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INTRODUCTION
Machine learning (ML) is seeing an ever- expanding appli-
cability in medical imaging and therapy. Early examples 
of computer vision and pattern recognition in medical 
imaging included models intended to help medical profes-
sionals in disease detection (computer- aided detection, or 
CADe), diagnosis (computer- aided diagnosis, or CADx), 
segmentation, and quantitative imaging.1 These early 
systems often involved expert- defined features or pre- 
defined feature extraction methods that were combined 
by an ML model to provide the desired output. Current 
applications of ML in radiology have expanded into new 
areas, including image reconstruction and denoising,2–6 
triage and notification software to aid in image interpreta-
tion prioritization,7,8 software to help guide image acqui-
sition,9,10 and software to contour organs at risk (OARs) 
in support of radiation treatment planning.11,12 Auton-
omous artificial intelligence (AI), described as software 
that impacts treatment decisions without human input, 
has also been the focus of recent investigations.13,14 More 
importantly, most current systems use architectures such 

as deep neural networks that are trained end- to- end from 
the images to the desired output, bypassing the laborious 
feature engineering step. The availability of successful ML 
architectures in code sharing platforms, the availability of 
low- cost computer hardware necessary for model develop-
ment and the convenience of open- source ML frameworks 
make it possible to design ML solutions for imaging tasks 
with relative ease. ML research has also demonstrated that 
it is possible to train general neural network architectures 
using data sets from related problems (e.g. a natural image 
classification tasks) and then adapt the neural network to 
particular tasks in medical imaging using transfer learning. 
These and other developments increase the capabilities of 
ML in medical imaging and even point to the possibility of 
bringing ML solutions one step closer to intelligence asso-
ciated with adaptation to or learning from new experiences 
or data.

The increased number of application types and the reli-
ance on ML in medical imaging and therapy increases the 
importance for high accuracy, low bias, and robust and 
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ABSTRACT

Data drift refers to differences between the data used in training a machine learning (ML) model and that applied to 
the model in real- world operation. Medical ML systems can be exposed to various forms of data drift, including differ-
ences between the data sampled for training and used in clinical operation, differences between medical practices or 
context of use between training and clinical use, and time- related changes in patient populations, disease patterns, 
and data acquisition, to name a few. In this article, we first review the terminology used in ML literature related to 
data drift, define distinct types of drift, and discuss in detail potential causes within the context of medical applica-
tions with an emphasis on medical imaging. We then review the recent literature regarding the effects of data drift on 
medical ML systems, which overwhelmingly show that data drift can be a major cause for performance deterioration. 
We then discuss methods for monitoring data drift and mitigating its effects with an emphasis on pre- and post- 
deployment techniques. Some of the potential methods for drift detection and issues around model retraining when 
drift is detected are included. Based on our review, we find that data drift is a major concern in medical ML deployment 
and that more research is needed so that ML models can identify drift early, incorporate effective mitigation strategies 
and resist performance decay.
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generalizable algorithms in order to facilitate user trust. The 
sizes of medical imaging data sets are typically smaller than 
those for natural imaging applications due to the labor- intensive 
data labeling process and privacy concerns in healthcare. For 
example, the ImageNet data set used for the Large- Scale Visual 
Recognition Challenge (ILSVRC) has over 1.2 million annotated 
training images and 50,000 annotated test images.15 In contrast, 
the data set used in the 2021 SIIM- FISABIO- RSNA Machine 
Learning COVID- 19 Challenge (one of the larger data sets used 
for medical imaging challenges) had 8042 COVID- 19 posi-
tive and 2136 COVID- 19 negative chest X- ray examinations.16 
Moreover, ML systems are often seen as black boxes, where data 
go in and decisions come out, but the processes between input 
and output are opaque.17 Explainable ML attempts to reveal the 
working mechanisms of the ML model to tackle its perceived 
opaqueness and help build trust in the ML.18 Finally, differences 
between the performance of the ML system claimed by its devel-
oper and that in clinical practice will hinder user trust. The focus 
of this article, data drift, is a major culprit behind these potential 
differences.

