Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Apr;86(4):1257–1263. doi: 10.1104/pp.86.4.1257

Quantitative and Rapid Estimation of H+ Fluxes in Membrane Vesicles 1

Software for Analysis of Fluorescence Quenching and Relaxation

Ian R Jennings 1,2, Philip A Rea 1,2,2, Roger A Leigh 1,2, Dale Sanders 1,2
PMCID: PMC1054661  PMID: 16666064

Abstract

Proton transport is often visualized in membrane vesicles by use of fluorescent monoamines which accumulate in acidic intravesicular compartments and undergo concentration-dependent fluorescence quenching. Software for an IBM microcomputer is described which permits logging and editing of changes in fluorescence monitored by a Perkin-Elmer LS-5 luminescence spectrometer. An accurate estimate of the instantaneous rate of fluorescence quenching or recovery is then facilitated by least squares fitting of fluorescence data to a nonlinear function. The software is tested with tonoplast vesicles from Beta vulgaris. Quenching of acridine orange fluorescence by ATP-driven (primary) transport and relaxation of quenching by Na+/H+ antiport can both be fitted with single exponential functions. Initial rates of ATP- and Na+ -dependent fluorescence changes are derived and can be used for Km determinations. The method constitutes a simple and efficient alternative to manual analysis of analog fluorescence traces and results in a reliable quantitative measurement of the relative rate of proton transport in membrane vesicle preparations.

Full text

PDF
1258

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentrup F. W., Gogarten-Boekels M., Hoffmann B., Gogarten J. P., Baumann C. ATP-dependent acidification and tonoplast hyperpolarization in isolated vacuoles from green suspension cells of Chenopodium rubrum L. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2431–2433. doi: 10.1073/pnas.83.8.2431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumwald E., Poole R. J. Kinetics of Ca/H Antiport in Isolated Tonoplast Vesicles from Storage Tissue of Beta vulgaris L. Plant Physiol. 1986 Mar;80(3):727–731. doi: 10.1104/pp.80.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumwald E., Poole R. J. Na/H Antiport in Isolated Tonoplast Vesicles from Storage Tissue of Beta vulgaris. Plant Physiol. 1985 May;78(1):163–167. doi: 10.1104/pp.78.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briskin D. P., Thornley W. R., Wyse R. E. Membrane Transport in Isolated Vesicles from Sugarbeet Taproot : II. Evidence for a Sucrose/H-Antiport. Plant Physiol. 1985 Aug;78(4):871–875. doi: 10.1104/pp.78.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Briskin D. P., Thornley W. R., Wyse R. E. Membrane transport in isolated vesicles from sugarbeet taproot : I. Isolation and characterization of energy-dependent, h-transporting vesicles. Plant Physiol. 1985 Aug;78(4):865–870. doi: 10.1104/pp.78.4.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chanson A., Fichmann J., Spear D., Taiz L. Pyrophosphate-driven proton transport by microsomal membranes of corn coleoptiles. Plant Physiol. 1985 Sep;79(1):159–164. doi: 10.1104/pp.79.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gabathuler R., Cleland R. E. Auxin regulation of a proton translocating ATPase in pea root plasma membrane vesicles. Plant Physiol. 1985 Dec;79(4):1080–1085. doi: 10.1104/pp.79.4.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Junge W., Hong Y. Q., Qian L. P., Viale A. Cooperative transient trapping of photosystem II protons by the integral membrane portion (CF0) of chloroplast ATP-synthase after mild extraction of the four-subunit catalytic part (CF1). Proc Natl Acad Sci U S A. 1984 May;81(10):3078–3082. doi: 10.1073/pnas.81.10.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lew R. R., Spanswick R. M. Characterization of Anion Effects on the Nitrate-Sensitive ATP-Dependent Proton Pumping Activity of Soybean (Glycine max L.) Seedling Root Microsomes. Plant Physiol. 1985 Feb;77(2):352–357. doi: 10.1104/pp.77.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maloney P. C. Membrane H+ conductance of Streptococcus lactis. J Bacteriol. 1979 Oct;140(1):197–205. doi: 10.1128/jb.140.1.197-205.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mettler I. J., Mandala S., Taiz L. Characterization of in vitro proton pumping by microsomal vesicles isolated from corn coleoptiles. Plant Physiol. 1982 Dec;70(6):1738–1742. doi: 10.1104/pp.70.6.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Perlin D. S., San Francisco M. J., Slayman C. W., Rosen B. P. H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch Biochem Biophys. 1986 Jul;248(1):53–61. doi: 10.1016/0003-9861(86)90400-5. [DOI] [PubMed] [Google Scholar]
  13. Rea P. A., Poole R. J. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. doi: 10.1104/pp.77.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  15. Wang Y., Leigh R. A., Kaestner K. H., Sze H. Electrogenic h-pumping pyrophosphatase in tonoplast vesicles of oat roots. Plant Physiol. 1986 Jun;81(2):497–502. doi: 10.1104/pp.81.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES