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INTRODUCTION
Conventional implementation of image reconstruction 
for positron emission tomography (PET) involves writing 
computer code, a series of programming steps called an 
algorithm, based on an understanding of the physics and 
statistics of PET imaging. Using this understanding, the 
measured data from a PET scanner (e.g. sinogram data,1 
histoimages2 or list- mode data3) are processed by the algo-
rithm to form a reconstructed image. The term “image” 
refers to a representation of the spatiotemporal distribution 
of the PET radiotracer within the subject in the scanner.4 
Usually this is a two- dimensional (2D) or three- dimensional 
(3D) array of pixels or voxels with values that are estimates 
of the radiotracer’s concentration in each of those pixel or 
voxel regions of the scanner field of view (FOV).

Conventionally, imaging scientists assume they know 
a good physics model and a good statistical model for 
both the signal and the noise in the PET measured data. 
By solving a mathematical description of the measured 
data, they implement the solution by fixed computer 
code, to reconstruct an image based on these modelling 

assumptions. Example reconstruction methods include 
iterative expectation maximisation (EM) algorithms5 
for maximum Poisson likelihood reconstruction,6,7 
which use a model of the imaging physics (the system 
or forward model8) for the signal, and a Poisson model 
for the noise. Such reconstruction methods are based 
on human intelligence, understanding and mathemat-
ical problem solving. In stark contrast, image recon-
struction that is based on artificial intelligence (AI), 
such as methods using supervised deep learning9 (e.g. 
AUTOMAP10 or DeepPET11), seeks instead to learn the 
sequence of steps of the computer code that is needed 
to reconstruct from measured data. This learning 
process, the training of an AI model, relies on many 
tens of thousands of examples, or samples, where each 
sample is composed of a PET measured dataset paired 
with the known or desired image output that is expected 
from that measured dataset. This approach learns the 
parameters of a deep network (effectively the program-
ming steps of the computer code) by way of examples, 
rather than relying on an assumed model of the PET 
imaging process. Most research into AI for PET image 
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ABSTRACT

Image reconstruction for positron emission tomography (PET) has been developed over many decades, with advances 
coming from improved modelling of the data statistics and improved modelling of the imaging physics. However, high 
noise and limited spatial resolution have remained issues in PET imaging, and state- of- the- art PET reconstruction has 
started to exploit other medical imaging modalities (such as MRI) to assist in noise reduction and enhancement of 
PET’s spatial resolution. Nonetheless, there is an ongoing drive towards not only improving image quality, but also 
reducing the injected radiation dose and reducing scanning times. While the arrival of new PET scanners (such as total 
body PET) is helping, there is always a need to improve reconstructed image quality due to the time and count limited 
imaging conditions. Artificial intelligence (AI) methods are now at the frontier of research for PET image reconstruc-
tion. While AI can learn the imaging physics as well as the noise in the data (when given sufficient examples), one of 
the most common uses of AI arises from exploiting databases of high- quality reference examples, to provide advanced 
noise compensation and resolution recovery. There are three main AI reconstruction approaches: (i) direct data- driven 
AI methods which rely on supervised learning from reference data, (ii) iterative (unrolled) methods which combine our 
physics and statistical models with AI learning from data, and (iii) methods which exploit AI with our known models, 
but crucially can offer benefits even in the absence of any example training data whatsoever. This article reviews these 
methods, considering opportunities and challenges of AI for PET reconstruction.
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reconstruction takes place in the middle ground between 
these two extreme cases, such that the overall algorithm 
neither relies purely on modelling assumptions based on 
human intelligence nor purely on AI learning from example 
data pairs. A further burgeoning area of AI research for PET 
reconstruction uses AI to learn how to reconstruct even from 
just a single measured dataset in hand, without reference to 
any other external example data, as will be described later in 
this article. First though, it is useful to review the state- of- 
the- art conventional reconstruction methods, which assume 
that all models are known well via human intelligence.

Conventional reconstruction: filtered 
backprojection (FBP)
A well- known image reconstruction algorithm is filtered back-
projection (FBP). FBP first filters the sinogram data and then 
backprojects the filtered data to obtain an image.12 Early versions 
of FBP were implemented by a convolution of each projection 
view, followed by backprojection of each filtered projection view. 
As a side note, one of the very earliest uses of machine learning 
for emission tomographic reconstruction was based on learning 
the convolution kernel for the filtering process.13

Image reconstruction by FBP is a basic but robust method, 
being predictable due to its linearity, even though often 
producing noisy images. Noise in the reconstructed image is 
usually handled by a simple post- reconstruction smoothing, 
requiring just one adjustable parameter (the degree of 
smoothing) to yield easy to interpret images for radiologists, 
where the noise and resolution level of the images is usually 
visually self- evident. One of the reasons that FBP often 
produces noisy images is its lack of modelling of the varying 
noise levels in the data, when in fact the count- limited PET 
data do vary in statistical quality and can be well modelled 
by a Poisson distribution. Furthermore, FBP is limited by 
an overly simple model of the signal in the sinogram data—
the data are modelled by the Radon or X- ray transform.14 
Hence, before using FBP, the sinogram data need to be first 
precorrected for scattered events, random events, photon 
attenuation and detector normalisation.15 The subtractions 
arising from removing scatter and randoms, followed by 
the amplifications arising from attenuation correction, can 
be particularly problematic for increasing noise. As a result, 
the sinogram data have even greater variations in statistical 
quality, yet FBP still treats all the data as equally important, 
resulting in still noisier reconstructions. Statistical image 
reconstruction methods, reviewed next, avoid this inappro-
priate uniform weighting of the data.

