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Abstract

Precise segmentation of the nucleus is vital for computer-aided diagnosis (CAD) in cervical

cytology. Automated delineation of the cervical nucleus has notorious challenges due to

clumped cells, color variation, noise, and fuzzy boundaries. Due to its standout performance

in medical image analysis, deep learning has gained attention from other techniques. We

have proposed a deep learning model, namely C-UNet (Cervical-UNet), to segment cervical

nuclei from overlapped, fuzzy, and blurred cervical cell smear images. Cross-scale features

integration based on a bi-directional feature pyramid network (BiFPN) and wide context unit

are used in the encoder of classic UNet architecture to learn spatial and local features. The

decoder of the improved network has two inter-connected decoders that mutually optimize

and integrate these features to produce segmentation masks. Each component of the pro-

posed C-UNet is extensively evaluated to judge its effectiveness on a complex cervical cell

dataset. Different data augmentation techniques were employed to enhance the proposed

model’s training. Experimental results have shown that the proposed model outperformed

extant models, i.e., CGAN (Conditional Generative Adversarial Network), DeepLabv3,

Mask-RCNN (Region-Based Convolutional Neural Network), and FCN (Fully Connected

Network), on the employed dataset used in this study and ISBI-2014 (International Sympo-

sium on Biomedical Imaging 2014), ISBI-2015 datasets. The C-UNet achieved an object-

level accuracy of 93%, pixel-level accuracy of 92.56%, object-level recall of 95.32%, pixel-

level recall of 92.27%, Dice coefficient of 93.12%, and F1-score of 94.96% on complex cer-

vical images dataset.

Introduction

Cervical cancer often occurs in the cervix, a narrow cylindrical path of the lower uterus known

as the neck of the womb. Cervical cancer is the world’s fourth most prevalent cancer, account-

ing for roughly 25000 fatalities among women per year [1]. This rate has been on the decline

since 1950, attributed to the availability of different screening tests. Over the past four decades,

histopathology imaging has been the gold standard in all forms of cancer investigations. Digital

histopathology images are acquired from Image capturing, tissue slicing, staining, and digitiza-

tion, where the images generally have big resolutions. Many nuclei are often found in a tissue

slide with varying shapes, appearances, textures, and morphological features. The primary
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analytical procedures in digital histopathology are the segmentation of nuclei from cells,

glands, and tissues. The segmented nuclei provide indicators that are critical for cancer diag-

nosis and prognostic. A simplified Papanicolaou (Pap) smear test, thinPrep Cytology test

(TCT), and liquid-based cytology (LBC) are the most commonly used screening methods to

detect cervical cancer [2–4]. The cytological scans of the cervical smear are investigated at 400

x magnification through the microscope. With this magnification, pathologists have to exam-

ine multiple field-of-views per scan, which takes a lot of time, extremely susceptible to errors

and observer bias. This process becomes more difficult due to cell clumps, yeast contamina-

tion, or bacteria masking by blood, mucus, and inflammation.

Several automated diagnostic methods have been designed to help cytologists to examine

viginal smears of Pap strains, which are discussed in related work. A number of factors con-

tinue to pose a challenge to this task, including the presence of overlapping nuclei, superficial

cells, poor contrast, spurious edges, poor staining, and cytoplasm. Therefore, more robust

automatic screening systems are required to assist cytologists in determining cytopathy in cer-

vical cells. A vital component in the Cervical Cytology pipeline is the precise segmentation and

detection of a nucleus from Cervical cells [5]. An increasing number of studies primarily

intrigued the delineation of cells cluster and nuclei. Watershed [6], morphological operation,

thresholding [7], and active contour models [8] are a few of the many methods employed for

the segmentation of nuclei or cellular mass. These techniques failed to delineate overlapping

cell structures well.

Recent studies [9] have shown some improvements in the isolation of clumping nuclei and

cytoplasm from cervical cells. The datasets used in most of these studies for the delineation of

nuclei include the liquid Based Cytology (LBC) Pap smear dataset and Herlev dataset for sin-

gle-cell delineation and Shenzhen University (SZU), ISBI2014, and ISBI2015 datasets for

multi-cell examination. These datasets images show nuclei with isolated, apparent color varia-

tion and separated boundaries among cell constitutes, making analysis easy. According to

[10], despite good performance on those datasets, several approaches mentioned above failed

to excel in their dataset based on real-world clinical data having folded nuclei, cytoplasm, and

color differences. Similarly, the majority of prior studies [11–14] focused on the segmentation

of huddled cytoplasm, and a few [15–17] concentrated on the delineation of nuclei from those

datasets. Recently, deep neural networks [18–20] have surged in popularity for their standout

performance in the field of medical image analysis. Deep learning models can handle complex

tasks if the size of the datasets is big enough [21]. Presently, datasets in hand possess lesser

diversity of nuclei shape, appearance, and color than real-world clinical data. We have selected

a challenging dataset consisting of 104 cervical cell images of size 1024 x 768 based on LBC

screening. Fig 1 shows a few examples of cervical images having variations in shape, texture,

Fig 1. Shows cervical cell images from the employed dataset.

https://doi.org/10.1371/journal.pone.0283568.g001
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color, and appearance, making the dataset more challenging. Furthermore, the continuous

pooling and convolution operations across the network result in the loss of vital information

required for the precise segmentation of nuclei.

To handle these issues, effective feature extraction, and adaptation to the heterogeneity of

cervical cells, an improved UNet model with BiFPN is suggested, which is suitable for seg-

menting various forms of cervical cell nuclei. Overall, the contributions of this study are listed

in the following:

1. We have designed an optimized network based on UNet architecture, namely C-UNet, for

precisely segmenting nuclei from cervical images.

