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5]. EBV-1 is widely distributed and efficiently transforms 
B lymphocytes into immortalized LCLs (lymphoblastoid 
cell lines) in vitro [6], whereas EBV-2 is predominantly 
found in Africa and is more likely to infect cultured T 
cells than B cells [7, 8].

EBV infection is divided into three main phases: pri-
mary infection and lytic replication, latency and lytic 
reactivation [9]. Most primary EBV infections occur in 
infants and children. In North China, the seroprevalence 
of anti-EBV antibodies in children can reach more than 
80% [10]. Infections in childhood are usually asymptom-
atic or present as an upper respiratory infection, but later, 
these infections often lead to infectious mononucleosis 
(IM) [11]. After primary infection, the virus remains dor-
mant, with memory B cells serving as the main reservoir 
of their persistence [12]. Most people are in the latent 
phase of EBV infection and show no health-threatening 
clinical manifestations. However, when human immu-
nity is weakened, many EBVs can be activated and enter 
the lytic reactivation phase, causing specific diseases. 
EBV infection mainly causes four types of diseases: IM, 
chronic active EBV infection (CAEBV), EBV-associated 
autoimmune disease and EBV-associated tumorigen-
esis. EBV-associated diseases seriously threaten human 

Introduction
Epstein‒Barr virus (EBV), as a gammaherpesvirus, is a 
widely distributed oncogenic virus that was first identi-
fied in a biopsy of a patient with Burkitt lymphoma [1]. 
As a human lymphotropic herpesvirus, it is also the 
first virus identified by the World Health Organiza-
tion (WHO) to cause cancer. Epidemiological studies 
have shown that the infection rate of EBV in the popu-
lation exceeds 95% [2]. EBV is mainly spread through 
saliva. Exposure to bodily fluids, breast milk, and EBV-
positive organ transplantation contributes to the spread 
of the virus [3]. There are two EBV subtypes that can 
infect humans: EBV-1 and EBV-2; these subtypes differ 
in their EBV nuclear antigen-2 (EBNA-2) and EBNA-3 
gene sequences (EBNA-3a, EBNA-3b and EBNA-3c) [4, 
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Abstract
Epstein‒Barr virus (EBV) is a DNA virus that belongs to the human B lymphotropic herpesvirus family and is highly 
prevalent in the human population. Once infected, a host can experience latent infection because EBV evades the 
immune system, leading to hosts harboring the virus for their lifetime. EBV is associated with many diseases and 
causes significant challenges to human health. This review first offers a description of the natural history of EBV 
infection, clarifies the interaction between EBV and the immune system, and finally focuses on several major types 
of diseases caused by EBV infection.
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health, and research on how EBV persists in the host and 
how to effectively clear EBV is currently intensive. This 
review first presents the natural history of EBV infection, 
then clarifies the interaction between EBV and immu-
nity, and finally focuses on several major types of diseases 
caused by EBV.

Natural history of EBV infection
EBV particles are spherical and consist of envelope, tegu-
ment and nucleocapsid in the outside-to-inside direction. 
Glycoproteins are attached to the envelope, and eight of 
them participate in EBV invasion, which is essential for 
infecting a host [13]; the tegument contains unevenly 
distributed tegument proteins, and it is a unique struc-
ture in herpesviruses; the nucleocapsid is an icosahedron 
formed from multiple capsid proteins that enclose a 172-
kpb double-stranded DNA genome [14]. EBV carries 
more than 100 genes encoding approximately 85 proteins 
and approximately 50 noncoding RNAs [15]. (Fig. 1)

The primary infection and lytic replication phases
EBV is mainly transmitted through saliva, and the virus 
initially infects B cells and epithelial cells in the orophar-
ynx. Different glycoproteins of EBV are involved in infect-
ing B cells or epithelial cells. Glycoprotein gp350/220 
binds to complement receptor type 2 (CR2/CD21) on B 

cells to advance viral attachment. In addition to the pro-
tein binding CD21, another gp350/220 receptor, comple-
ment receptor type 1 (CR1/CD35), can also bind B cells 
[3, 16]. Following attachment, EBV glycoprotein gp42 can 
interact with HLA class II (HLA-II) on B cells, bringing 
the virus close to the cell and then triggering the core 
fusion machinery consisting of gHgL and gB to inter-
act with endosomal membranes. Because epithelial cells 
lack CD21 and HLA-II, viral gHgL and gB appear to be 
involved in EBV entry and fusion with epithelial cells 
[17]. After fusion, the tegument with the nucleocapsid is 
released into the cytoplasm [18]. EBV fusion with B cells 
and epithelial cells involve three envelope glycoproteins 
that play major roles, including gHgL and gB [19]. Since 
these proteins are conserved throughout the herpes-
virus family, they are also referred to as the core fusion 
machinery [13]. Initially, investigators believed that EBV 
infects epithelial cells through direct membrane fusion 
[20]. However, a recent study found that EBV also enters 
epithelial cells through lipid raft-dependent endocytosis 
and micropinocytosis [21].