Iterative reconstruction: maximum likelihood–
expectation maximisation (MLEM) and OSEM
In the 1980s–90s, superior iterative methods became available 
for PET image reconstruction, such as the expectation maximi-
sation (EM) algorithm for maximum likelihood (ML) recon-
struction. MLEM,6,7 and its accelerated version, ordered subsets 
EM (OSEM),16 use an improved model of the noise in the data 
(i.e. Poisson counting noise, rather than Gaussian) and perhaps 
more importantly, allow improved modelling of the signal in 

the data by using known imaging physics. Hence, rather than a 
simple Radon or X- ray transform model (as used by FBP, and 
hence requiring problematic data precorrections), MLEM and 
OSEM allow many physical effects, such as attenuation and 
normalisation, to be explicitly modelled and included within 
the system model of the image reconstruction algorithm.8 By 
avoiding precorrection of the data, the projection data counts 
remain raw and unweighted (so projection bins with low counts 
due to attenuation are left unamplified) and such integer (count) 
data are modelled well by a Poisson distribution. One example 
of improving a reconstruction algorithm’s model of the signal 
in the data is the use of “PSF modelling”,17–20 where the point 
spread function (PSF) is modelled during the reconstruction. By 
including a PSF model as part of the system matrix or forward 
model, spatial resolution can be improved in the reconstructed 
images found by MLEM+PSF or OSEM+PSF. In contrast, model-
ling of effects such as the PSF within FBP is not usually done 
(however, PSF modelling was implicit in earlier 3D backproject 
then filter (BPF) methods when using measured point source 
data).21,22

Advanced regularised iterative reconstruction: 
maximum a posteriori (MAP) methods
Whilst MLEM and OSEM offer improved image quality for 
PET compared to FBP (as shown on the left side of Figure 1), 
there is nonetheless often a need to reduce scanning time 
and/or reduce the injected dose of the radiotracer. Conse-
quently, noise remains an issue, and hence regularised 
(noise- compensated) image reconstruction methods are 
needed. These methods not only use: (i) an improved noise 
model (Poisson), and (ii) an improved model of the imaging 
physics, but they furthermore include (iii) a model of the type 
of images we expect to see, via a prior23 or penalty. A prior 
assigns a probability to any given candidate reconstructed 
image—assigning low probabilities to images we regard as 
improbable for the uptake of a PET radiotracer (e.g. errati-
cally noisy images), and higher probabilities to images more 
likely to represent a tracer’s uptake (e.g. smoothly varying 
images). These regularised reconstruction methods consider 
both the likelihood of a candidate image given the measured 
data as well as the prior probability of any given image, and 
hence by seeking to maximise the posterior probability are 
called maximum a posteriori (MAP) methods (or, when using 
an EM algorithm, MAPEM methods).24,25 In many cases, 
the model of how we expect PET images to look takes the 
form of a penalty function rather than a probability, and 
such approaches should be called penalised likelihood (PL) 
methods. An example is Q- clear,26 which assumes that the 
relative differences between neighbouring pixel values in an 
image should not be too large (as large local differences are 
assumed to be associated with noise rather than with clini-
cally useful image features).27 More recently, use of comple-
mentary structural information, such as from MRI, has been 
used to provide guidance to the regularisation,28–31 allowing 
preservation of large local differences in images that are 
due to legitimate image edges and features, rather than due 
to noise. Figure  1 summarises the progress in image recon-
struction from PET, starting from the 1980s, following all the 
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way through to methods developed over the >40 years which 
followed.

Regularisation by change of spatial basis: kernel 
methods
One further important category of conventional methods to 
mention is the kernel method (KEM), proposed by Wang and 
Qi in 2015.32 This method amounts to a change of spatial 
basis functions: instead of regarding an image as a collec-
tion of independent pixels or voxels with coefficients (ampli-
tudes or values) being found for each one, the kernel method 
groups pixels according to their similarity in terms of some 
additional features. The feature data could simply be a 
3- point time–activity curve (TAC) for each pixel, or could be 
the registered MR image value at each pixel, or even the patch 
of MR pixel values that are the neighbours of the pixel.33 By 
whatever means, each PET pixel has a list of additional values 
(a feature vector) associated with it. PET pixels can thus be 
grouped together into clusters, according to the similarity of 
these feature vectors. Conventional MLEM can then be used 
to find the coefficients for these pixel clusters (spatial basis 
functions), and the implicit regularisation achieved can be 
impressive: see Figure 2, where MR images were used to form 
the kernel spatial basis functions.34