Due to a confluence of factors, most ML models designed for 
medical imaging and therapy have narrowly scoped training data 
such that the data may be collected from a specific clinical prac-
tice pattern, within a short time interval, with a single/limited 
demography, or using a limited range of acquisition systems. 
Differences in data characteristics between the training and clin-
ical setting where an ML model is used can, and often does, affect 
performance. The term data drift in this article loosely refers to 
differences between the training data and the actual patient input 
data found in clinical operation, with a more precise definition 
provided in the next section. In addition to the variations in the 
data, deep neural networks are sensitive to small perturbations 
in input images19 and prone to miscalibration,20 a condition in 
which the model output is intended as a probability of a disease 
or condition, but in fact does not reflect the true likelihood of the 
event in the clinical setting. These limitations, coupled with data 
drift can drive down real- world ML performance compared to a 
setting without drift.

TYPES AND CAUSES DATA DRIFT IN MEDICAL 
IMAGING
Data drift is widely recognized as a significant concern in the 
real- world deployment of ML and is an active area of research in 
the AI/ML community. Despite its increasing importance and an 
early effort in unifying data drift terminology,21 multiple terms 
are used in the literature for the same topic, including data set 
shift, domain shift, distributional shift, domain drift, data set bias, 
out- of- distribution generalization, and so on. Synthesizing the 
definitions in the literature,21–23 data drift refers to a mismatch 
between the conditions for model training and clinical use. The 
mismatch could be in the distribution of input data or features, 
the clinical context of use, or the functional relationship linking 
the input and output in an ML model. In the definition, the refer-
ence point for the data drift is an ML model that was trained 
and initially tested with independent data to provide a perfor-
mance estimate, and the mismatch with respect to clinical use 
may be due to changes of environment and/or changes over time. 

For example, a skin lesion characterization ML model trained 
and initially tested in a population consisting of light- skinned 
subjects will be subject to data drift when the model is clinically 
deployed in an environment with a different mixture of light- 
and dark- skinned individuals. Furthermore, even if the distribu-
tion of data in the clinic initially matches that of the training and 
initial test data sets, it may still change over time again leading to 
data drift and an unexpected loss of performance.

One major challenge in ML is concept drift,24 which is a change 
in the relationship between the input data (e.g. images) and the 
target variables (e.g. classification labels, clinical outcomes, etc.) 
in supervised learning ML models. This definition is consistent 
with the definitions by Gama et al25 and Moreno- Torres et al in 
which the term is called “concept shift”.21 Note that some earlier 
AI literature used the term “concept drift” to refer to changes 
in the context of use or target variables.26 Here, we adopted a 
more recent definition referring specifically to the functional 
relationship the ML model learned from training data to link 
the input to the target variable. An example of concept drift is 
the way in which the relationship between the input data and 
the classification labels changes when a new class (or comor-
bidity) is introduced. For example, after 2020, certain patterns of 
patchy ground- glass opacities in chest X- rays may no longer be 
labeled as bacterial pneumonia, but as COVID- 19 pneumonia.27 
Because this functional relationship is learned from data, both 
input data drift and data drift in the clinical context of use may 
cause concept drift, as summarized in Figure 1.

The rest of this section defines and discusses the causes of input 
data drift and data drift in the clinical context of use. Studies that 
investigate the implications of data drift are then discussed in the 
following section.

(a) Input data drift is a change in the characteristics of ML 
input data. This is sometimes referred to as “covariate shift” 
in the literature.21 A common cause of input data drift is 
differences in the image/data acquisition devices generating 
the input to an ML model. As an example, there are multiple 
manufacturers of CT scanners and a wide array of models 
and acquisition protocols in clinical use, which leads to wide 
variations in the qualities of CT images. If an ML algorithm 
is trained and validated with a limited set of CT acquisition 
devices (or even a limited range of acquisition protocols), the 
algorithm may yield inferior performance or even fail after 
deployment when applied to images acquired from different 
CT scanners or using different acquisition protocols.

Another cause is differences in patient population. Models may 
be developed in a research environment with data samples 
obtained by convenience that do not represent the patient popu-
lation in deployment. Inadvertent biased sampling or sampling 
with errors in a clinical study may result in a model that does not 
generalize well when deployed. Models developed in academic 
or specialty clinics may not generalize well when deployed 
to community settings. Patient populations may also change 
over time. For example, an urban hospital that subsequently 
acquires primary care practices in rural areas may end up with 
a substantial change in the demographics of their hospitalized 
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population.22 Another cause for changes is through the advent 
of new diseases such as the COVID- 19 pandemic or other unex-
pected “black swan” events.