2. C-UNet strategically integrates the Cross-scale features (CSFI) module in C-UNet to inte-

grate features extracted by the network using a cross-scale weighted integration scheme

into the final feature map. This fusion adaptively combines the elements of different spatial

resolutions and domains based on their significance.

3. C-UNet uses two interconnected decoders for boundary detection and semantic segmenta-

tion of cervical nuclei.

4. To evaluate the usefulness of each part of C-UNet multiple experiments were performed.

The remainder of this manuscript is structured as follows: related work is illustrated in sec-

tion 2, section 3 describes the architecture of the suggested model, followed by results and dis-

cussion in section 4, and the conclusion is provided in section 5.

Related work

A slew of successful cytological nuclei segmentation methods has been developed during the

previous two decades. Prior techniques for segmenting cytological nuclei can be categorized as

handcrafted and deep learning techniques.

Handcrafted methods

Traditional methods for cytological nuclei segmentation are based on edge enhancement [22],

thresholding [17, 23–25], clustering [8, 9, 26, 27], morphological features and marker con-

trolled watershed [28, 29]. [22] provides a cervical nucleus and cytoplasm detector based on

edge enhancement. Depth equalization was employed to enhance edges but failed to segment

blurry contours. [17] developed a model for the locating and segmentation of nuclei from

cytological images. A randomized Hough Transform with prior knowledge is used to locate

nuclei, and a level-set segmentation method is used to separate nuclei from cell regions. Otsu

thresholding, median filter, and canny edge detector were employed during preprocessing

stage. Such techniques are not applicable to the splitting of crowded cell structures.

[6] proposed thresholding for separating cell regions and multiscale hierarchal method

based on circularity and homogeneity segmented regions. A binary classifier was used to dis-

tinguish cytoplasm from the nucleus. The ranking of the cells was determined by linearizing

the leaves of a binary tree created using hierarchical clustering. Cases with irregular sizes and

shapes were poorly handled. [25] designed an automated method to segment nuclei from cer-

vical cells. They employed V-channel to enhance the contrast between cytoplasm and nuclei.

Two features, roundness and shape factor, were used to validate the segmentation of clumped

nuclei. Concave-point algorithms were applied to segment multi-clumped nuclei. To remove

noise and non-uniform illumination, median filter and adaptive thresholding were used. Zhao

et al. [27] addressed the problem of cervical cell segmentation via Markov Random Field

(MRF) based on superpixel. A gap search method was applied to minimize time complexity.
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Sahe et al. [9] utilized a superpixel merging approach for accurate segmentation of crowded

cervical nuclei. The superpixel is obtained through the statistical region merging (SRM) tech-

nique through the pair-wise regional control threshold of SLIC (Simple Linear Iterative Clus-

tering) superpixel. This technique could not resolve the under-segmentation issue and failed

to tackle the heterogeneity of nucleus size and shape.

Morphological analysis and thresholding-based approaches have been used for the crisp

segmentation of cervical nuclei. [28] introduced an iterative thresholding technique to seg-

ment nuclei on the basis of the size of the nucleus, solidity, and intensity. [23] employed local

thresholding to segregate cervical nuclei on the basis of properties within a window of a radius

of 15 pixels. In [24], traditional Otsu thresholding was integrated with contrast-limited adap-

tive histogram and anisotropic filtering to detect nuclei. Thresholding-based methods do not

work well for intractable cases. In [7, 30], morphological features were used to locate the cen-

troid of the nucleus, which is subsequently employed to determine the boundaries of the

nucleus. [30] used centroid to determine markers for watershed transform, and [7] utilized

them to find radial profiles. These techniques were unable to segment varying shape cellular

structures. In [31], an adaptive local graph-cut approach for cervical cell delineation was

applied with a blend of area information, texture, intensity, and boundary. Graph-based meth-

od’s performance degrades in the case of touching objects.

Watershed is a prevailing image segmentation technique that has been around for a long

time. Several studies [12, 32] have determined that marker-controlled watershed segmentation

is effective. [12] developed a multi-pass watershed algorithm with barrier-based watershed

transform for cervix cell segmentation. The first finds the nucleus on a gradient-based edge

map; the second pass segregates touching, isolated, and clumped cells, and the third pass esti-

mates the cell shape in the clumped clusters. These methods are susceptible to noise and need

pre and post-processing, which is quite cumbersome.

These approaches have the apparent flaw of not being able to adequately split cervical nuclei

since they frequently rely on an incomplete set of low-level hand-crafted features. Additionally,

these features lack structural information and yield below-par segmentation results. Thus, vari-

ous pre and post-processing steps are needed for different approaches for various types of

nuclei to enhance the segmentation quality. However, the lengthy pipeline and complicated,

intricate process flow often encounter instability. The entire segmentation procedure might

fail if errors occur in the intermediatory phases.

Deep activated features based methods

Deep learning-based models are one of the most recent advances in numerous applications

and are widely employed in cytological image analysis. [33] integrated a superpixel with a Con-

volutional neural network (CNN) for precise segmentation of nuclei and cytoplasm from

cytological images. A trimmed mean filter was used to remove noise from input images. CNN

was used to learn 15 features from superpixels. Coarse nucleus segmentation was performed to

decrease the clustering of inflammatory cells. The nuclei segmentation accuracy was noted as

94.50%. Coarse segmentation becomes inconsistent for cases when the receptive field is larger

than the nuclei. In [34], a fully convolutional network (FCN) was employed to separate the

nucleus region, and a graph-based method was used to obtain finer segmentation. They

recorded an accuracy of 94.50% on a dataset comprising 1400 images. FCN employs single-

scale features that produce inconsistent results for complex cases. Song et al. [35] investigated

a multiscale convolutional network (MSCN) with graph partitioning via superpixel for cervical

nuclei and cytoplasm segmentation. The results demonstrated that MSCN, graph partitioning,

and superpixel effectively delineate cervical cells. Superpixel segmentation has shown an
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increase of 2.06% for the nucleus and 5.06% for the cytoplasm compared to raw pixels segmen-

tation. However, the employed method cannot detect isolated and touching nuclei in the same

process. Phoulady et al. [36] used an iterative thresholding method with CNN for the cervical

nucleus delineation model. They trained the model using nuclei patches of size 75 x 75 pixels.