AI METHODS: FROM DIRECT TO ITERATIVE
Given the sophistication of conventional state- of- the- art image 
reconstruction methods, one might wonder whether further 
improvement is possible. However, conventional approaches 
suffer from simplified models and assumptions. While the models 
of the PET scanner (captured in the forward model or system 
matrix) may be of acceptable accuracy, and while the Poisson 

noise model may be appropriate, when it comes to modelling our 
expectations of the images, through a prior or a penalty, this is 
where conventional modelling is either too basic or too imposing. 
A simple noise compensation approach is to use a quadratic 
penalty,35,36 which amounts to neighbourhood smoothing of the 
reconstructed image values. This can be regarded as robust, but 
noise is reduced at the cost of spatial resolution, with edges in 
the images being compromised, or even small features or lesions 
being smoothed to become low contrast, even indiscernible, 
regions. If anatomical guidance information is used (e.g. from 
CT or MR images), this can be too imposing, as the user needs to 
decide how strongly to pay attention to the anatomical informa-
tion. While anatomy can usefully guide the smoothing process 
of regularisation, it can be misleading, as there will invariably be 
structures and features in an MR or CT that are discrepant with 
those of the PET image for a given radiotracer.30 As a result, even 
spatial resolution and edge preserving guided regularisation can 
give poor results in some image regions,36,37 through smoothing 
away of some PET features while also wrongly enhancing edges 
or structures that are not truly present in the PET data. Hence, 
there is clearly scope for improving conventional reconstruc-
tion, whether by improving the physics or noise modelling, or, 
perhaps more significantly, by improving the modelling of the 
penalty or the prior (the probabilistic model of how we expect 
PET images to appear).

Direct AI methods for PET reconstruction
To start the review of AI for PET reconstruction,38 we will 
first consider the extreme case of ignoring nearly all modelling 
assumptions. Such approaches learn the entirety of the image 
reconstruction algorithm (i.e. the imaging physics, the data 
statistics and the prior model for the reconstructed images). 

Figure 1. The progress of PET image reconstruction over the decades. On the left hand side, unregularised reconstruction meth-
ods started with 3D FBP, progressed into Poisson noise modelling with MLEM and OSEM, and then began to improve the model 
of the data with PSF modelling. On the right hand side (shown for a different subject, tracer and scanner), regularisation methods 
were adopted to compensate for noise, including anatomical guidance of the regularisation (e.g. via MRI). 3D, three- dimensional; 
FBP, filtered backprojection; MLEM, maximum likelihood–expectation maximisation; OSEM, ordered subsets expectation maximi-
sation; PSF, point spread function.
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Methods which seek to learn the whole mapping from measured 
data to a reconstructed image without use of known models 
will be referred to here as direct AI methods. A well- known 
example is DeepPET,11 shown in Figure 3, with example images 
shown along with a more recent adaptation40 of the approach 
for long- axial FOV PET imaging. The deep network starts with 
convolutional encoding layers, which learn to analyse the sino-
gram for small scale features at a given level of spatial resolu-
tion. The resulting feature maps are in turn analysed for features 
by further convolutional layers, to learn multiple higher- level 
assemblies of features, before then spatial downsampling to 
assist in broadening the spatial coverage of the feature learning 

while still capturing the entire information from the whole 
input sinogram. This learned analysis of feature hierarchies is 
analogous to perceiving real- world objects as first composed of 
atoms, then of higher- level groupings of atoms (molecules), then 
numerous various assemblies of molecules to form materials, all 
the way through to larger assemblies of materials that form larger 
scale objects. The convolutional encoding and downsampling 
continues up to a latent space composed of many feature maps of 
very limited spatial sampling, at which stage further processing 
layers are learned for that low level of spatial sampling. After 
latent space processing, a convolutional decoder is learned for 
image synthesis, with progressive increases in spatial sampling 

Figure 2. The kernel method for PET image reconstruction when using an MR image to provide the feature vectors for forming 
the spatial basis functions. This figure shows how this change of spatial basis can result in notable noise reduction even when just 
a small percentage of the original data are used.34 The original KEM32 was based on similarities of 3- point time–activity curves for 
each voxel when deriving the spatial basis functions. KEM, kernel method; MLEM, maximum likelihood–expectation maximisation; 
PET, positron emission tomography.

Figure 3. Representation of the performance of direct AI (purely data- driven) methods through the example of DeepPET11 and 
recent modifications.39,40 The example sinogram input and DeepPET reconstructed output are courtesy of Kuangyu Shi, related to 
their work on improving the performance for long- axial FOV PET, with their result shown as the output of the network here (image 
in row 2 of the figure).40 FOV, field of view; PET, positron emission tomography.
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and corresponding decreases in the number of feature maps, to 
arrive ultimately at a single output high spatial resolution feature 
map, which is trained to be the final reconstructed image. This 
kind of architecture is referred to as a convolutional encoder 
decoder (CED).41,42

By analogy to conventional Fourier- based reconstruction 
methods, we can broadly regard a CED as learning from data how 
to perform an encoding transform to a latent space (by simple 
analogy, Fourier transforming to the frequency domain) and 
then decoding from the latent space to synthesise an image (by 
analogy, inverse Fourier transforming the processed frequency 
domain data).

The supervised training of a CED relies on an optimiser (such 
as the gradient- based Adam algorithm)43 to adapt the parame-
ters of the encoder and decoder networks such that the output 
from a given input sinogram matches the associated target image 
for that sinogram, according to a mean square error (MSE) loss 
function. The target image used in supervised learning can be 
the ground- truth image (if known, e.g. by imaging known test 
objects, or by advanced Monte Carlo simulations)44 or a high 
quality image obtained by reconstructing high count data by 
other methods.

