Skip to main content
. 2023 Sep 4;96(1150):20230292. doi: 10.1259/bjr.20230292

Table 2.

Unrolled methods for AI in PET image reconstruction.

Name Architecture [total parameters] Input Target Loss function and optimiser (epochs) validation training method Number of samples (training, validation, test)
EM-Net
Gong et al. 2019 54
10 modules
U-Net shared
[∼2M]
Previous output/iteration 3D high count reconstruction
(128 × 128 × 46)
MSE
Adam
Validation not used
Gradient truncation
16
n/a
1
MAPEM-Net
Gong et al. 2019 61
8 modules
U-Net not shared
[∼16M]
Current output from a block 3D high count reconstruction
(128 × 128 × 105)
MSE
[Details not specified]
Validation not used
End-to-end
18
n/a
1
FBSEM-Net
Mehranian and Reader 2020 52
10 modules
CNN shared
[∼77k]
Previous output / iteration 3D high count reconstruction— cropped
(114 × 114 × 128)
MSE
Adam (200)
Validation used
Gradient truncation
45
5
5
Iterative Neural Network
Lim et al. 2020 56
10 modules
CNN not-shared [∼40k]
Current output from a block 3D true activity image
(200 × 200 × 112)
MSE
Adam (500)
Validation not used
Sequential training
4
n/a
1
TransEM
Hu and Liu 2022 62
10 modules Swin Transformer
[details not specified]
Previous output / iteration 2D high count reconstruction MSE
Adam
Validation used
Gradient truncation
510
30
60

AI, artificial intelligence; CNN, convolutional neural network; 2D, two-dimensional; 3D, three-dimensional; PET, positron emission tomography.