Yet another cause of input data drift is related to ML systems 
that utilize clinical features as input. These clinical features can 
change over time due to, e.g. the introduction of updated clinical 
guidelines. The Reporting and Data Systems (RADS) endorsed 
by the American College of Radiology (ACR) are guidelines for 
the evaluation and interpretation of disease- oriented imaging 
studies. Each reporting and data system is devised by a group 
of experts in consensus and they are periodically updated to 
improve diagnostic parameters.28 If an ML algorithm is designed 
using an earlier version of RADS features, it may not work prop-
erly when that RADS definitions are updated. Input data drift 
may also be caused by changes in information technology (IT) 
practices, software, or infrastructure (e.g. EHR systems) on 
which the ML model relies.22 Examples include changes of IT 
protocols such as changing from International Classification of 
Diseases Ninth Revision (ICD- 9) to ICD- 10 codes in the US, and 
EHR updates that change parameter definitions. Such changes 
can inadvertently impact ML model inputs leading to incorrect 
results or lower performance.
(b) Data drift in the clinical context of use refers to changes 

in the clinical setting in which the model is being used. This 
includes how the ML system is integrated into the clinical 
workflow, the disease spectrum and truth- state definition 
that impact the clinical interpretation of the ML output and 
performance, and the interaction of clinicians with the ML 
system. Examples of how data drift in the clinical context of 
use can occur in practice are given below.

One typical change is an evolution in clinical patient manage-
ment practice that may affect how an ML system is inte-
grated into the clinical workflow. Taking cervical cancer as an 

example, an ML system may have been designed to assist clin-
ical decision- making in combination with pap smear screening. 
When the HPV test is introduced for screening and integrated 
into clinical patient management, the role of the ML in the 
workflow may also have to be adjusted accordingly. Moreover, 
an ML model may be designed to provide its output in a stan-
dardized clinical report format but a format update within a 
clinical environment may make the ML outputs outdated or 
irrelevant.

Change of disease prevalence, e.g. proportion of cancer patients 
in the general population for cancer diagnosis, is an important 
data drift in the clinical context of use. Prevalence is also known 
as the a priori probability of classes in classification problems.21 
An ML model can be designed to output the a posteriori proba-
bility of disease based on the prevalence using Bayes rule at the 
time of development.29,30 However, when the ML system is used 
in operation, if the actual prevalence in the clinic does not match 
that used in calibrating the algorithm output or the prevalence 
changes over time, this may cause erroneous interpretation of the 
probabilistic outputs.

Changes in the definition of truth states in the clinical context 
of use is another cause of data drift because performance is 
measured by comparing the ML output with the truth. An 
example is the contouring definition for the rectum as an OAR 
in curative three- dimensional external beam radiotherapy for 
prostate cancer. Nitsche et al31 discussed 13 different defini-
tions for rectum contouring from the literature and the 3 defi-
nitions under their investigation yielded significantly different 
dose–volume histogram curves. When a model is trained with 
data from an institution with a specific OAR definition and is 
deployed in an institution with a different definition, its perfor-
mance would suffer.

Figure 1. Data drift categories and associated typical causes. The two types of drift in the upper row may be caused by similar 
phenomena; e.g. disease prevalence may cause either or both input data drift and COU drift, depending on the context. The drift 
type in the lower row (concept drift) may be caused by either input data drift or COU drift. COU, clinical context of use.
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Data drift in the clinical context of use also includes changes in 
the behavior of physicians due to the introduction of ML systems 
in the clinic.22 A typical example of physician behavior change is 
automation bias, i.e. overreliance on an ML system after getting 
used to it, which can impact the effectiveness of an ML system 
over time.