Strictly this CED network is not without a model—there are 
constraints on the range of possible output images that can be 
generated from this architecture, so the network still has what 
is known as an inductive prior or inductive bias. As can be seen 
in Figure 3, the output results from DeepPET can appear overly 
smooth, lacking in detail. Methods which followed, such as a 
modified implementation for long- axial FOV PET (also shown 
in Figure  3), and the earlier DPIR- Net,39 sought to improve 
DeepPET by modifying the loss function used during network 
training. Instead of just focusing on agreement between the 
network output and the label or target in a training set by MSE, 
these later methods also required agreement at a feature map 
level (perceptual loss, using a pretrained VGG45 network) as well 
as, for DPIR- Net, requiring the reconstruction outputs to be able 
to pass a discriminator test. The discriminator46 is a network 
which is trained to identify real high- quality images from ones 
generated by a network. This discriminator can hence be used to 
enhance the training of the generator (if a network’s output is clas-
sified as generated rather than real, this causes the optimiser to 
search for network parameters which generate outputs that look 
more real—to “fool” the discriminator). This is the well- known 
“generative adversarial network” (GAN) approach.46 Hence, the 
trained generator network can produce reconstructed images 
that look indiscernibly different to real high quality images.

The long- axial FOV modified implementation reports fast recon-
struction times (~20× faster), relies on single slice rebinning 
(SSRB)47 to preprocess the fully 3D data into manageable 2D 
sinograms, and very conveniently enables scatter and normal-
isation corrections to be handled entirely by the learned CED 
network. It is however acknowledged, as visible in Figure 3, that 
the reconstruction accuracy of DeepPET and the modifications 
are not quite yet at the level to meet clinical requirements, but 

there is no reason why this should not be attained in future with 
improved training and dataset availability.

Table 1 summarises a number of the current direct AI methods. 
The notable aspects of these direct AI methods are that: (i) the 
majority only operate on 2D sinograms rather than fully 3D sets 
of sinogram data, (ii) many tens of thousands of training pairs 
are needed, (iii) training can be slow, (iv) reconstruction speed 
is typically fast. Perhaps one of the more notable methods is 
that of FastPET,48 as it makes direct use of image- space histo-
images. Histoimages have the advantage of compressing time of 
flight (TOF) PET data into a 3D image- space format. By effec-
tively compressing large TOF datasets into 3D images, rela-
tively straightforward image- to- image deep learning mappings 
(such as U- Nets)49 can be used for fast 3D image reconstruc-
tion. This method has been successfully extended and further 
improved,50,51 demonstrating good potential.

Iterative AI methods for PET reconstruction
Just as conventional reconstruction algorithms can be broadly 
categorised as either direct (a non- iterative sequence of 
programming operations) or iterative (a sequence of coding 
steps repeated a variable or indefinite number of times), so also 
there are comparable categories in deep learning. This section 
now covers the iterative, or unrolled, AI methods.

Figure  4 shows how a conventional iterative MAPEM algo-
rithm35 can be unrolled into a sequence of modules or blocks 
(from left to right in the figure, one for each update of the 
image). Each module performs refinement of the current image 
estimate to improve its agreement with the data (e.g. based on 
the EM update derived for Poisson distributed data) whilst also 
balancing this with agreement with the prior via an analytically 
derived denoiser (e.g. derived from a quadratic penalty, which 
encourages images to have small local differences between pixel 
values). Hence, these conventional iterative methods are simply 
a sequence of steps, layer after layer of processing, and can be 
regarded as fixed, non- trainable, deep networks. The second 
row of Figure 4 shows how the denoising (regularisation) step in 
MAPEM can be replaced with a trainable deep network, to learn 
from paired data examples how to relate noisy image updates to 
their high- quality counterparts. The third row of the figure shows 
how reference high quality reconstructions (e.g. from higher 
count sinogram data) can be used to provide training targets for 
the unrolled network. Figure 5 shows the kind of results obtained 
from training an unrolled iterative method (MAPEM) with a 
learned regulariser, based on 45 3D training examples.

A range of unrolled reconstruction methods have now been 
developed, and some key methodologies are shown in Figure 6. 
Each one performs regularisation via a learned network 
in different positions in the processing pipeline. Examples 
include gradient descent with a learned regulariser (compa-
rable to EM- Net54 for PET, or similar to a variational neural 
network (VNN) for MRI),55 learning the gradient of the regu-
lariser (e.g. FBSEM- Net),52 learning the proximal operator and 
learning to denoise (Iterative Neural Network).56 A further 
example would be an unrolled alternating direction method of 
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multipliers approach, with a deep network embedded (such as 
deep ADMM- Net).57

One final example of unrolled methods is the learned primal dual 
(LPD) method,58,59 based on the primal dual hybrid gradient 
(PDHG) method,60 but with learning of the processing in both 
the primal (image) and dual (sinogram) domains, as show in 
Figure  7. Table  2 summarises a variety of unrolled, iterative, 
deep learning reconstruction methods for PET, where in one 
case a transformer architecture is used. Whereas CNNs often use 
small kernels in each network layer (hence needing many layers 
to encode an input to a latent representation), transformers use 
long- range comparisons of features across the entirety of an 
image in a single layer, via their attention mechanism. Trans-
formers are broadly analogous to a trainable version of state- 
of- the- art conventional image processing via non- local means, 
where an image patch is compared with all other patches in an 
entire image for the purpose of contextualisation / denoising. 
Table 3 conveys the advantages of unrolled methods in general 
compared to direct AI methods: use of the physics model, less 
training data needed, and practical for fully 3D image recon-
struction. Nonetheless, it is important to note that not only are 
these unrolled methods computationally intensive to train, even 
at run time (test time on new data) they can potentially be slow 
to run, being dependent on multiple iterations of forward and 
backprojections. It is though worth noting that differing training 
methods are available, some of which are more practical and less 
memory intensive.63,64

We finish this section by mentioning some of the more advanced 
unrolled iterative methods, which seek to reconstruct PET 
and MR data simultaneously, as shown in Figure  8. This joint 
PET- MR unrolled iterative reconstruction method65 learns 
a joint PET- MR regularisation, seeking to benefit from the 
common information present in both the PET and MR data, 
whilst preserving the crucial differences between PET and MR 
images.