After the tegument proteins of the virus are dissolved, 
the EBV genome is injected into the nucleus, and viral 
replication is mediated by DNA polymerase; the whole 
process occurs during the lytic phase of the viral life 
cycle. The EBV genome encodes over 80 gene products 

Fig. 1  Major interaction modes of EBV membrane glycoproteins with B cells and the natural history of EBV infection
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that facilitate viral replication and the synthesis of viral 
structural components during the lytic phase. [22]. The 
temporal sequence of viral gene expression can be clas-
sified into three steps: immediate early (IE), early (E) and 
late (L) [23]. IE lytic genes, such as BZLF1 and BRLF1, 
encode transactivators of the viral lytic program [24]. 
E lytic genes, such as BNLF2a, are related mainly to 
virus replication and metabolism. L lytic genes, such as 
BCRF1, may be related to immune escape [25]. Simulta-
neously, EBV activates growth transformation programs 
to drive infected B-cell proliferation and differentia-
tion of infected B cells into memory B cells in a germi-
nal center reaction. In addition, antigen-presenting cells 
present antigenic substances to T cells. Infected B cells 
are then attacked by cytotoxic T lymphocytes (CTLs), 
which release viral particles into the peripheral circula-
tory system and control the number of infected B cells 
[26–28]. Infected memory B cells are also released into 
the peripheral circulation where can remain in the latent 
or lytic replication phase. EBV infects and replicates in 
epithelial cells and B cells locally infiltrating the oral cav-
ity, resulting in the shedding of large amounts of virus 
in the oropharynx and the entry of infected B cells into 
the bloodstream, circulating between the oral cavity and 
peripheral vascular system [29].

Latent infection phase
EBV can maintain in the latent infection phase in the 
human host, which is an important reason why the virus 
cannot be eradicated and can maintain lifelong per-
sistence. After primary infection, the linear EBV DNA 
becomes circular DNA in the host cell nucleus in the 
form of circular episomes [30]. The circular episomes 
attach to host chromatin through the action of EBNA-
1, replicates in conjunction with the host cell cycle, and 
is transmitted to daughter cells [31]. During the latent 
infection phase, EBV expresses only a limited subset of 
viral genes and noncoding RNAs, including six nuclear 
antigens, EBNA-1, EBNA-2, EBNA-3  A, EBNA-3B, 
EBNA-3  C, and LP; three latent membrane proteins 
(LMPs), LMP-1 and LMP-2 A/B; and two types of non-
coding RNA that are not translated into proteins, EBV-
encoded RNAs (EBERs) and microRNAs (miRNAs) [4, 
32]. EBV is specific and unique because of its ability to 
establish different latent gene expression patterns (the 
Latency Type 0, I, II and III) depending on the infected 
cell type and state (resting or proliferating) [27]. The 
latent EBV genome propagates in dividing memory B 
cells throughout the Latency I period [33], induces B-cell 
differentiation through the Latency II period [34], indues 
the growth and transformation of naive B cells through 
Latency III genes [35], and stops all viral gene expres-
sion in the Latency 0 period in the memory B-cell pool. 

Different latent gene expression programs express differ-
ent viral gene products.

Lytic reactivation phase
Infected memory B cells in the latent infection phase are 
occasionally reactivated and differentiated into plasma 
cells, which can induce EBV reactivation after cytolysis, 
thereby entering the lytic reactivation phase from the 
latent infection phase [36]. BZLF1 and BRLF1, IE lytic 
genes, encode transcription factors Z (also named ZTA/
BZLF1) and R (also named RTA/BRLF1), which play 
important roles in EBV reactivation [37, 38]. The expres-
sion of BZLF1 and BRLF1 in the latent phase is inhibited 
by a variety of cellular transcriptional repressors. During 
the lytic replication phase, BZLF1 and/or BRLF1 proteins 
bind to the origin site of EBV DNA replication (named 
oriLyt) in the genome as initial binding proteins [39], 
activate their own and each other’s promoters (Zp and 
Rp), and ultimately cooperate to activate the promoter 
of the E lytic gene [40]. When the replication of the 
EBV genome is complete, the new viral genome, which 
is unmethylated and has no chromatin, is linearized by 
the viral terminase complex and subsequently packaged 
into preformed capsid particles to form nucleocapsids. 
A nucleocapsid exits the nucleus and enters the cyto-
plasm where it is coated with viral proteins to form the 
tegument. The virus particle finally acquires an envelope 
under the action of the Golgi apparatus. Through exo-
cytosis, cellular vesicles fuse with the plasma membrane 
and release mature and infectious virions [3, 41].

The interaction of the immune system and EBV
The interaction between immune factors and EBV is 
complex. On the one hand, the immune system plays a 
critical role in controlling EBV infection. When a per-
son is infected with EBV, the immune system produces 
specific antibodies that target the virus and help to clear 
it from the body. However, EBV can evade the immune 
system in various ways, allowing it to establish persistent 
infection in the body. EBV can interfere with immune 
system function, making it harder for the body to fight 
the infection.