IMPLICATIONS FOR ML MODELS IN MEDICINE
Data drift can have major consequences for ML models including 
malfunction and performance deterioration. This can be a major 
barrier for ML tools to generalize to a wide range of healthcare 
institutions, disease patterns and image acquisition technologies, 
especially as these factors change over time.32 The concept of 
drift is familiar to clinicians, who may find their own previous 
experience inadequate when new clinical situations arise, leading 
them to work more cautiously when operating outside their clin-
ical ‘comfort zone’.23 Key skills in dealing with data drift are to 
first recognize a change has occurred and then to have enough 
self- awareness to know when personal intuition developed for 
other situations will not carry over. These skills are hard enough 
for clinicians to build. Since most current ML tools are not 
likely to have been designed to recognize a change, such a “self- 
awareness” is currently even harder for ML models. As a result, 
these models may often provide erroneous output, even with 
high confidence in the presence of data shift.33

Often, medical imaging and therapy ML models in the research 
setting are trained on conveniently available data with images 
acquired from only a few scanners and with or without harmo-
nized acquisition protocols. This type of patient cohort and 
controlled acquisition may represent a data drift from actual 
clinical populations. With this potential source of data drift in 
mind, Mårtensson et al34 investigated how ML models perform 
with unseen clinical data sets. The authors trained and tested 
multiple versions of a CNN on different subsets of brain MR data 
collected in multiple studies with different scanners, protocols 
and disease populations. They found that their model generalized 
well to data sets acquired with similar protocols as the training 
data but performed substantially worse in clinical cohorts with 
visibly different tissue contrasts. A similar performance decline 
associated with data drift coming from differences in imaging 
systems was observed by De Fauw et al,35 who developed an 
ophthalmic deep learning model using three- dimensional 
optical coherence tomography (OTC) scans to identify patients 
in need of referral for a range of 50 common sight- threatening 
retinal diseases. When they trained and tested with data from 
the same OTC scanner type (Type 1), they observed an overall 
error rate for referral of 5.5%. When the same model was used on 
test data acquired with a different type of OTC scanner (Type 2), 
performance fell substantially resulting in an error rate of 46.6%. 
These examples and other studies36–38 have demonstrated that 
data drift originating from differences in acquisition can play a 
major role in the deterioration of ML model performance in clin-
ical practice.

As discussed previously, distribution changes over time are 
another major cause for data drift. Nestor et al39 investigated the 
quality of ML model prediction when the models were trained 

on historical data but tested on future data. Using the MIMIC- III 
data set,40 the authors found that when the raw feature represen-
tation was used, models trained on historic data and tested on 
future data had dramatic drops of performance for both mortality 
prediction (e.g. up to a 0.29 drop in the area under the receiver 
operating characteristic curve or AUC) and long length- of- stay 
prediction (up to a 0.10 drop in AUC). A clinically motivated 
feature representation that grouped raw features into underlying 
concepts reduced, but did not eliminate, the drop in performance 
in time. The COVID- 19 pandemic gave researchers multiple 
opportunities to investigate how ML model performance can 
change when data or disease distributions change in time. Duck-
worth et al41 trained an ML model using pre- COVID- 19 data 
to identify patients at high risk of admission for the emergency 
department. When applied during the COVID- 19 pandemic, 
the model provided substantially lower performance (AUC 
= 0.826, 95% CI:[0.814,0.837]) compared to pre- COVID- 19 
performance (AUC = 0.856, 95% CI:[0.852,0.859]). Roland et 
al42 found similar results for comparing pre- COVID and early- 
COVID period data to random sampling in their COVID- 19 
diagnosis (positive or negative) and prediction of in- hospital 
death models. Otles et al43 found a drop in their model perfor-
mance for predicting healthcare- associated infections over time. 
Their analysis revealed that most of the drop was caused by an 
“infrastructure shift”, i.e. changes in access, extraction and trans-
formation of data, rather than changes in clinical workflows and 
patient populations.

In an effort to collect large data sets for ML training, it may be 
tempting to include any available data source. Due to socioeco-
nomic, historical, or other reasons, these conveniently available 
data may underrepresent certain subpopulations (e.g. based on 
gender, race or age), which can lead to a mismatch of training 
and operational populations, or a population drift.44 A mismatch 
between training and clinical utilization populations in ML may 
also be caused by differences in data collection geography, e.g. 
collection of data from different countries45,46 or from urban vs 
rural sites.47 Larrazabal et al48 studied the effect of gender balance 
in the training data set and found a consistent decrease in perfor-
mance for underrepresented genders when a minimum balance 
in the training data set is not fulfilled. Differences in ML model 
performance among different demographic subpopulations have 
been documented in multiple studies.49,50 Although not all of 
these differences may be caused by a population drift,51,52 data 
drift should be considered as a possible cause when such a differ-
ence is detected.