 

AI METHODS WITHOUT TRAINING DATA
We have so far covered direct AI methods and iterative AI 
methods (which integrate deep learning into otherwise standard 
iterative image reconstruction schemes). Both categories rely on 
training data for supervised learning of the parameterised deep 
networks used in each type of method. A third major category of 
research into AI for PET image reconstruction is the case where 
no training data are needed at all, but instead, deep learning 
methodology is used either to learn a representation of the image 
(for just the measured dataset in hand), or to learn a dedicated 
reconstruction operator for the data in hand to reconstruct. 
Hence, no external training data are needed, and AI is exploited 
instead to solve processing problems. As there are no example 
or external training data, such methods do still need a model of 
the imaging physics and specification of an image reconstruction 
objective (e.g. ML, or MAP).

Table 1. Example direct AI reconstruction methods

Name Architecture 
[total parameters] Input Target

Loss function and 
optimiser (epochs) 

validation

Number of 
samples (training, 

validation, test)
AUTOMAP
Zhu et al. 201810

Two fully connected 
layers and CNN 

[∼800M]

2D noisy sinograms T1w brain images
(128 × 128)

MSE with L1- norm 
penalty on network 

weights in final hidden 
layer

RMSProp (100)
Validation not used

50,000
n/a
1

DeepPET
Häggström et al. 
201911

CED
[>60M]

2D noisy sinograms 
(269 × 288)

Ground- truth PET 
images

(128 × 128)

MSE
Adam (150)

Validation used

203,305 (70%)
43,499 (15%)
44,256 (15%)

DPIR- Net
Hu et al. 202039

CED
[>60M]

Discriminator
[>3.5M]

2D noisy sinograms 
(269 × 288)

Ground- truth PET 
images

(128 × 128)

Wasserstein GAN + 
VGG + MSE
Adam (100)

Validation not used

37,872 (80%)
n/a

9468 (20%)

CED extended to 
SSRB sinograms 
from large FOV 
PET
Ma et al. 202240

CED
[∼64M]

2D noisy sinogram 
(269 × 288)

Reconstructed PET 
images using OSEM 
+ PSF TOF from list- 

mode data
(128 × 128)

MSE + SSIM+ VGG
Adam (300)

Validation used

35,940 (76%)
5590 (12%)
5590 (12%)

FastPET
Whiteley et al. 
202148

U- Net
[∼20M]

Noisy histo- image 
slices + attenuation 

map slices
(2 × 440 × 440 × 96)

Image slices 
reconstructed using 

OSEM + PSF
(440 × 440 × 96)

MAE + MS- SSIM
Adam (500)

Validation used

20,297 slices (74%)
1767 slices (6%)

5208 slices (20%)

CNN refers to a convolutional neural network, CED refers to a convolutional encoder- decoder. VGG in this table refers to perceptual loss based on 
a VGG network.
3D, three- dimensional; FBP, filtered backprojection; MLEM, maximum likelihood–expectation maximisation; OSEM, ordered subsets expectation 
maximisation; PSF, point spread function.
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AI for image representations
The deep image prior66 (DIP) was proposed in 2017–18, and 
delivered surprising results for image denoising, inpainting 
and super resolution in the absence of training data. The 
method exploits the inductive prior of a CNN, whereby 
the sequence of convolutional layers with non- linearities 
can generate, with appropriate initialisation, a range of 
image outputs that are regularised in the sense that they 
readily locate within broadly feasible manifolds occupied by 
medical or natural images. Typically, the noisy data are used 
as the target (or, for PET reconstruction, the noisy sinogram 
is used as the target after first applying the forward model 
to the generated output reconstruction). The regularisation 

benefit depends entirely on the level of training—if the 
networks are trained towards convergence, then there will 
be near perfect matching of the noisy data. This still solves 
the inverse problem (e.g. for PET image reconstruction),67 
but would eliminate any regularisation benefit afforded by a 
CNN representation of the image.

Figure 9 shows a simple example of using the DIP for PET image 
reconstruction.68 Either random noise or the patient’s MR image 
are fed into a randomly initialised CNN, such as a U- Net.49 The 
output image is then forward modelled, and the training loss 
function for the CNN is the MSE between the forward modelled 
data and the actual measured data. Hence, with increasing 

Figure 4. The example of FBSEM- Net. Row 1 shows an unrolled iterative MAPEM reconstruction, row 2 shows integration of a 
deep network (FBSEM- Net) and row 3 shows an example way of generating reference target labels for the network. Here, the EM 
update improves agreement of the image with the measured sinogram data, and can be called a data- fidelity based update. In an 
MRI reconstruction context, a data- fidelity update is usually achieved by a least- squares gradient descent step. EM, expectation 
maximisation; MAPEM, maximum a posteriori expectation maximisation.
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optimisation of the CNN’s parameters, the network will produce 
an image which, when forward projected, agrees (to within the 
range of the forward operator) with the measured data. Early 
termination is therefore needed to see any regularised result. 
If run to convergence, the CNN representation is no different 
to a pixel or voxel grid representation, and the reconstruction 
algorithm amounts to using a deep learning optimiser (such as 
Adam)43 to find a least- squares (or for Poisson data, a maximum 
Poisson likelihood) estimate. Prior even to the work of Hashimoto 
et al,68 Gong had proposed a more elaborate optimisation frame-
work using a CNN representation of the image.69 This method 
was designed to avoid the need for embedding the system model 
into the deep network and hence avoid backpropagation of loss 
function gradients through the system model during training.

In seeking to resolve the issue of needing to stop the DIP 
training early, Bayesian methodology has been investigated 
by many. Examples include using a prior for the network 
parameters (and even using posterior distributions to 
quantify and make use of the uncertainty70,71) and use of 
stochastic gradient Langevin dynamics (SGLD) for fully 
Bayesian posterior inference via the DIP.72,73 A further 

approach has been Stein’s unbiased risk estimator (SURE) as 
the loss function for training the DIP (DIP- SURE) instead of 
using an MSE loss, again to avoid the overfitting problem.74

More recently, Gong et al have taken the DIP method 
further, by combining it with the kernel method, and then 
also with direct kinetic parametric estimation.75 Figure  10 
shows the impressive results achieved for direct estimation 
of Patlak slope ( Ki  ) images.

Table 4 summarises the methods that exploit the DIP for PET 
image reconstruction, including also some AI- assisted variations 
of KEM, which will be covered later.

AI for reconstruction operators
An alternative use of AI in the absence of training data is to 
define a deep network to perform processing at certain stages in 
the image reconstruction pipeline. Figure 11 gives the example of 
deep- learned FBP (DL- FBP): a deep network is used to process 
a sinogram in such a way that, when the processed sinogram is 
backprojected, a reconstructed image is obtained. The image is a 
reconstruction, as the training of the deep network is based on 

Figure 5. Example results from FBSEM- Net.52,53 FBSEM- Net offers improved image quality when reconstructing data equivalent 
to just 2 min of scanning time, with image quality competitive to the reference reconstruction from ~15 times more data (30 min of 
data). The results shown are for “test time” reconstructions (i.e. for reconstruction of data not included in the training of FBSEM- 
Net). OSEM, ordered subsets expectation maximisation; FBSEM, forward backward splitting expectation maximisation.
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minimising the discrepancy (loss) between the forward projec-
tion of the image and the actual input measured data. This is an 
example of filling in a potential gap in our knowledge by deep 
learning: we know what we require (a reconstructed image that 
agrees with the sinogram data according to some reconstruc-
tion objective function), but we may not know how to do the 
processing of the data to achieve this. AI can be used to solve 
such tasks, tapping into the optimisation methods that have been 
so successful in deep learning. An important further develop-
ment on this theme is to combine an image- space deep network 
with a data- space network,79 to obtain DL- FBP- F. This approach, 

just as DL- FBP, can be implemented just by self- supervised 
learning from the dataset in hand, or optionally combined with 
supervised learning. If used exclusively with supervised learning, 
then the DL- FBP- F method becomes similar to just one module 
of an unrolled method, but with much reduced computation 
compared to the many modules usually employed in unrolled 
methods, which may reduce their level of adoption.

AI-assisted KEM
A final important category, related to the example of using the 
kernel method with the DIP as previously shown in Figure 10 

Figure 6. Five example unrolled iterative image reconstruction methods with deep networks embedded. Row 1 corresponds to 
taking a current image and updating it according to the data (a gradient descent step to increase agreement with the measured 
data), and also updating it according to the prior knowledge of how the image should appear (simply using a deep network to 
provide this increased agreement). Row 2 is very similar, but uses an analytically derived way for combining the two updates 
(rather than a simple addition, as in row 1). Row 3 corresponds to a deep learned version of a proximal gradient update. The exam-
ple in row 4 is the sequential method but now using an analytical form of the update. Finally, row 5 shows how the ADMM method 
can have a network embedded, and it amounts to the same approach as in row 4, but with use of a residual image, u.
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(and Table 4), is using a deep network to learn the best features 
to use for forming the kernel matrix used in KEM, called the 
deep kernel representation.78 Training data are derived from 
the single dataset to reconstruct (by generating low- count 
versions of the data), and the method elegantly learns what 
are the most appropriate features to pick out from an input 
prior image such that when these features are used in a voxel- 
level similarity comparison to form spatial basis functions 
for KEM, the output image best matches the full- count high 
quality reference. These basis functions are then used with 
standard KEM for reconstructing the whole dataset. Example 
results from this deep kernel representation are shown in 
Figure 12, where it outperforms the conventional DIP (with 
early termination and oversmoothness) as well as conven-
tional KEM based on 3- point TAC feature vectors.