This method achieved a recall, precision, and F-score of 86%, 89%, and 87% on a complex

CERVIX93 dataset. This method is not able to isolate touching cellular nuclei boundaries. Liu

et al. [37] designed a model based on Mask-Regional Convolutional Neural Network (Mask-

RCNN) and Locally Fully Connected Conditional Random Field (LFCCRF) models. The

Mask-RCNN incorporates multiscale feature maps to perform accurate nuclei segmentation,

and LFCCRF uses abundant spatial information to refine the nucleus boundary further. Exper-

imental results on the Herlev Pap smear dataset show superior performance compare to most

of the prior studies. Conditional Random Field based methods employ second order statistics

whilst higher order statistic is more beneficial for segmentation of images. In [38], two func-

tional extensions were introduced in Faster RCNN, i.e., global context aware function to

improve spatial correlation and deformable convolution function in the last three layers of

FPN (feature pyramid network) to enhance scalability. Experiments have shown a reasonable

improvement of 6–9% on mAP (mean average precision) on the cervical images dataset.

RCNN is not able to delineate nuclei having varying aspect ratio and spatial locations.

Presently, there are few models developed expressly for the detection of cervical cancer

[39–41]. Tan et al. [39] deployed a faster RCNN for the identification of cancer cells in TCT

images and obtained an AUC of 0.67. Zhang et al. [42] investigated R-FCN architecture for

cancer cell detection in LBC images. This architecture focuses on detecting the abnormal

region instead of abnormal nuclei. The performance was evaluated on a novel notion termed

hit degree, which defines how closely each ground truth and detected region are from each

other. Li et al. [43] introduced a faster RCNN to identify and classify abnormal cells in cervical

smear images scanned at 20 x. In [44], the authors presented a generative adversarial network

(GAN) to successfully segment both overlapping and single-cell images. The proposed GAN

used structural information of the whole Image and the probability distribution of morphology

of the cell for segmentation. Compared to other state-of-the-art models, results show good per-

formance on poor contrast and highly overlapping cells. The model produced significant DC

(dice coefficient) and FNRo (false negative rate) values of 94.35% and 7.9% for single cells,

89.9%, and 6.4% for clumped cells. The GAN-based models are very difficult to train and

unsuitable for small datasets. Chen et al. [45] used two staged Mask-RCNN to segment cervical

cytoplasm and nuclei. ISBI-2014 and ISBI-2015 were used to evaluate the model and witness

increased performance for segmenting cervical cellular masses. Yang et al. [46] applied a deep

learning model based on a modified UNet. They used ResNet-34 as an encoder block leveraged

with Gating Context-Aware Pooling layers to extract and refine learned features. The modified

decoder uses a global attention layer to build long-range dependencies. The proposed model

was trained and tested on a private dataset, namely the ClusteredCell dataset. Results show sig-

nificant improvement in the performance of their model compared to state-of-the-art (SOTA)

models. [47] employed UNet embedded local and global attention layers. These multi-atten-

tions layers enhance the network capabilities to extract and utilize features for segmentation of

cervical cytoplasm and nucleus. The Herlev dataset was used to evaluate model performance

and recorded better segmentation scores than SOTA models. [48] designed a deep learning-

based model for the segmentation of nuclei from multiple datasets. Tissue-specific features

were extracted from histopathological images using BiFPN. Post-processing steps are required

to further improve output. Excellent segmentation results were recorded as compared to other

benchmarking networks. [49] developed a 3 phase cervical cell segmentation method. In the

first phase, a CNN is used for coarse segmentation of cellular masses; the second phase
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identifies the location of cytoplasm and nuclei with a random walker graph; the third phase

refines the output of previous phases through the Hungarian algorithm. A DSC score of 97.2%

was noted for the ISBI-2014 dataset. [50] proposed a framework based on an adversarial para-

digm for spotting the cervical cell. They used RCNN to construct the encoder & decoder and

fine-tuned (FSAE) autoencoder to optimize parameters. Analysis of results shows an improve-

ment in the performance of the proposed framework. [51] proposed Triple-UNet and

exploited Haemotoxylin staining to predict cellular nuclei. They subtracted boundaries from

the segmentation map to split clumped nuclei. The drawback of this technique is that such

subtraction of instance boundary may reduce segmentation accuracy. [52] designed a model,

StarDist, to estimate the centroid probability map and distance from each foreground pixel to

its corresponding instance boundary. Each polygon map corresponds to one nuclear instance.

This technique only predicts polygons based on the centroid pixel’s characteristics, which

lacks contextual information for big-sized nucleus occurrences, which lowers segmentation

accuracy.

Material and method

C-UNet’s architecture

Overview. The complete structure of the C-UNet is presented in Fig 2, comprising three

modules, i.e., encoder, Cross-scale features integration (CSFI), and interlinked decoder. The

encoder learns the nuclei features, which are passed on to the CSFI module to generate rich

and precise feature representation. This benefits the inter-connected decoders to create valid

and reliable activations for each nuclei sample.

UNet architecture. We have suggested a cervical cell segmentation architecture based on

U-Net, composed of a multiscale feature extractor encoder and inter-connected decoders. The

Fig 2. Presents a structure of the proposed C-UNet model.

https://doi.org/10.1371/journal.pone.0283568.g002
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network takes 512 x 512 x 3 image as input and output a 512 x 512 mask. The encoder has the

classic architecture of a convolution network. It comprises two successive convolutions of 3 x

3 with similar padding followed by Rectified Linear Unit (ReLU) activation function and maxi-

mum pooling of 2 x 2 with a stride of size 2 for downsampling. With each downsampling, the

number of feature channels is doubled. The levels of the encoder are seven. The features at the

sixth level fed into the CSFI unit and WCU simultaneously, and output fed into the interlinked

decoders. For regularization of the model, a dropout layer is used with a factor of 0.5. Each

level in the encoder is composed of an upsampling of the feature preceded by the convolution

layer of size 2 x 2, which reduces the number of features at each level to half. The extracted fea-

tures due to upsampling are integrated with the analogous features from the feature network.

The integration is followed by two convolutions of 3 x 3 with the same padding, each preceded

by the ReLU function. In the last layer, the acquired 512 x 512 x 64 features go through two

convolutions of 3 x 3. It is preceded by the ReLU function, the last convolution operation of 1

x 1, and the sigmoid function. In the final layer of the backbone network, the obtained 512 x

512 x 64 feature map undergoes two 3 x 3 convolutions.

Cross-scale features integration (CSFI) module. We have used the UNet model to

extract features from input images in different levels with the help of Convolution layers. To

minimize the noise response, computation overhead and to concentrate on specific features,

we have employed a gating mechanism. The gating unit surpasses the response of insignificant

regions and focuses on nuclei features. It is composed of 1 x 1 convolution, batch normaliza-

tion, sigmoid activation, and dropout function. The CSFI comprises multiple bottom-up and

top-down pathways based on insight from BiFPN [53], as shown in Fig 3. These pathways

merge low and high-level features in an efficient way. Output from multiple levels of the UNet

was employed as input to the BiFPN model for feature integration. The BiFPN model outputs

the features on seven different levels ranging from p1 to p7.

Formally, given a set of multi-level features (pl ¼ pi
1
; pi

2
; . . . pi

7
) at ith level and

pin
l ¼ pin

1
; pin

2
; . . . pin

7
) represents an intermediate feature set on the top-down path. The

Fig 3. Shows the cross-scale feature integration module, inter-connected decoders, and its essential components.

https://doi.org/10.1371/journal.pone.0283568.g003
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objective is to aggregate multiscale features to get po
l ¼

R
ðpin

l Þ. We have employed a weighted

integration mechanism to fuse features of various resolutions. The integration mechanism is

mathematically shown in Eq 1.

I ¼
X

i

vi
eþ

X

j
vj

ð1Þ

vi represents extra learnable weight, ReLU is employed to ensure that the value of additional

weight should be greater than or equal to zero and the value of e set to 0.0001. This enables to

rectify the relevance of each channel of the input representation.

As illustrated in Fig 3. The intermediate fused features maps are calculated using Eqs 2 and

3 as follows

po
l ¼ Convolution

vi: pin
l þ viþ1: Rb Po

lþ1

� �

vi þ viþ1 þ e

� �

; ð2Þ

Where po
l represents intermediate feature maps of ith level on the top-down path, vi shows the

weighting vector, pin
l is the input features vector. Intuitively, vi shows the significance of the

features map pin
l . If pin

l is crucial to the output, then vi will be assigned a bigger value during

training.

pCSFI1
l ¼ Convolution

vi: pin
l þ v0i ∗po

l þ v0i :Rb PCSFIi
l� 1

� �

v0i þ v0iþ1
þ e

" #

; ð3Þ

PCSFI1
l� 1

indicates the output of the CSFI module, Rb symbolizes bilinear interpolation to resize

feature maps before adding at pyramid level l and i indicates a series of CSFI modules, i.e., 3 in

our case.

Decoder. The Features extracted by the CSFI module are passed into the decoder. The

decoder module jointly integrates multiple-scale features from CSFIs and generates precise

segmentation and boundary masks. After resizing by bilinear interpolation Rb, the optimized

feature maps from ith CSFI module passed through the feature integration unit. This iterative

procedure is performed until the final masks at the (L-1) pyramid level are generated. For

instance, segmentation and boundary maps at 3rd level is computed as shown in Eqs 4 and 5

below

Pseg
3 ¼ Convolution v1 x 1 x c3

CSFI3 : pCSFI3
3
þ v1 x 1 x c4

seg :Rb Pseg
4ð Þ þ v1 x 1 x c4

CSFI3 Rb

�
pCSFI3

4

��h i
ð4Þ

Where Pseg
3 symbolizes feature maps at 3rd level. v1 x 1 x c3

CSFI3 represents features maps obtained at

the 3rd pyramid level, pCSFI3
3

shows reweighted features maps of 3rd CSFI module, pCSFI3
3

are the

features obtained after filtration through the gating block.

Pbou
3
¼ Convolution v1 x 1 x cl

seg : pCSFIl
l þ v1 x 1 x clþ1

bou :Rb Pbou
lþ1

� �
þ v1 x 1 x clþ1

CSFIl Rb

�
pCSFIl
lþ1

��h i
ð5Þ

Pbou
3

indicates boundary detection maps at 3rd level. A refinement unit is incorporated to refine

feature maps further. It comprises two convolutional layers of kernel size 3 x 3 and 1 x 1,

respectively.

Wide Context Unit (WCU). WCU, like the CSFI module, learns the contextual informa-

tion and performs feature accumulation at the transition level, enabling improved reconstruc-

tion of segmented nuclei. The WCU consists of two parallel connections of two convolutional

layers with different combinations, and the output from them is added up to an output vector,
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as shown in Fig 4. The convolution layers in the first connection have filter sizes of N x 1 and 1

x N, respectively. Similarly, convolution layers in the second connection have filters of dimen-

sions 1 x N and N x 1.

Loss functions

The loss function or cost function is used to evaluate the prediction of the network. The lower

the cost function value, the higher the model performance. We have employed multiple loss

functions to evaluate the performance of the proposed model.

Baseline module loss. We have used a weighted summation of three-loss functions for

efficient convergence and speedy training of the suggested model, i.e., dice loss, binary

cross-entropy, and focal loss. The respective mathematical dynamics are expressed in Eq 6

below:

lossseg ¼ wseg lossDice þ LossBCEð Þ þ lossft ð6Þ

Where lossDice represents dice loss, LossBCE indicates binary cross-entropy loss and Lossft
shows a focal loss. wseg symbolizes the hyper-parameter that regulates dice and binary cross-

entropy losses.

Numerically respective losses are expressed in Eqs 7, 8 and 9 below

lossDice ¼ 1 �
2 x
XP

i¼1
ricLic þ E

XP

i¼1
Pic þ

XP

i¼1
Lic þ E

ð7Þ

lossBCE ¼ �
1

n

XP

i¼1

Xc

c¼1
ric log Licð Þ ð8Þ

lossFT ¼
X

c

 

1 �

XP

i¼1
ricLic þ E

XP

i¼1
PicLic þ a

XP

i¼1
ricLic þ b

XP

i¼1
ricLic

!1
/

ð9Þ

Where P symbolizes the total number of pixels, c indicates classes, and E represents the

smoothness constant. ρic and Lic shows probability of ith pixel of class and ground-truth label.

α, β, and/ denotes hyper-parameters in the focal loss function.

Boundary detection loss. We have employed a combination of combo loss and focal loss,

which is mathematically expressed in Eq 10 as

Lossbou ¼ lossft þ wbou losscomð Þ ð10Þ

Where Lossbou represent boundary loss and Losscom shows combo loss mathematically

Fig 4. Structure of WCU.

https://doi.org/10.1371/journal.pone.0283568.g004
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expressed in Eq 11.

losscom ¼ a �
1

P

XP

i¼1
b Lic � ln ricð Þð Þ þ 1 � bð Þ 1 � Licð Þln 1 � ricð Þ½ �

� �

� 1 � að Þ lossDiceð Þð11Þ

Where P number of pixels, ρic and Lic shows probability of ith pixel of class and ground-truth

label. α, β, and/ represents focal loss hyper-parameters.

Experimental setup

Datasets

Many cases in the clinical environment have cervical images with overlapped, self-folded,

blurred contours, different sizes and shapes of nuclei, and color similarity with the cytoplasm.

At the same time, few cervical scans have impurities, i.e., stains, illumination, and focus vari-

abilities. To meet the practical requirements, the system should handle such cases properly. In

deep learning, the size of labeled data is critical for satisfactory performance. It needs time and

expertise in the medical field to properly build and annotate cervical cytology images. We have

used the cervical cytology image dataset published by [54] for this research, which contains

complex cases from the real-world clinical environment. Fig 1, 6 and 7 show some samples

from the dataset. It is composed of 104 LCT cervical images of size 1024 x 768. Each instance

has a ground truth marked very carefully by the experienced pathologist. The images are gen-

erated via Olympus microscope B x 51 with an adequate pixel size of 0.32μm x 0.32μm and

200x magnification.

To justify the performance of the C-UNet, two standard datasets (ISBI2014 and ISBI2015)

were also used in this study. The ISBI2014 dataset consists of 45 training images and 900 test

images generated synthetically with different cell counts and overlap ratios. The ISBI2015 data-

set contains 17 samples, and each consists of 20 other (Extended Depth of Field Images) EDF

from multiple focus planes in a field of view. Each Image comprises 40 cervical cells with vari-

ous cell numbers, overlaps ratios, texture, and contrast. We have used eight images for training

and 9 for testing purposes. Table 1 shows the number of images before and after data augmen-

tation, and the impact of data augmentation on the model performance is reflected in Table 6.

Preprocessing

We applied data augmentation, boundary enclosing, and stain normalization to obtain better

performance.

Boundary enclosing. We have performed boundary enclosing of the nuclei at the edges of

the image and patches of the cervical cells, as presented in Fig 5. The open boundaries at the

edges bring inconsistency during training and may escalate further with data augmentation,

i.e., scaling, rotation, resizing, cropping, and transformation. Boundary enclosing assists the

model in identifying the nonexistent and fuzzy boundaries around the edge of cervical cell

images.

Table 1. Shows the total number of images used in this study.

Datasets No. of Images No. of Images after Augmentation

LCT dataset used in this study 104 640

ISBI-2014 45 445

ISBI-2015 34 350

https://doi.org/10.1371/journal.pone.0283568.t001
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Data augmentation. To minimize deep learning model generalization errors and enhance

the model’s performance, we have performed data augmentation to produce new instance

points in the cervical image dataset. The total number of images after data augmentation

becomes 640. This prevents overfitting and regulates model training for a long period. We

have employed two types of data augmentation techniques for the cervical cell dataset. Geo-

metrical transformation (resizing, vertical and horizontal flipping, rescaling and resizing,

image translation, and elastic transformation) is depicted in Figs 6 and 7 below. Noise and

intensities transformation includes blur, Gaussian, and additive Gaussian noise, along with

Hue, Saturation, and Contrast adjustments. The impact of augmentation on the C-UNet per-

formance is shown in Table 6.

