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Abstract

Multiplex imaging is a powerful tool to analyze the structural and functional states of cells in

their morphological and pathological contexts. However, hypothesis testing with multiplex

imaging data is a challenging task due to the extent and complexity of the information

obtained. Various computational pipelines have been developed and validated to extract

knowledge from specific imaging platforms. A common problem with customized pipelines

is their reduced applicability across different imaging platforms: Every multiplex imaging

technique exhibits platform-specific characteristics in terms of signal-to-noise ratio and

acquisition artifacts that need to be accounted for to yield reliable and reproducible results.

We propose a pixel classifier-based image preprocessing step that aims to minimize plat-

form-dependency for all multiplex image analysis pipelines. Signal detection and noise

reduction as well as artifact removal can be posed as a pixel classification problem in which

all pixels in multiplex images can be assigned to two general classes of either I) signal of

interest or II) artifacts and noise. The resulting feature representation maps contain pixel-

scale representations of the input data, but exhibit significantly increased signal-to-noise

ratios with normalized pixel values as output data. We demonstrate the validity of our pro-

posed image preprocessing approach by comparing the results of two well-accepted and

widely-used image analysis pipelines.

Author summary

Multiplex tissue imaging techniques are powerful tools increasingly used to characterize

the structural and functional states of cells in situ. Each multiplex imaging platform exhib-

its unique characteristics such as signal-to-noise ratio and artifacts that need to be

accounted for before to accurately analyze the data. Here, we present an image preprocess-

ing framework that removes noise, artifacts, and platform-specific characteristics of the
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images and generates normalized, high-quality, and reproducible data for subsequent

stages of analyses. Our platform-independent solution performs multiple tasks of denois-

ing, artifact correction, and normalization using a single pixel classification step, elimi-

nates the need for any further normalization process, and works across all tested

multiplex imaging technologies.

Introduction

Multiplex tissue imaging technologies such as Multiplexed Ion Beam Imaging (MIBI) [1, 2],

Imaging Mass Cytometry (IMC) [3], CO-Detection by indEXing (CODEX) [4, 5], Multiplexed

Immunofluorescence (MxIF) [6, 7], and cyclic Immunofluorescence (cycIF) [8] provide

researchers with a wealth of information on the single cell level that illustrates the complexity

and heterogeneity of tissue samples. Comprehensive surveys providing an overview of these

technologies are readily available [9, 10]. By preserving the spatial context of>40 markers

measured simultaneously on a tissue, these advanced technologies have opened new avenues

for biological discoveries in healthy and diseased microenvironments [11–19]. A substantial

challenge remains, however, in developing accurate, robust, and automated computational

pipelines for the analyses and interpretation of these complex high-dimensional imaging data.

A high-dimensional tissue image consists of a set of antibody-based visualizations of multi-

ple parameters (markers) measured with fluorescence or mass spectrometry readouts. The sig-

nal intensity in each image channel is directly proportional to the expression level of the

corresponding marker bound to its target. Since expression of specific marker combinations is

the key determinant of cellular phenotypes, a primary step in the identification of cellular phe-

notypes is to accurately quantify signal intensities across channels. Accurate quantification of

these signal intensities can be hindered by instrumental noise, acquisition artifacts, or experi-

mental variability that are often incorporated in the imaging data during sample preparation

and data acquisition. Therefore, most imaging platforms require denoising and artifact

removal techniques prior to accurate quantification of signal intensities [2, 20–23]. Remaining

artifacts may have far-reaching consequences in downstream analyses, potentially leading to

inaccurate cellular identification and false conclusions in statistical comparisons or spatial

analyses. Particularly for high-parameter imaging techniques that rely on unsupervised clus-

tering algorithms for cell-type identification, high-quality images are required for robust and

accurate quantitative outputs. The data must also be appropriately normalized to limit tissue

and batch variability. Without a proper normalization, sample-to-sample intensity variations

can cause cells to cluster by individual samples rather than by cell types [24, 25]. However,

choosing an appropriate normalization method is a critical task, as the accuracy of cell-type

identification has been shown to depend more on the choice of normalization approach than

on the clustering algorithm [26]. Machine learning methods that can extract features less sensi-

tive to intensity are therefore adopted [27]. Ideally, high-quality imaging data should satisfy

the following criteria: 1) the data should exhibit high signal-to-noise ratios (SNR) and be as

free as possible from artifacts; and 2) be appropriately normalized to remove non-biological

signal variability within and across acquisition batches and tissues.

Various image processing and filtering methods can be used for denoising and artifact

removal [2, 20–22, 28, 29]. For instance, variants of Gaussian filters are used for noise reduc-

tion [30–32]. Binary masks can be generated to specifically remove artifacts that differ from

real signal by size and pixel distribution. Such techniques have been used for segmentation of

microarray imaging data where binary masks are generated following pixel classification that
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separates the signal (spots in a microarray image) from background (noise and artifact) [33,

34]. It has been shown that such techniques can limit data loss in preprocessing of the mass

cytometry data [34]. Recently, a five-step computational pipeline was proposed to prepare

MIBI data for downstream analysis [2]. Steps in the pipeline include background subtraction,

necrosis removal, batch normalization, denoising, and aggregate removal. In the first step,

non-specific background is removed by subtracting counts from pixels where background

noise is present. To specify those pixels with background noise, a binary mask (which is 1

where background exists and 0 elsewhere) is generated by filtering and thresholding a blank

channel that is specifically included in the data acquisition process for this purpose. Both the

thresholding parameter and the number of counts subtracted are determined manually based

on visual inspection by the user. In the second step, artifacts such as areas of necrosis are

removed by estimating another binary mask for the necrotic region using morphological

opening and closing [2]. The number of counts subtracted and the thresholding parameters

are decided by the user. Batch effects are then removed in the third step using quantile normal-

ization. In the fourth step for denoising, a k-nearest-neighbor approach is used to generate a

binary mask that separates the noisy pixels based on density. The parameter k and the thresh-

olding parameter that separates the high-density pixels (signal) from the low-density pixels

(noise) as well as the subtracting pixel counts are determined by the user. In the last step, the

images are first smoothed using a Gaussian kernel and then binarized using Otsu’s method

[35]. This five-step pipeline was recently wrapped in a graphical user interface called MAUI

(Mass based imaging Analysis User Interface) [28].

While MAUI facilitates MIBI image preprocessing, it relies on accurate estimation of binary

masks with user-defined thresholding parameters that are prone to bias. Thresholding meth-

ods separate two distinct features using a single value as the thresholding parameter. However,

given the variabilities in complex multiplex tissue imaging data, a single threshold is unlikely

to obtain a parameter configuration that perform well across all the images in a dataset. Addi-

tionally, estimating binary masks for each artifact in several sequential steps is labor-intensive

and not scalable. Finally, new artifacts may appear as data are acquired in new tissue types or

with new technologies, requiring additional steps to be added to the aforementioned five-step

pipeline.

Here, we aim to create a simple automated framework that provides a single-step unified

solution that works across imaging platforms. Our approach combines denoising and removal

of various artifacts into a single pixel classification step, outputs a feature representation map

(FR map) that eliminates the need for any further normalization process, does not rely on esti-

mation of any thresholding parameters and therefore is more robust, and provides a unified

solution across multiplex imaging platforms (both mass spectrometry and fluorescence-based

imaging). We validate our proposed approach by comparing our results with two well-

accepted and widely-used baselines: a) inForm software, a commercial software package for

fluorescence-based multiplex imaging analyses and b) MAUI [28], a publicly available compu-

tational pipeline used to analyze MIBI data. All code and data have been made available as a

resource for the research community [35].

Results

A single-step platform-independent framework for preprocessing of

multiplex tissue imaging data

Our proposed framework for cellular phenotyping of multiplex tissue imaging data formulates

denoising and artifact removal as a pixel classification problem in which the pixels in an image

are classified into two classes (Fig 1):
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• class I: pixels with signal of interest (marker signal/positive signal).

• class II: pixels with noise, artifacts, and other platform-specific properties that are not useful

for downstream analyses.

The input of the classifier is a training set (labeled data) comprised of user-provided exam-

ples for both class I (desired signal) and class II (noise and artifacts) pixels. Features can be

extracted by convolving various kernels with the image such as noise reduction filters, edge

detectors, and texture kernels. Classifying algorithms, such as Random Forest [36], can then be

used to classify each pixel given the extracted features. Several well-established and user-

friendly tools have been developed for pixel classification such as Trainable WEKA Segmenta-

tion (TWS) [37], QuPath [38], or ilastik [39] and can be used to interactively label training

data for signal and noise during image preprocessing. The output of the classifier consists of

two FR maps, one for each class. The pixel values in each FR map represent the probability of

that pixel belonging to the corresponding class [37]. Pixels with noise and artifacts have either

zero or very low values in the FR map of class I, meaning FR maps of class I are free from noise

and artifacts. In addition, the values in the FR maps range between 0 to 1. Therefore, the FR

maps are normalized and this eliminates the need for further normalization processes.

Noise and artifact removal from multiplex imaging data

Image noise is generally defined as unwanted random variation that obscures the desired

information in an image. Multiplex images are visualizations of bound antibodies, detected

either by heavy metal ions conjugated to antibodies in mass spectrometry-based imaging or by

fluorescent particles directly or indirectly associated with antibodies in light microscopy-based

imaging. Thus, noise in multiplex imaging can be defined as any signal that differs from the

Fig 1. A general computational pipeline for cellular phenotyping of multiplex tissue imaging data. We replaced image

denoising and preprocessing with our proposed framework as shown in the red box. A pixel classifier is used to classify the

pixels in the raw image into two classes: I- desired signal, or II- noise and artifacts. The output of the classifier are two feature

representation maps, one for each class, with pixel values between 0 and 1. Marker expression within the border of each cell is

then measured from the class I FR maps. The measured single-cell information data (a table with cells in rows and marker

expression level in columns) is then used as the input for unsupervised clustering algorithms to identify the cell types.

https://doi.org/10.1371/journal.pcbi.1011432.g001
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biological structures to which antibodies are specifically bound [28]; and it can be classified

into several categories: 1) channel crosstalk, 2) nonspecific antibody staining, and 3)

aggregates.

Channel crosstalk or cross-channel contamination is the variable presence of signal from a

contaminating channel in a target channel. For fluorescence microscopy imaging techniques,

channel crosstalk is caused by the wide and often overlapping emissions spectra of fluoro-

chromes. For mass-spectrometry imaging techniques, impurities in the heavy metal ion source

used for antibody labeling, modification of the heavy metal ions (by hydrogenation, oxygen-

ation, hydroxylation, etc), or for MIBI specifically, gold ions from the slide surface can intro-

duce channel crosstalk to the image. For example, a low intensity contaminating signal that

mirrors the structure of the real higher intensity signal in the hepatocyte antigen-145 channel

(Fig 2A-top) is visible in CD20–161 channel (Fig 2A-middle). To correct this cross-talk, a few

examples of the contaminating hepatocyte and real CD20 signals were used to train the pixel

classifier and generate an FR map for the positive signal (Fig 2-bottom), in which the contami-

nating hepatocyte signal is removed. As demonstrated in the histograms (Fig 2A), the SNR is

significantly enhanced in the FR map (green box) compared to the raw image (red box). That

is, the values of pixels with positive signal in the FR map group to the far right of the histogram,

whereas the rest of the pixels, including those with cross-talk contamination, group to the far

left of the histogram and thus are cleanly separated. Another example of cross-talk contamina-

tion is gold background (Fig 2B) where signal from the exposed part of the gold slide (contam-

inating channel) is observed in the target channel, here Ki-67 (Fig 2B-left). Our approach

allows easy removal of this artifact by training the pixel classifier with a few examples of con-

taminating pixels (pixels with low intensity that correlate with the bare gold slide) as well as

the real Ki-67 signal. The contaminating artifact is completely removed in the resulting FR

map (Fig 2B-right) and the Ki-67 signal is clearly separated from the noise pixels, as shown in

the histograms.

Non-specific antibody binding is caused by cross-reactivity of antibodies, tissue features

that non-specifically bind to antibodies, or instrumental noise. This artifact can appear as

either random signal or as dim patterns superimposed on top of biological structures and may

have correlation with the histological structure of the tissue [28]. Regardless of the source, the

intensity and spatial distribution of this artifact is different from the true positive signal. There-

fore, regions with signal from non-specific antibody binding can be easily labeled as undesired

signal (class II) using our approach. An example of non-specific antibody staining is necrosis

where a necrotic tissue region that exhibits non-specific signal in many channels appears in

the pan-cytokeratin channel of a breast cancer tissue (Fig 2C-left). After pixel classification,

the artifact is removed in the resulting FR map (Fig 2C-right) and the signal to noise ratio is

enhanced, as shown in the histograms.

Aggregates are small high-intensity specks of signal caused by aggregation of antibodies,

secondary reagents, or fluorochromes used in the staining process. Due to the concentration

of high-intensity pixels, aggregates can be falsely interpreted as positive signal. Fig 2D shows

an example of CD163 staining surrounded by noise and aggregates (left). To compare the

impact of signal caused by aggregates, pseudo-cells of the same area were drawn by hand (610

pixels) and the mean expression of CD163 was calculated. While area A (m = 1.18) is clearly a

CD163+ cell, the mean signal for area B (m = 0.43), which is likely a CD163+ cell, is difficult to

distinguish from area C (m = 0.38) that contains positive signal due to an aggregate in the raw

image (left). However, after removing noise and aggregates (Fig 2D-right), the mean signal for

area C is greatly reduced (m = 0.02) while the mean signal for area B remains high (m = 0.34).

Increased SNR after noise and aggregate removal is also demonstrated in the overlaid histo-

grams, where the pixel intensities for each pseudo-cell are plotted for the raw image (top) and
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Fig 2. Removal of various artifacts and noise from MIBI data. A: An example of cross-channel contamination where a contaminating

signal from hepatocyte antigen channel, the oxide of the metal Neodymium (145 m/z + 16 m/z, top), contaminates a target channel, CD20

with Dysprosium (161 m/z, middle). The contamination is removed in the FR map (bottom). The histograms of pixel values for the insets

(highlighted in yellow) of the images are displayed both before and after artifacts correction. B: Section of Ki-67 marker from ovarian

cancer tissue before (left) and after(right) gold removal (a MIBI platform artifact). C: Section of breast tissue stained with pan-cytokeratin

antibodies before (left) and after (right) removal of necrotic tissue regions. Histograms of pixel values are included for all images (A-C)

before and after artifacts correction. D: Section of ovarian cancer tissue stained with CD163 antibody before (left) and after noise and

aggregates (right) correction. Corresponding histograms of pixel values for the pseudo-cells outlined in green, orange, and red are plotted
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the FR map (bottom). Therefore, our approach can prevent identification of false positive cells

from aggregate signal.

Mass based technologies generate pixelated imaging data with low SNR compared to fluo-

rescence-based technologies. Another important advantage of our framework is that the sparse

and pixelated signal of Mass-based imaging data (Fig 2D-left) is converted to a continuous sig-

nal with high SNR (Fig 2D-right). This property makes the processing of the such data a chal-

lenging task because the pixel intensity alone does not carry sufficient information to separate

positive signal from noise. The pixel density should be considered along with the intensity [2].

That is, while area A (Fig 2D-left) can be effortlessly called a CD163+ cell given its consistent

and high pixel intensity, the signal intensity in area B is much lower and it is the density of the

pixels that contributes to forming a cell-like structure. The low intensity signal values of the

individual pixels in area B are difficult to distinguish from noise in the raw image (see the cor-

responding histograms in Fig 2D). However, the spatial information of the pixels contributes

to the extracted features in the FR map and thus the classification output. As a result, low-den-

sity and low-intensity pixels of noise have very low pixel values in the FR map, while high-den-

sity and low-intensity pixels of area B have high pixel values (see the Fig 2D-right and the

corresponding histograms). For further illustration, two additional examples of converting

mass-based imaging raw data from IMC and MIBI platforms to FR maps are shown Fig 2E

and 2F.

Accurate phenotyping of tissue imaging data across imaging platforms

To further evaluate the performance of our image preprocessing framework, we compared the

results of unsupervised clustering after denoising and artifacts correction using two previously

published datasets collected by MIBI and Vectra Polaris. The MIBI data are a set of publicly

available images from a triple-negative breast cancer cohort (TNBC) with 41 patients [2]. This

dataset was analyzed by a computational pipeline [2] that was later wrapped into a user-

friendly graphical interface, MAUI [28]. The Vectra dataset includes a subset of 6 patients with

ovarian cancer collected in-house and analyzed using inForm [40, 41], a widely-used commer-

cial software package for analyses of multiplex fluorescence imaging data.

We compared the output of our analysis framework with the MAUI pipeline using t-SNE

plots comprised of about 200,000 cells from the MIBI breast cancer dataset (Fig 3A and Fig A

in S1 Text). The overlaid heatmaps indicate the signal intensities for a subset of non-immune

(Keratin6, CD31, SMA, Vimentin) and immune (CD45, CD3, CD4, CD8, CD20, CD68) mark-

ers measured from the raw images (top row) or FR maps (middle row). FR maps generated sig-

nal intensities ranging between 0 and 1 with improved SNR, as indicated by the more

differentiated positive regions in the heat map. The scatter plots (bottom row) demonstrate the

non-linear mapping of the average expression values per cell measured from the raw image (x-

axis) and the FR maps (y-axis). The Spearman’s rank correlation coefficient confirms the pres-

ence of a monotonically increasing correlation between the level of expression measured on

the raw image compared to the FR map. Additionally, it is noteworthy that as these values

increase in the raw image, the values in the FR map level off. Fig B in S1 Text further illustrates

this correlation specifically for positive cells of a given marker. We then compared the out-

comes of unsupervised clustering (Fig 3B) using normalized marker expression scaled from

before and after noise and aggregate correction. E: CD11c staining of lung tissue by IMC (left) and the corresponding FR map (right). F:

CD8 staining of ovarian cancer tissue by MIBI (left) and the corresponding FR map (right). One classifier is trained for each of the

individual raw images shown in panels A-F.

https://doi.org/10.1371/journal.pcbi.1011432.g002
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zero to one (left) or measured from FR maps (right). To directly compare the two heatmaps

and avoid discrepancies introduced by segmentation or clustering, we used the same single-

cell segmentation maps and the same cellular phenotypes identified in the TNBC study [2].