OPPORTUNITIES, CHALLENGES AND SUMMARY
These significant advances in using AI for PET image recon-
struction are not without concerns. A well- known concern, 
e.g. demonstrated for AI- based MR reconstruction, is the 
possibility of hallucinations (false positives) and the possibility 
of deletions (false negatives) from images.80 Whereas these 
effects were always possible with conventional reconstruction 
(a noise spike looking like a lesion, or noise and smoothing 
seeming to remove a lesion), in conventional reconstruction 
it was always easy for an observer to assess the quality of an 
image, and hence make allowances for such occurrences. With 
the improved image quality from AI methods, hallucinations 
or deletions may not be at all appreciable based on the overall 
impression of image quality. A potential solution would be 

Figure 7. LPD58 when applied to example PET phantom data.59 Figure adapted from data courtesy Massimiliano Colarieti- Tosti. 
The overall processing pipeline effectively has two rails: the top rail conducts sequential processing of the sinogram data and the 
lower rail conducts sequential processing of the image. These two processing subpipelines are interconnected by forward and 
backprojection operators (FP and BP) to map between the image domain and data domain. BP, backprojection; FP, forward pro-
jection; LPD, learned primal dual; PET, positron emission tomography.

Table 2. Unrolled methods for AI in PET image reconstruction.

Name
Architecture 

[total 
parameters]

Input Target

Loss function and 
optimiser (epochs) 
validation training 

method

Number 
of samples 
(training, 

validation, test)
EM- Net
Gong et al. 201954

10 modules
U- Net shared

[∼2M]

Previous output/
iteration

3D high count 
reconstruction

(128 × 128 × 46)

MSE
Adam

Validation not used
Gradient truncation

16
n/a
1

MAPEM- Net
Gong et al. 201961

8 modules
U- Net not shared

[∼16M]

Current output 
from a block

3D high count 
reconstruction

(128 × 128 × 105)

MSE
[Details not specified]

Validation not used
End- to- end

18
n/a
1

FBSEM- Net
Mehranian and 
Reader 202052

10 modules
CNN shared

[∼77k]

Previous output / 
iteration

3D high count 
reconstruction— 

cropped
(114 × 114 × 128)

MSE
Adam (200)

Validation used
Gradient truncation

45
5
5

Iterative Neural 
Network
Lim et al. 202056

10 modules
CNN not- shared 

[∼40k]

Current output 
from a block

3D true activity image
(200 × 200 × 112)

MSE
Adam (500)

Validation not used
Sequential training

4
n/a
1

TransEM
Hu and Liu 202262

10 modules Swin 
Transformer

[details not specified]

Previous output / 
iteration

2D high count 
reconstruction

MSE
Adam

Validation used
Gradient truncation

510
30
60

AI, artificial intelligence; CNN, convolutional neural network; 2D, two- dimensional; 3D, three- dimensional; PET, positron emission tomography.
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to take the Bayesian approaches previously described (devel-
oped also in the MR context)81 and generate additional images 
reflecting the level of uncertainty in the reconstructed image 
values. Yet that would increase the image reading burden for 
radiologists. Nonetheless, Bayesian deep learning approaches, 
or methods based on deep ensembles82 or even drop- out,83 
are ways to reveal the epistemic uncertainty in reconstructed 
images. Related to this is a very recent advance in generative 
AI modelling: diffusion models (popularised by image gener-
ation models such as Stable Diffusion).84 These models can be 
trained to provide prior probabilities for high quality images, 

and as such are now finding their way into image recon-
struction85,86 and producing state- of- the- art results (as so far 
demonstrated for MRI reconstruction), providing also uncer-
tainty estimates.81 Early work in PET has already begun in a 
post- processing context.87

For PET image reconstruction, there also remains the need 
for widely accepted benchmark datasets and tests (as increas-
ingly used in MRI),88,89 needed not just for conventional 
methods but also AI approaches. Early developments in high 

Table 3. Broad level comparison of core approaches to using AI in PET image reconstruction.

Direct AI methods Unrolled AI methods AI methods without training 
data

Interpretability Low Good Good

Use of physics model No Yes Yes

Generalisation (outside training 
distribution)

Can be challenging Better than direct methods Good

Suitability for fully 3D image 
reconstruction

Challenging Yes Yes

Typical number of training pairs >10,000 (2D reconstruction) ~50 (3D reconstruction) 1

Inference time/time to 
reconstruct from new data

Fast Potentially the slowest Faster than unrolled methods, depending 
on implementation

Expected image quality if within 
training distribution

Potentially the best Good Does not benefit from population data

2D, two- dimensional; 3D, three- dimensional; AI, artificial intelligence; PET, positron emission tomography.

Figure 8. The example of unrolled joint PET- MR reconstruction from Corda- D’Incan et al.65 Example results are shown, comparing 
OSEM with MAPEM (Q, using a quadratic penalty, BQ using a Bowsher MRI- guided quadratic penalty), and with independent deep 
learned unrolled reconstruction from PET data only (P) and with MR guidance (P MR). The final result shown is the joint recon-
struction of the PET data—revealing preservation of a PET- unique lesion (absent in the MR) whilst retaining good image quality 
globally—effectively seeking the best aspects of “Indep P” and “Indep P MR” simultaneously. OSEM, ordered subsets expectation 
maximisation; MAPEM, maximum a posteriori expectation maximisation; MSE, mean square error; PET, positron emission tomog-
raphy.
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resolution PET phantoms90 will need much further develop-
ment, alongside pooling of large real datasets.