Immune responses to EBV
Innate immunity
As the body’s first line of defense against EBV invasion, 
innate immunity not only resists nonspecific infection 
but also initiates the process of adaptive immunity in 
which it also participates [26]. Innate immune responses 
are induced after recognition of biomacromolecules 
with pathogen-associated molecular patterns (PAMPs) 
or damage-associated molecular patterns (DAMPs) by 
pattern recognition receptors (PRRs). PAMPs include 
a number of biological macromolecules, such as DNA, 
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RNA, and lipids, carried by invading EBV. PRRs that spe-
cifically recognize EBV PAMPs mainly include Toll-like 
receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-
like receptors (RLRs), and a series of intracellular DNA 
sensors, including cyclic GMP-AMP (cGAMP) syn-
thase (cGAS) and interferon gamma-inducible protein 
16 (IFI16). After PRRs are activated, a series of signaling 
cascades are triggered to produce various cytokines, che-
mokines and/or type I interferon (IFN-I), which inhibit 
protein translation and growth of infected cells, pro-
mote apoptosis, limit virus spread, and activate adaptive 
immunity [42]. (Fig. 2)

TLRs are distributed mainly on the plasma membrane 
and membranes inside cells, and all TLR signaling is 
transduced mainly through one of two adapter proteins, 
namely, myeloid differentiation primary response 88 
(MyD88) and TIR-domain-containing adapter protein-
inducing interferon-β (TRIF), although differences in 
signaling are profound [43, 44]. EBV infection mainly 
activates TLR2, TLR3, TLR7 and TLR9 [45]. Different 
TLRs respond to different PAMPs, but they all ultimately 
activate the NF-κB signaling pathway to produce proin-
flammatory cytokines [such as interleukin (IL)-1, IL-6, 
IL-8, and tumor necrosis factor-α (TNF-α)] and induce 
interferon regulatory factors (IRF) 3 and IRF7 to produce 

Fig. 2  Major pattern recognition receptors in the innate immune response to EBV. Abbreviations: EBV, Epstein‒Barr virus; TLRs, Toll-like receptors; MyD88, 
myeloid differentiation primary response 88; TRIF, TIR-domain-containing adapter protein-inducing interferon-β; RLRs: retinoic acid-inducible gene-I-like 
receptors; MAVS, mitochondrial antiviral signaling; cGAS: cyclic GMP-AMP synthase; cGAMP, cyclic GMP-AMP; STING, stimulator of interferon genes; ER, 
endoplasmic reticulum; IRF, interferon regulatory factor
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IFN-I. This mechanism helps to control the spread of 
the virus and limit the development of EBV-associated 
diseases.

RLRs can recognize foreign RNA in the cytoplasm, and 
a study showed that RLRs recognize EBERs through an 
RNA polymerase III-dependent pathway and then acti-
vate the inflammatory response triggered by the NF-κB 
and IRF3 signaling pathways [46]. After knocking down 
RIG-1 in gastric cancer cell lines, the production of 
inflammatory factors after EBV reactivation was found to 
be significantly reduced, further proving that RLRs play 
roles in fighting EBV infection [47].

At present, few studies on how DNA sensors identify 
EBV have been reported. As a DNA sensor, cGAS rec-
ognizes and binds double-stranded DNA (dsDNA) in a 
length-dependent manner. After binding dsDNA, cGAS 
catalyzes adenosine triphosphate (ATP) and guano-
sine triphosphate (GTP) to produce cGAMP, and then, 
cGAMP binds and activates stimulator of interferon 
genes (STING) to secrete IFN-I [48]. Although EBV-
positive B cells express cGAS and stimulator of interferon 
genes (STING), no evidence to suggest that downstream 
IFN production is induced has been reported [49]. When 
the transcription of another DNA sensor, IFI6, is knocked 
down, EBV replication is increased in B cells [50].

Some innate immune cells recognize EBV. EBV infec-
tion can promote the proliferation of natural killer (NK) 
cells, and this expanded population of NK cells can rec-
ognize and lyse infected cells [51]. In addition, invariant 
NKT (iNKT) cells can restrict the ex vivo transformation 
of B lymphocytes induced by EBV [52]. In addition, as 
antigen-presenting cells (APCs), such as dendritic cells 
(DCs), not only recognize pathogens via innate immunity 
programs but also play crucial roles in adaptive immunity 
by activating immune cells. DCs can be classified into 
plasmacytic dendritic cells (pDCs) and classical myeloid 
dendritic cells (cDCs) [53]. pDCs express TLR7 and 
TLR9, which recognize EBV nucleic acids and produce 
IFN-I [54, 55]; cDCs recognize EBV through TLR3 and 
can process and present antigens to T cells [56].

Adaptive immunity
Adaptive immunity is the arm of the immune system 
that is specifically tailored to recognize and respond to 
foreign antigens, including viral antigens. The adaptive 
immune response to EBV infection involves both B cells 
and T cells.

B cells participate in adaptive immune responses and 
produce specific antibodies. Anti-viral capsid antigen 
(VCA) immunoglobulin M (IgM) and IgA antibodies are 
produced early in the infection period and persist for 
several weeks to months before disappearing, whereas 
anti-VCA IgG antibodies typically peak 2–4 months 
after infection, and then, although the number declines, 

persist in the body. Infected B cells also produce antibod-
ies against gp350, gp42 and gHgL, inhibiting EBV binding 
B cells and viral fusion, limiting viral spread, and prevent-
ing recurrent infection [57–59].

The generation of EBV-specific CD8 + and CD4 + T 
cells is significantly elevated in the population of EBV-
infected individuals. CD8 + cytotoxic T cells target and 
attack EBV-infected cells by recognizing viral protein 
peptides presented by major histocompatibility com-
plex Class I molecules (MHC-I) on infected cells and 
play antiviral roles [60]. Mediated via these cytotoxic T 
cells, a single lytic antigen-specific CD8 + T-cell response 
can involve up to 2% of the CD8 + T-cell population, 
and latent antigen-specific responses involve only 1% of 
the CD8 + T-cell population [61]. Studies have revealed 
that CD8 + T cells show specific affinity for epitopes in 
IE lytic gene products, with lower specific affinity for E 
lytic gene products and very little for epitopes in L lytic 
gene products [62]. Latent responses are mainly directed 
against epitopes in the EBNA3 protein family, to a lesser 
extent against LMP2, EBNA1 and EBNA2 protein epi-
topes and very rarely against EBNA-LP pr LMP1 [61]. 
The EBNA3 protein family specifically causes the expan-
sion of CD8 + cytotoxic T cells, thereby inhibiting the 
excessive growth, proliferation, and tumor formation of 
transformed B cells [63]. EBV-positive posttransplant 
B lymphoproliferative disease (PTLD) is more likely to 
develop in patients with suppressed T-cell function, such 
as those with myelosuppression or who undergo organ 
transplantation [64]. However, PTLD can be successfully 
treated the by adoptive transfer of EBV-specific T-cell 
preparations [60]. B cells infected with EBV express high 
levels of MHC-II molecules, which activate CD4 + T cells. 
CD4 + T cells not only assist B cells in producing antibod-
ies and neutralizing antigens but also induce and main-
tain the cytotoxic activity of CD8 + T cells. In contrast 
to CD8 + T cells, CD4 + T cells are less likely to respond 
to individual epitopes. Thus, latent antigen-specific 
CD4 + T-cell responses are more robust than their lytic 
antigen-specific responses. Finally, the antigen-specific 
CD4 + T-cell responses to IE, E, and L lytic gene products 
are evenly activated [61]. Accumulating evidence shows 
that CD4 + T cells can also act as direct effector cells to 
recognize and kill newly EBV-infected B cells or estab-
lished EBV-transformed LCLs [65, 66].

Evasion of immunity by EBV
Innate immunity
To achieve long-term survival in the host and establish 
persistent infection, EBV has also evolved many strate-
gies to evade host immune surveillance. First, EBV can 
downregulate the activation of several PRRs. Second, it 
can also directly target downstream factors. Finally, it can 
affect the function of some immune cells. (Table 1)
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EBV can reduce TLR expression and/or signal trans-
duction to escape cellular immune responses to TLR 
activation [67]. Fathallah et al. found that the EBV onco-
protein LMP1 is a strong inhibitor of TLR9 transcrip-
tion, and its overexpression regulates NF-κB pathway 
activation, thereby reducing TLR9 promoter activity and 
its mRNA and protein expression levels [68]. Moreover, 
the EBV exonuclease BGLF5, a protein kinase constitu-
ent in all herpesviruses, evades host immune signaling by 
depleting TLR9 mRNA levels and thereby reducing TLR9 
protein expression [69]. Due to its deubiquitinase (DUB) 
activity, the EBV large tegument protein BPLF1 can nega-
tively regulate TLR signaling by removing ubiquitin tags 
from proteins in the TLR signaling cascade [45].

Oligomeric RIG-I or MDA5 (an RLR family protein), 
with action mediated by K63-linked ubiquitin chains, 
interacts with the N-terminal caspase recruitment 
domain in mitochondrial antiviral signaling (MAVS) 
located on the mitochondrial membrane and induces 
RLR-mediated signal transduction. As an anti-apoptotic 

protein, EBV BHRF1 can induce mitochondrial fission, 
cause mitochondrial and MAVS protein degradation, 
block RLR-mediated signal transduction, and weaken 
antiviral effects [70]. As an EBV-encoded microRNA, 
miR-BART6-3p can target the 3’UTR of RIG-I mRNA, 
thereby inhibiting the expression of IFN-β [71]. BPLF1 
also represses the expression of the RIG-I-MAVS and 
cGAS-STING pathways via the DUB-dependent deubiq-
uitination of TBK1 and STING [72].

Moreover, EBV can target DNA sensors. EBV induces 
the body to produce the E3 ubiquitin ligase tripar-
tite motif-containing protein 29 (TRIM29), which can 
degrade STING, and the downregulation of STING may 
inhibit the production of IFN-I and the innate immune 
response [73].

In addition to affecting the activation of several PRRs, 
EBV can also directly target downstream factors to 
escape the immune system [74]. Studies have revealed 
that BZLF1 can directly or indirectly downregulate the 
expression of IRF7 to inhibit the production of IFN-α [75, 

Table 1  EBV immune evasion proteins and microRNAs.
EBV
gene

Function
/Phase
/Location

Evasion mechanism Ref.