Stain normalization. The Hematoxylin and eosin (H & E) staining are extensively used

in pathology to discriminate nuclei from cytoplasmic and other cellular structures. Hema-

toxylin is used to stain the nuclei of the cells, whereas eosin is used to stain the cytoplasm

Fig 5. Shows the boundary enclosing of the cervical nuclei.

https://doi.org/10.1371/journal.pone.0283568.g005

Fig 6. Shows cervical images after the addition of different types of noise.

https://doi.org/10.1371/journal.pone.0283568.g006

Fig 7. Shows different types of data augmentation for cervical images.

https://doi.org/10.1371/journal.pone.0283568.g007
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and extracellular matrix. This staining has color variation due to different response func-

tions of scanner staining protocols and manufacturer design of stain vendors. These differ-

ences have undesirable effects on image interpretation of deep learning-based pathology

because these methods mainly depend upon the texture and color of (H & E) images. The

performance of deep learning models can be significantly improved by normalizing (H & E)

images [55]. Nevertheless, normalization techniques designed for traditional computer

vision applications provide inadequate benefits in computational pathology. Numerous

techniques have been developed for standardizing pathology images [56–58]. [56] intro-

duced an unsupervised learning method for stain density maps estimation by partitioning

pathology images into sparse density maps and then integrating them with a stain-colored

basis of the target image, as shown in Fig 8(a). This technique only changes the color and

keeps the original Image’s structure. Our preliminary experiments suggested that sparse

stain standardization performed better than standard normalization methods [57, 58] for

cervical images, as shown in Fig 8.

Training detail

Adopting the standards evaluation methods, we have split our cervical images dataset into

training (80% of the whole dataset), evaluation (10% of the entire dataset), and testing

(10% of the original dataset) sets. During the course of model training, stochastic gradient

descent (SGD) was employed as an optimizer. The learning rate was set to 0.001 momen-

tum of 0.9, and weight decay of 5e-4 was used to train the model. We have used the syn-

chronous batch normalization (BN) method with a decay rate of 0.99. BN helps the model

to converge early and minimize the chances of overfitting. ReLU activation function for

the entire network and sigmoid activation function for the last layer with softmax. The

batch size was set to 10, and constant smoothness rate was set to 1e-3, and an early stopping

scheme was used to tackle overfitting. The description of the loss functions and their

impact used are presented in Table 5 below. For training purposes, the original size of the

images in the dataset was cropped to 256 x256 x 3 for augmentation. For testing, the image

size was set to 512 x 512 x 3. The suggested model is trained on an Nvidia Ge-Force GTX

1080 GPU (graphical processing unit) with 12 GB of RAM. We have trained the C-UNet on

a large cell nuclei dataset [59] and then retrained on our cervical cells dataset.

Evaluation measures

To justify the performance of the proposed model on the cervical images dataset, we have

employed accuracy, recall, and the Dice coefficient. For all these performance measures, the

highest numbers represent the best results. The description of each of the criteria is shown

below:

Fig 8. Shows the comparison of various image normalization approaches. Fig 8(a) represents the normalization

method employed by [56], 8(b), and 8(c) shows the results of techniques designed by [57, 58].

https://doi.org/10.1371/journal.pone.0283568.g008
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Accuracy

Accuracy is the ratio of correctly identified cervical nucleus pixels to the total number of pixels

in a cervical cytology image. Mathematically it is described as shown in Eq 12.

Accuracy ¼
TP þ TN

TP þ FP þ FN þ TN
ð12Þ

Where TP symbolizes true positive, TN shows true negative rates, FP indicates false positive,

and FN represents false negative.

Recall

The recall is measured as the ratio between the numbers of positive cervical nuclei pixels cor-

rectly identified as positive to the total number of pixels in the cervical cell image. Mathemati-

cally expressed in Eq 13 as

Recall ¼
TP

TP þ FN
ð13Þ

Dice coefficient

The dice Coefficient is a statistical measure employed to determine the similarity of two

instances. Mathematically it is expressed as in Eq 14.

Dco ¼
2 x area of overlap

Total number of pixel in both images
ð14Þ

F1-score

The F1 is calculated as the ratio between precision and recall. The greater the F1 values, the

better overlap between ground-truth and predicted cervical nuclei segmentation masks. Math-

ematically described in Eq 15.

F1 � score ¼
Recall x precison
Recallþ precison

ð15Þ

Quantitative study and results

C-UNet consists of different image processing and deep learning approaches; therefore, we

have extensively analyzed each module of the suggested deep learning network to comprehend

how each part relates to performance improvement. We have performed five experiments

under the same evaluation and training settings, and the results are given as the average of all

experiments.

C-UNet module

We have performed several experiments to explore the performance of different components

in the C-UNet model. The impact of each element of the proposed model is shown in Table 2

and Fig 9. We have started with the standard UNet model, and the results are reflected in
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Table 2, row 1. In the second experiment, the CSFI module was incorporated into baseline

UNet and noticed an improvement in the segmentation results. In the third experiment, we

introduced a features reweighting unit and noticed a significant improvement in the segmen-

tation performance of the proposed model. This is in line with our recommendation that inte-

grating features from various domains and spatial resolutions retain local and spatial

information across the pyramid. In the fourth experiment, we have incorporated WCU, which

integrates features at the transitional level and helps model the precise reconstruction of seg-

mented nuclei, as shown in Table 2 and Fig 10. Fig 8 shows original cervical cell images,

ground truth, and prediction masks generated by benchmark networks and the proposed

C-UNet.

Comparison with state of the art

We have compared the performance of the proposed C-UNet with state-of-the-art models

employed for such tasks. To judge the accuracy of the models, a fivefold cross-validation scheme

is adopted. Fully Connected Network (FCN) [60], CGAN [61], UNet [62], Mask RCNN [63],

and deeplabv3 [64] were used. FCN employed VGG [65] as a basic network to extract features

Fig 9. Models accuracy during training against epochs.

https://doi.org/10.1371/journal.pone.0283568.g009

Table 2. Performance comparison with benchmark architectures for cervical nuclei segmentation with C-UNet.

Method Acco Recallo Accp Recallp Dice Coefficient F1-Score

Standard UNet 73.21% 84.11% 80.33% 74.41% 85.21% 78.62%

C-UNet+CSFI 92.31% 94.32% 91.02% 89.92% 90.59% 93.98%

C-UNet+ CSFI+WCU 92.67% 94.96% 91.77% 91.13% 92.42% 94.71%

C-UNet+ CSFI+WCU+ ID 93.00% 95.32% 92.56% 92.27% 93.12% 94.96%

DeepLabv3 88.02% 86.11% 77.09% 84.21% 82.23% 88.17%

FCN 88.23% 91.33% 88.27% 83.03% 90.49% 84.52%

CGAN 91.77% 92.34% 90.44% 90.11% 91.23% 92.76%

Mask R-CNN 72.66% 82.81% 80.21% 75.42% 85.24% 78.58%

Acco = object level accuracy, * Recallo = Object level recall, Accp = *Pixel level Accuracy, *Recallp = Pixel level recall

https://doi.org/10.1371/journal.pone.0283568.t002
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that perform slightly worse than other networks. By carefully examining Fig 11, we can observe

that FCN suffers boundary leakage problems due to ambiguous boundary edges. UNet with U-

shaped architecture to learn low and deep features performed slightly better than FCN but

yielded over-segmentation when weak and strong edges appeared at the joining zones of

clumped cervical cells. DeepLabv3 employed ResNet [66] to learn the features. DeepLabv3 is

more appropriate for segmenting images with larger objects, while cervical nuclei are too small,

and this network did not perform well for this task. CGAN represented a context-aware regres-

sive network and employed gradient penalty for cervical nuclei identification and performed

better than other networks but failed to split cell contours from the boundary.

Multiple cases include clumped nuclei, self-folding, intercellular overlapping, blurred con-

tours, and diverse shapes of nuclei. As visualized in Fig 9, UNet detected nuclei from the cervi-

cal cells but failed to yield intact segmentation. Deeplabv3 performed better than others but

was unable to identify impurities nuclei. CGAN proved more optimized than others for seg-

menting cervical cell nuclei but failed to identify nuclei and cytoplasm if they have similar col-

ors. The proposed C-UNet outperformed them by segmenting background, nuclei, and

impurities. The cervical smear images have a large proportion of small nuclei, high variations

in resolution, blurry boundaries, and information features are low. The information related to

nuclei is often contained in the inclusion, and this information mostly reduces due to continu-

ous pooling and convolution operation. The C-UNet model uses 3 Bi-FPN layers that encom-

pass direction connection layers in each BiFPN to prevent loss of significant features

information. UNet uses interconnected decoders that merge boundary and semantic features

and produce improved segmentation masks.

Comparison with existing methods on ISBI datasets

We have considered the same evaluation metrics used in the prior studies for ISBI2014 and

ISBI2015 to compare the performance of the proposed C-UNet. DSC, FNRo (False-negative

Fig 10. Shows cervical images and segmentation masks generated by state-of-the-art segmentation networks.

https://doi.org/10.1371/journal.pone.0283568.g010

PLOS ONE Cervical cell’s nucleus segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0283568 October 3, 2023 15 / 22

https://doi.org/10.1371/journal.pone.0283568.g010
https://doi.org/10.1371/journal.pone.0283568


Fig 11. Shows cervical cell segmentation of state-of-the-art models.

https://doi.org/10.1371/journal.pone.0283568.g011

Table 3. Comparison of C-UNet with existing methods on ISBIs datasets using DSC (threshold> 0.7) TPRp, FNRo, and FPRp.

DSC TPRp FNRo FPRp

Method ISBI2014 ISBI2015 Dataset

[44]

ISBI2014 ISBI2015 Dataset

[44]

ISBI2014 ISBI2015 Dataset

[44]

ISBI2014 ISBI2015 Dataset

[44]

[12] 0.89 ± 0.07 0.85 ± 0.07 NA 0.91 ± 0.09 0.95 ±0.07 NA 0.27 ± 0.28 0.11 ± 0.17 NA 0.004± 0.005 0.004± 0.004 NA

[23] 0.87 ± 0.08 - NA 0.90 ± 0.09 - NA 0.14 ± 0.17 - NA 0.005± 0.004 - NA

[28] 0.85 ± 0.08 NA 0.94 ± 0.06 NA 0.16 ± 0.22 NA 0.005 ± 0.005 NA

[67] 0.88 ± N/A - NA 0.92 ± N/A - NA 0.21 ± N/A - NA 0.001± N/A - NA

[14] - 0.89 ± N/A NA - 0.92 ± N/A NA - 0.26 ± N/A NA - 0.002± N/A NA

[68] 0.90 ± 0.08 0.88 ± 0.09 NA 0.88 ± 0.10 0.88 ± 0.12 NA 0.14 ± 0.19 0.43 ± 0.17 NA 0.002± 0.003 0.001± 0.001 NA

[69] 0.93 ± 0.04 0.92 ± 0.05 NA 0.93 ± 0.05 0.93 ± 0.05 NA 0.91 ± 0.05 0.13 ± 0.15 NA 0.001 ± 0.002 0.001 ± 0.003 NA

C-UNet 0.94 ± 0.04 0.93 ± 0.04 0.92±
0.04

0.94 ± 0.05 0.94 ± 0.05 0.96±
0.05

0.92 ± 0.05 0.12 ± 0.14 0.062

±0.03

0.001 ± 0.002 0.001 ± 0.002 0.001±
0.002

Standard

UNet

NA NA 0.87±
0.05

NA NA 0.90±
0.05

NA NA 0.079

±0.03

NA NA 0.003±
0.003

DeepLabv3 NA NA 0.90±
0.04

NA NA 0.94±
0.05

NA NA 0.69

±0.03

NA NA 0.002±
0.002

FCN NA NA 0.89±
0.05

NA NA 0.93±
0.05

NA NA 0.70

±0.03

NA NA 0.002±
0.002

https://doi.org/10.1371/journal.pone.0283568.t003
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rate at object level), FPRp (False positive rate at pixel level), and TPRp (True positive rate at

pixel level) were used to measure the segmentation performance of the models in this section

of the paper.

The nuclei segmentation performance of the existing methods and the proposed U-Net on

the ISBI2014 dataset is listed in Table 3 below. [12] employed a three-pass fast watershed tech-

nique to segment the nucleus and cytoplasm from cervical cell scans. [23] integrated Voronoi

diagrams and superpixels to segment cells into different parts. [28] developed a model for

boundary approximation of clumped cells. They enhanced the boundary of cells by using the

information in the stacks of images. [67] used a joint optimization of multi-level functions to

distinguish cytoplasm and nuclei from clusters of clumped cervical cells. [14] developed a mul-

tiscale CNN model to distinguish cervical cell components. [68] designed a model based on

contour refinement and partitioning of superpixel for cervical cell segmentation. We have

selected these methods for fair comparison due to their best performance on the ISBI2014 and

ISBI2015 datasets.

Impact of loss functions on segmentation

To analyze the impact of different loss functions on the segmentation performance of the

C-UNet, we have experimented with varying combinations of loss, and the results are summa-

rized in Table 4. DSC, FNRo (False-negative rate at object level), FPRp (False positive rate at

pixel level), and TPRp (True positive rate at pixel level) were used to measure the performance

quantitatively. From Table 4, it is observed that the suggested loss combination and assigning

Table 4. Impact of various loss combinations for cervical cell segmentation on the C-UNet.

Segmentation loss Boundary loss DSC FNRo FPRp TPRp

focal Focal 0.76±0.09 0.35±0.17 0.002±0.003 0.75±0.07

Dice + BCE Dice + BCE 0.90±0.07 0.25±0.16 0.001±0.003 0.90±0.06

Dice + BCE Combo 0.89±0.07 0.27±0.17 0.001±0.003 0.88±0.08

Focal Tversky Focal Tversky 0.79±0.08 0.34±0.18 0.002±0.003 0.80±0.07

Focal Tversky + wseg (Dice+ BCE) w wseg = 0.9 FT+wbou Combo w wbou = 0.9 0.92±0.05 0.25±0.15 0.001±0.003 0.90±0.06

Focal Tversky + wseg (Dice+ BCE) w wseg = 0.4 FT+wbou Combo w wbou = 0.4 0.93±0.04 0.24±0.14 0.001±0.003 0.91±0.06

https://doi.org/10.1371/journal.pone.0283568.t004

Table 5. Shows the segmentation results with different patch size.

Resolution Acco Recallo Accp Recallp Dice Coefficient F1-Score

768 x768 89.26% 90.23% 89.22% 90.02% 89.03% 89.62%

512 x 512 93.00% 95.32% 92.56% 92.27% 93.12% 94.96%

256 x256 90.09% 91.42% 89.66% 89.86% 88.12% 90.03%

https://doi.org/10.1371/journal.pone.0283568.t005

Table 6. Shows the impact of data augmentation on the proposed network performance.

Method Augmentation Acco Recallo Accp Recallp Dice Coefficient F1-Score

C-UNet Yes 93.00% 95.32% 92.56% 92.27% 93.12% 94.96%

C-UNet No 87.29% 88.40% 86.61% 85.86% 84.82% 88.17%

https://doi.org/10.1371/journal.pone.0283568.t006
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values of wseg and wbou to 0.4 assists the proposed model in achieving optimum results than

other combinations.

Impact of resolution on segmentation

In deep learning, input representation size and dataset volume are critical for optimum results.

The original size of the cervical images in the employed dataset is 1024×768. We have experi-

mented with different resolution patches, i.e., 256 x256, 512 x 512, and 768 x 768, to find the

optimized size that can preserve spatial and contextual information. All experiments were con-

ducted under identical conditions except for 768 x768 resolution, where batch size was set to 9

to minimize computation cost. We have observed optimum performance in the case of 512 x

512, as shown in Table 5.

Impact of data augmentation

Table 6.

Conclusion

In this paper, we have proposed a deep neural network based on the architecture of classic UNet

to improve the nucleus segmentation from cervical smear images. We have designed a cross-

scale feature integration module to preserve the spatial and local features on the basis of their sig-

nificance. We have incorporated a wide context unit into the baseline UNet to extract the contex-

tual information and feature accumulation at the transition level in order to enhance nucleus

segmentation. A decoder was composed of two inter-connecter decoders to generate segmenta-

tion and boundary masks. The proposed C-UNet was evaluated on the cervical smear images

dataset, ISBI2014, and ISBI2015 datasets. To enhance the training of the proposed model, we

have employed stain normalization, other data augmentation, and transformation techniques.

The evaluation of the model has shown the performance of the proposed model is superior to

those of the extant models. Although, C-UNet has shown an improvement in the segmentation

of cervical nuclei segmentation, pathologist confirmation may be needed in a practical setting.

This network is expensive computationally because of the C-UNet depth and inter-connected

decoders. In the future, we will focus on minimizing computational overhead, investigating con-

trastive learning to enhance model performance, and generalizing for other applications.
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