A further area of development will be in full exploitation of all 
types of available data, so that not only supervised learning can 
be carried out, but also self- supervised learning.79 This would 
allow larger datasets to be used in the absence of high- quality 
references. Instead of providing high- cost example paired inputs 
and outputs, only example input data are provided, but crucially 
with instructions on how to create paired targets automatically 
for the inputs, hence creating data for supervised learning. This 

can be for a pretext task, or indeed directly for a useful end- point 
task of image reconstruction (as previously shown in Figure 11). 
Self- supervised approaches with pretext tasks have enabled 
pretraining of large language models, including powerful 
pretrained transformer- based generative architectures91 such as 
GPT- 392 and GPT- 4,93 which have now become widely known 
with significant impact.

One other aspect to note is how AI opens new performance 
possibilities for PET processing and reconstruction in general. 
To give just one example area, training data can be used to 

Figure 9. Basic use of the DIP for PET reconstruction, from Hashimoto et al.68 FBP, filtered backprojection; DIP, deep image prior; 
FP, forward projection; PET, positron emission tomography; MLEM, maximum likelihood - expectation maximisation.

Figure 10. Results of using the DIP approach with the kernel method for direct Patlak reconstruction (“DIP recon”), from Gong et 
al.75 DIP, deep image prior; EM, expectation maximisation; KEM, kernel method.
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Table 4. DIP and AI- assisted KEM methods for PET image reconstruction.

Name
Architecture [total 

parameters] Input Target Loss function and optimiser 
(epochs)

Deep Image Prior
Gong et al. 201969

U- Net
[∼2M]

3D anatomical prior (MRI) An EM iteration in 3D
(192 × 192 × 128)

MSE
L- BFGS (20 epochs per ADMM 

iteration, 100 ADMM iterations in 
total)

Deep Image Prior – with non- 
negative matrix factorisation Yokota 
et al. 201976

3 U- Nets combined in 
parallel
[∼4M]

Noise Spatial factors— 
homogeneous tissues with 
kinetic parameters (128 × 

128 × 3)

MSE
Adam (20,000)

Deep Image Prior, kernel layer – 
direct kinetic parametric estimation
Gong et al. 202275

U- Net
[∼2M]

T1w 3D MR image A (dynamic) EM iteration 
in 3D

(128 × 128 × 96 × 7)

MSE
L- BFGS (20 epochs per ADMM 

iteration, 100 ADMM iterations in 
total)

Neural KEM
Li et al. 202277

U- Net
[∼2M]

1- hour composite frames 3D 
PET images

(192 × 192 × 47 × 97)

An EM iteration of 
coefficient image update

An EM- type surrogate function
Adam

Deep Kernel Representation
Li et al. 202278

U- Net
[∼2M]

Low- count 3D dynamic PET 
images

An EM iteration of 
coefficient images update

MSE
[Details not specified]

Deep Image Prior with forward 
projection
Hashimoto et al. 202268

U- Net
[∼2M]

Noise or T1w MR image 2D noisy PET sinogram 
series

(256 × 256 × 64)

L2 loss
L- BFGS

Uncertainty- Informed Bayesian 
Deep Image Prior
Sudarshan et al 202271

U- Net
[details not specified]

3D MR image An EM iteration in 3D MSE loss with variance term (BDIP 
loss) in the first iteration, and BDIP 

loss + uncertainty- weighted MSE 
loss in the later iterations

Adam

Deep Image Prior with DeepRED
Shen et al. 202373

Generator:
U- Net

[∼19M]
Denoiser:

U- Net
[∼1M]

Apply transpose of the system 
matrix to the 2D noisy 

sinogram (backprojection)

2D whole- body PET image 
slices at 10M count level

(192 × 192)

MSE (sinogram domain) + RED loss 
(image domain)

Adam

2D, two- dimensional; 3D, three- dimensional; AI, artificial intelligence; DIP, deep image prior; BDIP, Bayesian deep image prior; EM, expectation maximisation; 
KEM, kernel method, PET, positron emission tomography.

Figure 11. Illustration of learning a deep reconstruction operator (a DNN) to operate on sinogram data such that, when backpro-
jected, an image is obtained.79 This is an example of self- supervised deep- learned FBP, from Reader,79 show just by way of exam-
ple for the case of a simulated CT slice, but the method is generally applicable. DNN, deep neural network; BP, backprojection; 
FP, forward projection.
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deliver improved performance for separation of multiplexed 
(e.g. dual tracer94,95) PET image data.96,97

In summary, AI now plays a key role in PET image reconstruction. It 
has introduced the possibility of making use of high- quality reference 
data to inform and improve the image reconstruction algorithms that 
are presently in use. Or, if data external to the patient are unavailable 
or of concern to use, AI can also provide many methods that only use 
a patient’s own data, potentially alleviating concerns of robustness.
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Figure 12. Deep kernel representation by Li and Wang.78 A U- Net operates on a prior image (e.g. a 3- frame dynamic image series) 
to output a set of  k  different feature maps (a feature vector with  k  elements for each of the  np  pixels). The similarity of feature vec-
tors between pixels is then used to construct the kernel matrix K  , subsequently used in standard KEM. Standard KEM estimates a 
coefficient vector α , such that the reconstructed image  x  is found by  Kx . The crucial training of the U- Net is based on mapping 
a 10x count- reduced reconstruction to a full- count reconstruction of the unique data being reconstructed. DIP, deep image prior; 
KEM, kernel method; MLEM, maximum likelihood–expectation maximisation.
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