly available, and the dataset is 
relatively homogeneous (most of the training data came from 
the same scanner using the same CT sequence). Second, the al-
gorithm developed by Shiyam Sundar et al (19) segments 120 
structures, and their model is publicly available. However, the 
model requires 256 GB of RAM, making it difficult to apply. 
Moreover, the training data consist of fewer than 100 individu-
als, making the model less robust for broad application to any 
CT data. Third, the algorithm developed by Trägårdh et al (20) 
segments 100 structures. However, because the 339 training 
samples are homogeneous, the model does not perform well on 
images with diverse slice or body orientations or involving dif-
ferent contrast phases.

Many segmentation models and datasets are not publicly 
available, which strongly reduces their benefit to the scientific 
community (6,21–23). Datasets that are made available often 
require time-consuming paperwork to request access (eg, UK 
Biobank, National Institutes of Health National Institute of 
Mental Health Data Archive) or are uploaded to data providers 
that are difficult to use (eg, The Cancer Imaging Archive, which 
requires a third-party download manager) or rate limited (eg, 
Google drive). We made our model easily accessible by providing 
it as a pretrained Python package. Our model requires less than 
12 GB of RAM and does not require a GPU. Thus, it can be run 
on a normal laptop. In addition, our dataset is freely available 
to download; it does not require any access requests and can be 
downloaded with one click.

An nnU-Net based model was used for the present study be-
cause it was shown to deliver accurate results across a wide range 
of tasks and has been established as the standard for medical im-
age segmentation, outperforming most other methods (19). It 
might be possible to improve on the default nnU-Net through 
more hyperparameter optimization and exploration of newer 
models, such as transformers (24).

Our model has multiple potential applications. Besides its 
use for surgery, rapid and readily available organ segmentation 
also allows for individual dosimetry, as shown for the liver and 
kidneys (6). Automated segmentation may also enhance research 
and provide normal or even age-dependent values (eg, Houn-
sfield units and volume) and biomarkers for clinicians. Com-
bined with a lesion-detection model, our model could be used 
to estimate body part–specific tumor load. Moreover, our model 
can be used as a first step in building models to detect specific 
abnormalities. More than 4500 researchers have already down-
loaded our model (https://zenodo.org/record/6802342), using it 
for a wide range of applications.

With our aging study, we demonstrated a sample application 
for our comprehensive segmentation model that could provide 
insights into the age dependency of organ volumes and attenu-
ation. Such big-data evaluations were previously not feasible or 
required substantial time by expert researchers. Using a dataset 
of more than 4000 patients who underwent polytrauma CT, we 
showed correlations between age and volume of many segmented 

Overview of Runtime, RAM Requirements, and GPU Memory Requirements of High- (1.5 mm) and Low-
Resolution (3 mm) Models on Three Different-sized CT Studies

Study Size (Voxels)

1.5-mm Model 3-mm Model

Runtime
RAM 
(GB)

GPU Memory 
(GB) Runtime

RAM 
(GB)

GPU Memory 
(GB)

Small (512 × 512 × 280) 1 min 17 sec 7.6 6.1 34 sec 7.4 5.2 
Medium (512 × 512 × 458) 2 min 49 sec 10.6 8.5 53 sec 8.4 7.4 
Large (512 × 512 × 824) 3 min 32 sec 11.8 11.4 1 min 23 sec 10.6 7.5 

Note.—The three CT studies were as follows: one small study of only the abdomen with matrix size of 512 × 512 × 280 
voxels, one medium study of the thorax and abdomen with matrix size of 512 × 512 × 458 voxels, and one large study 
from head to knee with matrix size of 512 × 512 × 824 voxels. The runtime was measured on a local workstation with 
an Intel Core i9 3.5-GHz CPU and a NVIDIA GeForce RTX 3090 GPU. 

https://zenodo.org/record/6802342
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organs. Common literature values for normal organ sizes and 
age-dependent organ development are typically based on sample 
sizes of a few hundred patients. The number of diverse applica-
tion examples, such as the evaluation of organ size or density as 
a function of age, sex, ethnicity, disease, medication intake, or 

drug use, is almost limitless and can provide a new (radiologic) 
approach for evaluating the physiology of disease processes.

A limitation of our study was that male patients were over-
represented in the study dataset, possibly because more men are 
part of the overall hospital population (25). We consider our 

Figure 6:  Example correlations of CT attenuation and volume with patient age. (A) Graph shows negative 
correlation between hip attenuation and patient age. (B) Box plots of hip attenuation for age quartiles show a 
decrease with increasing age. (C) Graph shows negative correlation between iliopsoas muscle volume and 
patient age. (D) Box plots of iliopsoas muscle volume for age quartiles show a decrease with increasing age. 
(E) Graph shows positive correlation between aortic volume and patient age. (F) Box plots of aortic volume 
for age quartiles show an increase with increasing age. For box plots, the central mark indicates the median, 
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. Whiskers extend to 
the most extreme data points not considering outliers and are defined by the 25th percentile subtracted by 1.5 
times the IQR or the 75th percentile added by 1.5 times the IQR, respectively. Outliers are not displayed.

http://radiology-ai.rsna.org
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model to serve as the basis for large radiologic population stud-
ies. For example, the model can be used to obtain new reference 
values for organ volumes or to create a new approach for evaluat-
ing different diseases using segmentation. In future research, we 
plan to add more anatomic structures to our dataset and model. 
Furthermore, we are preparing a more detailed aging study by 
using more patients, correcting for confounders, and analyzing 
more correlations.

In conclusion, we developed a CT segmentation model 
that is (a) publicly available (https://github.com/wasserth/Total-
Segmentator), including training data (https://doi.org/10.5281/
zenodo.6802613); (b) is easy to use; (c) segments most anatomi-
cally relevant structures in the whole body; and (d) works ro-
bustly in any clinical setting.
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