LMP1 Latency II Reducing TLR9 promoter activity; decreasing TLR9 mRNA and protein expression levels  [68]
Reducing the phosphorylation of Tyk2 and STAT2; inhibiting IFN pathway activation  [78]

BGLF5 Lytic immune modulator Depleting TLR9 mRNA and reducing its protein expression level  [69]
Inducing host mRNA degradation; blocking the synthesis of MHC-I  [90]

BPLF1 Tegument Removing ubiquitin tags from TRAF6; negatively regulating TLR signaling  [45]
Mediating DUB-dependent deubiquitination of TBK1 and STING; inhibiting RIG-I-MAVS and 
cGAS-STING signaling

 [72]

BHRF1 Lytic immune modulator Inducing mitochondrial fission; causing MAVS protein degradation; blocking RLRs signaling  [70]
miR-BART6-3p EBV-encoded microRNA Targeting the 3’UTR of RIG-I mRNA; inhibiting the expression of IFN-β  [71]
BZLF1 (ZTA) Lytic replication Binding directly to IRF7; inhibiting IRF7 activation  [75]

Upregulating SOCS3 expression; indirectly inhibiting IFN-α production  [76]
Binding to CIITA; inhibiting MHC-II transcription  [93]

BRLF1 (RTA) Lytic replication Reducing the mRNA levels of IRF 3 and IRF7 and the activation of the IFN-β promoter; inhibiting 
the expression of IFN-β

 [77]

LMP2 Latency II Reducing the phosphorylation of Tyk2, STAT1 and JAK; inhibiting ISG transcription and the IFN 
production

 [79]

LF2 Lytic immune modulator Binding to IRF7 to block its dimerization; inhibiting IFN-α production  [80]
BGLF4 Late gene expression Reducing the activity of IFN-β promoter; inhibiting IRF3 signaling  [81]

Interfering with the interaction between NF-κB and UXT; inhibiting the activity of NF-κB  [82]
Phosphorylating SAMHD1; decreasing the activity of dNTPase  [83]

miR-BART18-5p EBV-encoded microRNA Targeting MAP3K2; blocking viral replication  [86]
miR-BART4-5p EBV-encoded microRNA Downregulating proapoptotic protein BID activity; inhibiting target cells apoptosis  [87]
EBNA1 Latency I Inhibiting ULBP1 and ULBP5; escaping NK cell recognition  [88]
BNLF2a Lytic immune modulator Inhibiting TAP function; preventing loading of antigenic peptides onto MHC-I  [91]
BILF1 Lytic immune modulator Triggering endocytosis of MHC-I molecules and degradation  [92]
BZLF2 Entry glycoprotein Binding to MHC-II complex; blocking the antigen recognition of CD4 + T cells  [94]
Abbreviation: EBV, Epstein‒Barr virus; LMP1: latent membrane protein 1; TLR: Toll-like receptor; Tyk: tyrosine kinase; STAT, transducer and activator of transcription; 
IFN, interferon; MHC-I/II: major histocompatibility complex class I/II molecules; TLR, Toll-like receptor; DUB, deubiquitinase; RIG-I: retinoic acid-inducible gene-I; 
RLRs: RIG-I -like receptors; MAVS, mitochondrial antiviral signaling; cGAS: cyclic GMP-AMP synthase; cGAMP, cyclic GMP-AMP; STING, stimulator of interferon genes; 
ER, endoplasmic reticulum; IRF, interferon regulatory factor; CIITA, class II transactivator; ISG, interferon-stimulated gene; IFN, interferon; SAMHD1: sterile alpha motif 
and HD domain 1; dNTPase: deoxynucleotide triphosphate hydrolase; EBNA: EBV nuclear antigen; ULBP, UL16-binding proteins; NK, natural killer; TAP, transporter 
associated with antigen processing.
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76]. BRLF1 inhibits the production of IFN-β by reduc-
ing the mRNA levels of IRF 3 and IRF7 and reducing 
the activation of the IFN-β promoter [77]. LMP-1 inhib-
its the IFN pathway by reducing the phosphorylation of 
tyrosine kinase 2 (Tyk2) and signal transducer and activa-
tor of transcription 2 (STAT2) [78]. LMP-2 A/B inhibited 
interferon-stimulated gene (ISG) transcription and IFN 
production by reducing the phosphorylation of Tyk2, 
STAT1 and JAK [79]. As an EBV tegument protein, LF2 
inhibits IFN-α production by binding to IRF7 to block 
its dimerization [80]. As a viral protein kinase, BGLF4 
not only inhibits IRF3 and NF-κB signaling [81, 82] but 
also phosphorylates sterile alpha motif and HD domain 1 
(SAMHD1), resulting in a decrease in its deoxynucleotide 
triphosphate hydrolase (dNTPase) activity, allowing EBV 
to evade host immunity [83]. Studies have found that cel-
lular dsRNA-dependent protein kinase (PKR) plays a key 
role in antiviral innate immunity, and EBERs can bind to 
PKR and inhibit its activation, thereby preventing PKR-
mediated apoptosis [84]. EBV encodes at least 40 kinds 
of miRNAs, which are located in the BHRF1 gene and 
BART transcription sequence in the form of gene clusters 
[85]. In addition to the abovementioned miR-BART6-3p, 
other miRNAs encoded by EBV, mainly miR-BART18-5p 
and miR-BART4-5p, evade host immunity by maintain-
ing their presence in the latent state and inhibiting the 
apoptosis of infected cells [86, 87].

EBNA1 enables newly infected B cells to escape NK cell 
recognition by inhibiting NK cell receptor ligands UL16-
binding protein 1 (ULBP1) and ULBP5 [88]. EBV evades 
the immune response by upregulating the expression of 
T-cell inhibitory factors so that infected pDCs cannot 
induce a T-cell response [89].

Adaptive immunity
Notably, EBV has evolved many strategies to evade adap-
tive immunity. On the one hand, EBV can interfere with 
MHC-I antigen presentation. The proteasome produces 
antigenic peptides, transports them to the endoplasmic 
reticulum through the transporter-associated with anti-
gen processing (TAP) complex, binds to MHC-I, and then 
transports the peptides to the cell surface, where they are 
recognized by CD8 + T cells. BGLF5 abrogates MHC-I 
gene expression through a host-mediated shutdown pro-
gram [90]. BNLF2a abrogates the TAP-mediated import 
of antigenic peptides [91]. BILF1 triggers endocytosis of 
MHC-I molecules and their degradation in lysosomes 
[92]. On the other hand, EBV can interfere with MHC-I 
antigen presentation. Class II transactivator (CIITA) can 
promote the expression of MHC-II, and BZLF1 can bind 
to CIITA, which inhibits MHC-II transcription [93]. As 
a lytic phase protein, BZLF2 can block antigen recogni-
tion by CD4 + T cells by binding to the MHC-II complex 
on the surface of B cells [94]. It has been reported that 

EBV can also increase the number of specific regulatory 
T cells (Tregs), and the action of these EBV-specific Tregs 
may be related to the escape of tumor cells [95, 96].

EBV-associated diseases
The diseases caused by EBV cover a wide range condi-
tion, from mild asymptomatic infection to tumorigenesis. 
They can be mainly divided into the categories discussed 
in this section.

Primary EBV infection-associated diseases
IM is one of the most common manifestations of EBV 
infection. IM occurs in approximately 35-50% of peo-
ple who are first infected with EBV in adolescence [97]. 
The main symptoms of IM include sore throat, fever, 
and enlarged lymph nodes, which may be accompanied 
by atypical lymphocytosis. These symptoms are mainly 
caused by the massive proliferation of CD8 + T cells acti-
vated against latent and lytic viral antigens, especially the 
action of the EBNA3 protein family and the IE lytic gene 
products, accompanied by the release of many inflam-
matory factors [98, 99]. EBV-specific antibody tests 
and heterophilic antibody tests can be used to diagnose 
acute EBV infection. EBV initially infects and induces the 
proliferation of B cells, and the disease process usually 
resolves as CD8 + T-cell responses are activated to elimi-
nate Latency Type III-infected B cells [99]. Acyclovir can 
only inhibit the EBV lytic replication phase not the latent 
infection phase, so it cannot reduce the severity, shorten 
the course, or decrease the incidence of complications 
[100]. Therefore, symptomatic treatment is generally 
adopted for patients with IM, and most patients recover 
spontaneously, but in a few cases, the diseases progress 
with serious complications such as CAEBV and HLH.

Persistent EBV infection-associated diseases
CAEBV is a progressive disease with a duration of ≥ 3 
months and markedly elevated EBV DNA levels in the 
absence of immunodeficiency [101]. After infection, the 
main clinical manifestations are persistent or recurrent 
IM-like symptoms and progressive chronic damage to 
multiple organs, such as liver function damage, multiple 
lymphadenopathies, hepatosplenomegaly, HLH, retinitis, 
interstitial pneumonia, vaccinia-like vesicular disease, 
and mosquito bite allergies [102]. These outcomes are 
mainly caused by organ infiltration by EBV-infected lym-
phocytes. A prospective study revealed that EBV infected 
3/5 of T cells and 2/5 of NK cells, and the predominant 
infiltrating immune cells were CD4 + T cells [102]. The 
major EBV pattern in T/NK cells followed Latency Type 
II infection and showed increased EBV EBNA1, LMP1/2, 
and EBER expression [103]. In Asian countries, CAEBV 
has a poor prognosis because of high T/NK cell involve-
ment [104]. However, in Western countries, CAEBV 
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has a relatively low mortality and disability rate because 
it mainly involves B cells in these patients [2]. Clinical 
attempts to treat CAEBV have not yet been unified, and 
treatments include traditional antiviral therapy, antitu-
mor chemotherapy, and immunotherapy, with hemato-
poietic stem cell transplantation (HSCT) considered to 
be the only effective treatment [105].

EBV-associated autoimmune diseases
EBV is also associated with the occurrence and develop-
ment of various autoimmune-associated diseases, such 
as rheumatoid arthritis (RA), Sjögren’s syndrome (SS) 
and systemic lupus erythematosus (SLE). EBV infection 
can activate and modulate the immune system, thereby 
increasing the risk of autoimmune diseases. Defective 
EBV-specific T cells, increased viral load and expression 
of lytic phase proteins, and high levels of EBV antibod-
ies in patients with RA, SS, and SLE all support an eti-
ological role for EBV infection in the development of 
autoimmune diseases [106]. Recent research suggested 
that there are several mechanisms by which EBV causes 
autoimmune diseases. First, EBV can infect lympho-
cytes and express immune regulatory proteins that are 
involved in immune evasion, which can impact the host 
immune system [107–109]. Second, EBV can induce the 
production of many cytokines and inflammatory fac-
tors. Virus-encoded EBER can form complexes with the 
cellular EBER-binding protein La (SSB) and can release 
a large amount of proinflammatory factors by mediat-
ing the TLR3 signaling pathway, thereby enhancing the 
self-reactivity of nuclear ribonucleoprotein La in patients 
with SS and SLE [56]. Finally, EBV can cause the loss of 
immune tolerance and promote the progression of auto-
immune diseases through molecular mimicry [110]. 
Most RA patients produce characteristic autoantibodies, 
including rheumatoid factor (RF) and anti-citrullinated 
protein antibodies (ACPAs). Studies have revealed that 
latent EBV transcripts and latent and lytic EBV proteins 
are detected in ectopic lymphoid structures resembling 
germinal centers in RA synovium [111], and antibodies 
against EBNA2 citrullinated peptides are detected in RA 
patients. Therefore, EBV can induce an immune response 
in the body, which can then be redirected toward self-
antigens through cross-reactivity and epitope spreading 
[112].

EBV-associated malignant tumors
Burkitt lymphoma
EBV is a human lymphoma virus that can cause many 
types of lymphomas, such as Burkitt lymphoma (BL) and 
Hodgkin lymphoma (HL). BL is the earliest lymphoma 
confirmed to be associated with EBV infection. BL mostly 
occurs in children, is aggressive and highly malignant, 
and progresses rapidly [113]. The WHO classifies BL into 

three categories: endemic, sporadic, and immunodefi-
ciency-associated BL. Endemic BL (eBL) occurs mainly 
in children in equatorial Africa and has been shown to 
be associated with EBV infection [114]. eBL is character-
ized by EBV infection and translocation and dysregula-
tion of the proto-oncogene MYC. Studies have shown 
that the dysregulated expression of activation-induced 
cytidine deaminase (AID) can lead to the translocation of 
MYC in cells infected with latent EBV, thereby promoting 
the occurrence and development of BL [115]. Moreover, 
the region is also a geographical area where Plasmo-
dium falciparum (P. falciparum)-induced malaria is fully 
endemic. P. falciparum can not only cause dysregulated 
expression of AID but also can increase the number of B 
cells in the germinal center and increase the susceptibil-
ity of these cells to EBV infection [116]. In addition, EBV 
can also translocate MYC by inducing the expression of 
EBNA1, BHRF1, and EBER, with LMP1 inhibiting the 
proapoptotic protein Bcl-2-interacting mediator (BIM), 
thereby preventing the apoptosis of B cells [117]. The 
clinical manifestations of BL vary depending on the loca-
tion of the disease in the body and can manifest as lymph 
node enlargement, maxillofacial mass, and acute abdo-
men pain caused by an abdominal mass. Bone marrow 
metastases can proceed rapidly, and these patients may 
present with leukemia-like symptoms. The main treat-
ment option is chemotherapy, but the CHOP regimen is 
not effective. Combination treatment with rituximab can 
improve long-term survival, and complete remission may 
be achieved through allogeneic HSCT [118].

Hodgkin lymphoma
In 1987, Weiss et al. reported for the first time that the 
detection rate of EBV-DNA in HL tissues was 20-50% 
[119]. Immunohistochemistry and EBER in situ hybrid-
ization were then used to detect the presence of EBV in 
Hodgkin and Reed-Sternberg (HRS) tumor cells, con-
firming the link between EBV and HL [120]. The WHO 
classifies HL into two subtypes: classical HL (cHL) and 
nodular lymphocyte predominant HL (NLPHL), among 
which cHL is associated with EBV infection [121]. In 
EBV-positive cHL, EBV expression is usually restricted 
to the Latency II type, in which EBNA1, LMP1, LMP2A, 
and some noncoding RNAs are mainly expressed. LMP1 
activates downstream NF-κB, JAK/STAT and PI3K sig-
naling pathways by simulating CD40 receptors, thereby 
inducing in germinal center B cells transcriptional 
changes characteristic of HRS cells [122]. HRS cells can 
also downregulate B-cell-specific marker expression 
[123]. Approximately 25% of EBV-positive HL patients 
harbor deleterious mutations in the B-cell antigen recep-
tor (BCR) that induce B-cell death [124], and LMP2A 
acts as an alternative BCR receptor in HRS cells, allow-
ing survival of BCR-deficient B cells [125]. In 90% of the 
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clinical cases of HL, lymph node enlargement is the first 
symptom, which gradually spreads from a single lymph 
node group to systemic lymph nodes. Late-stage HL 
is associated with liver, spleen, bone marrow and other 
organ involvement. A total of 20–30% of patients may 
experience unexplained fever, night sweats, weight loss, 
fatigue, itching and other symptoms. The treatment of 
cHL is usually based on a combination of radiotherapy 
and chemotherapy. After remission, autologous HSCT 
can be considered as consolidation therapy, and some 
relapsed or refractory patients can be considered for 
treatment with biologics.

Nasopharyngeal carcinoma
EBV is one of the main causes of nasopharyngeal carci-
noma (NPC), especially in high-incidence areas in south-
ern China and Southeast Asia. The WHO classifies NPC 
into three subtypes [126]: Type I (keratinizing squamous 
cell carcinoma), Type II (nonkeratinizing squamous cell 
carcinoma), and Type III (undifferentiated carcinoma), 
with progressively lower degrees of differentiation and 
increasing association with EBV infection [127]. Early 
detection of nasopharyngeal carcinoma is very difficult 
because onset is usually not apparent, and the malig-
nancy rate is high, with 70% of patients in an advanced 
stage when they first seek medical attention [128]. EBV 
in the latent phase infects the malignant NPC epithelial 
cells following the Latency Type II pattern and expresses 
EBNA1, LMP1/2, EBER, and some miRNAs [129]. Stud-
ies have revealed that LMP1 can not only promote cell 
growth but also inhibit apoptosis [130, 131]. However, 
its expression also correlates with the characteristics 
of NPC metastasis. Studies have found that LMP1 can 
increase the invasiveness of tumor cells by affecting the 
expression of matrix metalloproteinase9 (MMP9) [132], 
mucin1 [133] and ezrin protein [134]. In addition, LMP1 
can affect the degradation of the matrix around a tumor 
to promote the invasion and metastasis of NPC [135]. A 
study found that LMP1 promotes lymphangiogenesis and 
NPC lymph node metastasis by activating the vascular 
endothelial growth factor-C (VEGF-C)/VEGF receptor 
3 axis [136]. In addition, BART miRNAs play important 
roles in the development of NPC, which may be related 
to their interference with apoptosis and evasion of T-cell-
related immunity [137, 138]. Cervical lymph node metas-
tasis is the most common clinical manifestation of NPC 
and may be accompanied by bloody saliva or nasal secre-
tions, nasal congestion, ear discomfort, and headache 
[139]. To date, the treatment of NPC has been predomi-
nately radiotherapy and chemotherapy.

Gastric cancer
In 2014, The Cancer Genome Atlas (TCGA) proposed 
a new molecular classification of gastric cancer. Gastric 

cancer was first classified into four types at the molecu-
lar level: The EBV-infected type, genomically stable type, 
chromosomal instability type, and microsatellite unstable 
type [140]. Nearly 10% of gastric cancer cases world-
wide are associated with EBV infection. EBV expression 
is usually restricted to the Latency Types I and II pat-
terns, with EBNA1, LMP1, and LMP2A mainly expressed 
[141]. EBV-associated gastric cancer (EBVaGC) presents 
with molecular features including recurrent mutations 
in PIK3CA, DNA hypermethylation, and amplification 
of JAK2 and PD-L1/2 [140]. PIK3CA mutation activates 
the PI3K/AKT signaling pathway to promote tumor 
cell proliferation [142]; DNA hypermethylation silences 
many tumor suppressor genes [143]; overexpression of 
PD-L1 facilitates tumor cell immune escape and so on 
[144]. EBVaGC is more common in men and is the type 
associated with significant lymphocytic infiltration [145] 
and better prognosis [146]. At present, the treatment of 
EBVaGC is based on surgical resection supplemented 
with radiotherapy and chemotherapy.

Conclusions and Perspectives
The infection rate of EBV in the population is extremely 
high. The relationship between the immune system 
and EBV is complex and dynamic. The immune system 
plays an important role in controlling viral replication, 
but EBV has evolved a series of mechanisms to evade 
immune detection and establish lifelong infection in a 
host. The pathogenic mechanism underlying EBV infec-
tion is complex and can affect various systems, exhibit-
ing a variety of atypical clinical symptoms and signs and 
leading to various benign or malignant diseases. Effective 
treatments for EBV infection are currently lacking, and 
the most effective approach is the design of an EBV vac-
cine. Several vaccines based on targets involved in EBV 
invasion have shown promising experimental results. To 
date, there have been many studies on EBV glycoproteins 
used as antigens to develop prophylactic EBV vaccines, 
with most focusing on gp350. In 1995, China conducted 
the first clinical trial of a recombinant viral vector encod-
ing gp350/220, and the results showed an increase in 
neutralizing antibody titers against EBV in vaccinated 
teenagers [147]. Glycoproteins gHgL, gp42, and gB have 
been identified as targets for neutralizing antibodies 
[148]. The approach to therapeutic EBV vaccines focuses 
on stimulating T cells to increase the immune control 
and clearance of EBV by the body. The first antigens tar-
geted in therapeutic vaccines were EBNA1 and LMP2 
proteins, which can significantly induce carcinogenesis. 
By inserting EBV antigen DNA sequences into the viral 
vector genome, specific CD8 + and CD4 + T-cell immune 
responses were increased [149]. The second approach 
involves using DCs harvested from a patient and pulsed 
with EBV peptides to induce functional CD8 + T-cell 
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immunity, which significantly reduced the volume of 
EBV-positive NPC tumors [150]. The third approach 
involves the combination of the mentioned two for treat-
ments. However, a mature anti-EBV vaccine is still not on 
the market. With the deepening of our understanding of 
the pathogenic mechanisms underlying EBV infection, 
it is believed that we will ultimately overcome the chal-
lenges caused by EBV infection in the future.
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