POTENTIAL REMEDIES
The previous section emphasized that if left unaddressed, data 
drift can have major consequences. In this section, we discuss 
how some harmful effects of data drift can be addressed. We 
organize our discussion into pre- and post- deployment. Pre- 
deployment strategies mainly focus on alleviation of the effects of 
mismatches between the training and deployment data. In post- 
deployment, one first monitors whether data drift has occurred, 
and if so, implements mitigation measures to reduce the impact, 
as depicted in Figure 2. For both pre- and post- deployment strat-
egies, understanding the causal structure of the data53,54 can be 
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useful in identifying the type of data drift and for selecting the 
mitigations in a structured way.

(a) Pre- deployment

For data drift caused by a difference in disease prevalence 
between the training and deployment populations, one technical 
approach can be to correct the probabilistic ML output using the 
known or estimated prevalence under the deployment condition. 
This correction approach, based on Bayes rule, has been shown 
to improve ML performance both in terms of reducing misclas-
sification error31 and in reducing miscalibration30 as defined in 
the “Introduction”. A weakness of this approach is that the true 
prevalence needs to be known, or a large data set reflecting the 
deployment prevalence must be available.31

Under a covariate shift, a technical approach is to perform 
importance weighting.55,56 Informally, this means that cases 
are reweighted by their importance defined as the ratio of their 
likelihood in deployment over that of the training data. Exam-
ples that are rarer in the training data but more likely to occur 
in deployment receive higher weights, emphasizing them in the 
training process.55 For example, in a CADe algorithm to detect 
breast masses on screening mammograms, the distribution of 
the mass size in a training data set may be different from the clin-
ical distribution because of the data collection process. Knowing 
this difference, a developer may apply importance weighting to 
correct for the covariate shift. For a successful implementation 
of importance weighting, no part of the deployment distribution 
can be unseen in the training data, and relevant distributions 
in the clinical deployment data set must be well- described, a 
condition that may be difficult to satisfy for many problems. This 
technique is part of the larger field of domain adaptation, which 
utilizes data from one or more relevant source domains to execute 
tasks in a new target domain.57 In the field of domain adaptation, 
the data drift is caused by the difference between the source and 

target domains. In medical imaging, a common domain adapta-
tion technique is to apply extensive and plausible augmentations 
to the data available from a single source or a small number of 
sources with the idea that a model trained on the augmented data 
could generalize better on unseen domains.57–59

Another possibility for bridging the gap between the training 
and deployment data distributions is to use synthetic image 
data. Recent work on natural imaging indicates that it is possible 
to generate synthetic image data for ML training with a small 
domain gap between the training and deployment sets even for 
highly demanding applications such as face analysis.60 Pipe-
lines for generating synthetic images using either physics- based 
methods applied to organ/lesion models61 or deep- learning- 
based approaches62 have been explored in recent years. A 
possible approach is to use synthetic images for image acqui-
sition settings or patient demographics that are known to be 
inadequately represented in a training data set. However, how 
to do this effectively and across different domains is still a topic 
of research.
(b) Post- deployment
After ML deployment, monitoring can be used to determine 
when data drift may pose a threat to the safety and effectiveness 
of the system. Monitoring can be employed at different levels 
including the output level (i.e. monitoring of device perfor-
mance), or at the input level (i.e. monitoring drift in the input 
data by checking for changes in the input images or their labels).

Performance monitoring at the output is attractive because it 
can provide a direct measure of performance decay. Methods 
based on standard drift detection methods such as ADaptive 
WINdowing (ADWIN)63 and statistical process control (SPC)64 
have been applied to performance monitoring and change detec-
tion for ML models in medicine.65,66 However, rigorous perfor-
mance monitoring using the same performance metrics from 

Figure 2. General description of approaches from the literature to address data drift. QA, quality assurance; QI, quality improve-
ment.
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pre- deployment can be difficult, because the reference standard 
used for measuring the true performance may be difficult to 
collect or the time scale needed may be quite long. For example, 
for a mammographic CAD system, the pre- deployment reference 
standard may be biopsy or 1- year follow- up to establish the posi-
tive/negative status of a subject. The use of the same reference 
standard may necessitate a 1- year delay in monitoring, which may 
be unacceptable. For this reason, alternative outcomes have been 
suggested for monitoring.67 For example, one could monitor the 
agreement of the CAD system with radiologists with a change 
in the agreement rate potentially indicating data drift. Another 
type of drift detection involves the estimation of the epistemic or 
model uncertainty. Changes in these uncertainty estimations can 
be used with ADWIN to detect drift.68 This approach also works 
in scenarios where there is no access to the reference standard. 
Additional research is needed to evaluate the robustness of such 
methods, in particular their sensitivity to the size of the data, to 
fully realize their potential usage in drift detection.

Monitoring at the input level include monitoring changes in the 
target variable, ML input, relationship between these two, and 
detecting out- of- distribution inputs.67,69 SPC charts, proposed 
for quality improvement in radiology departments,70 can also be 
used for monitoring changes in the input and target variables.67 
More complex approaches such as changes in the distribution 
of latent features of deep- learning AI models71 and the distance 
between high- dimensional feature distributions have also been 
proposed to monitor for a change in the relationship between the 
input and target variables.

Monitoring results can be used in different ways. A reasonable 
approach may be to use a statistical test (e.g. to determine whether 
a control limit has been exceeded when using a control chart72) 
and thus to decide whether data drift has occurred. When data 
drift is detected, one action could be to issue a warning, with 
the warning content and recipients dependent on the type and 
risks posed by the drift. Beyond a warning, some types of data 
drift (e.g. a prior probability shift) can be addressed by the pre- 
deployment techniques discussed in Section Potential Reme-
dies - Pre- deployment. However, model retraining on new data 
or even a change in ML architecture may be needed to address 
the drift in many situations. Several recent studies in medical 
imaging explored the possibility of retraining in response to 
data drift with minimal requirements, e.g. without access to labels 
for new test cases, with minimal memory requirements, and fast 
retraining after each new test case.73–75 The decision to perform 
retraining cannot be taken lightly because retraining also brings 
the possibility of an unintended performance deterioration. This 
possibility depends on many factors, including the quality and 

quantity of the new training data, the magnitude of the change 
in the model architecture, the change of validation methods and 
truthing methods, and the method (or lack thereof) for keeping 
users informed of the change.

The approaches described above require collaboration and 
co- ordination among many stakeholders. For monitoring to 
be successfully implemented, clinics and radiology depart-
ments may need to rely on dedicated quality assurance (QA) 
and quality improvement (QI) teams made up of technologists, 
clinicians, administrators, software experts, and biostatisti-
cians. Device manufacturers, realizing that the success of ML 
in medical imaging and therapy partly depends on mitigating 
the effect of data drift, should be expected to provide tools and 
procedures to facilitate monitoring. When retraining is neces-
sary, the roles and responsibilities of the different stakeholders 
should be clearly defined. Regulatory agencies can be expected to 
provide frameworks to allow stakeholders address the effects of 
data drift while assuring device safety and effectiveness. Research 
into better ways to detect data drift, to decide whether to retrain 
a model, and most effective ways to implement retraining are 
also essential.

CONCLUSION
Data drift can significantly affect the performance of ML- based 
software in medical imaging and therapy. Data drift is due to a 
host of reasons, including sampling biases at the design stage, 
changes in image acquisitions and patient populations, and 
changes or differences in the clinical context of use across time 
or clinical sites. All stakeholders, including developers, medical 
professionals, administrators and regulators should be vigilant 
about recognizing the risks of data drift because it can seriously 
impact ML performance and impede the clinical acceptance and 
long- term success of ML- based software in medical imaging and 
therapy. Several methods have been proposed in the ML litera-
ture to mitigate the effects of data drift. However, these methods 
have not been widely applied in medical applications in general, 
and in imaging/therapy systems in particular. While monitoring 
medical imaging ML systems for data drift and implementing 
retraining when substantiative drift is detected can be effective 
remedies, they have not been widely implemented. More research 
is needed into best practices for detecting and mitigating the 
impact of data drift, along with strategies to make solutions prac-
tical and cost effective in the clinical setting. Advances in these 
areas are necessary to fully realize the potential of medical ML 
for improving public health.
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