Qualitative comparison of the two heatmaps confirms that similar cell populations can be

identified using FR maps. For quantitative comparison, we applied the same unsupervised

clustering algorithm, FlowSOM [42], to the single-cell information extracted using FR maps.

The applicability of our analysis pipline is confirmed by the significant correlation (quantified

by Pearson correlation coefficient) in the counts of different cell types identified on a patient-

level in the TNBC study and using our framework (Fig 3C). Furthermore, there is a reasonable

agreement between the predicted cell types in a comparison of individual cells (Fig A in S1

Text). The discrepancies between the predictions of the two pipelines can be further reduced

by manual quality control of the clustering results.

Fig 3. Our framework delineates cell type compositions in mass ion beam imaging data consistent with MAUI [2]. A: Marker expression measured

per cell using the images (top row) and the FR maps (middle row) are overlaid on the tSNE plot for selected immune and tumor markers. The bottom

row demonstrates correlation between marker expression per cell from raw images (x-axis) and FR maps (y-axis). The strength of these correlations are

quantified using Spearman’s rank correlation coefficient. B: Marker expression is shown for cells clustered according to the TNBC study [2] and sorted

by cell phenotype. Expression values for each marker are scaled from zero to one (left) or are measured from the FR maps (right). Stacked bar plot

shows the abundance of each cell type in the dataset, with corresponding colors specified in the legends of panel C. C: Correlation between the

frequency of each cell type per patient identified using MAUI in the TNBC study (x-axis) and our proposed framework (y-axis). Pearson coefficient is

calculated for each cell type.

https://doi.org/10.1371/journal.pcbi.1011432.g003
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Next, we analyzed ovarian cancer fluorescence imaging data from 6 patients (about 30,000

cells) using inForm software as a benchmark. To avoid any discrepancies caused by differences

in the single-cell segmentation, we used the same cell segmentation maps produced by inForm.

Fig 4A shows the signal intensities measured from the raw images (top row) or FR maps (mid-

dle row) overlaid on tSNE plots. Scatter plots (bottom row) visualize the non-linear mapping

of the average expression values per cell measured from the raw image (x-axis) to the FR maps

(y-axis) and demonstrate the correlation of signal intensities between the methods. We

extracted single-cell information from the FR maps as input to FlowSOM [42] and identified

tumor cells and four groups of immune cells. Fig 4B displays a cell-cell comparison of the cell

types identified by inForm and our framework. The table entries represent the percentages of

cells in the dataset, with the columns listing the identified cell types by the baseline (inForm),

and the rows listing the identified cell types by our framework. The pipelines exhibit an

Fig 4. Our framework delineates cell-type composition in fluorescence imaging data consistent with inForm. A: Signal intensities for selected

immune and tumor markers measured for individual cells using the raw images (top row) or the FR maps (middle row) were overlaid on tSNE plots.

Scatter plots (bottom row) demonstrating the correlation between signal intensity per cell from raw images (x-axis) and FR maps (y-axis). The strength

of these correlations are quantified using Spearman’s rank correlation coefficient. B: Cell-cell comparison between the cell type identified by inForm (x-

axis) and our framework (y-axis). Table entries indicate the percentage of cells in the dataset to compare the identified cell types by the baselines

(columns) and our framework (rows). Heatmap of marker expression for the unidentified cluster by inForm (right); the expression level of markers per

cell is measured using the raw image scaled between 0 and 1 (left) or measured from FR maps (right). In both heatmaps the expression level is

computed as the summation of pixel values within the boundary of a cell divided by the total number of pixels comprising that cell. C: Color overlay of

markers CD19, CD3, CD8, CD68, and CK (top); plots compare the stain from the raw image with the corresponding FR map (top). Pseudo-coloring of

cell populations compares the predicted cell types by inForm with our framework (bottom).

https://doi.org/10.1371/journal.pcbi.1011432.g004
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agreement of approximately 85% (sum of diagonal entries) in identifying cellular phenotypes.

Around 12% of the cells remain unidentified by inForm but are assigned to a cell type by our

pipeline, which is indicated in red. Many of the cells in inForm’s unidentified cluster (Fig 4B-

right) have measurable signal intensities that are more clearly defined in the measured counts

from the FR map (Fig C in S1 Text). Therefore, our pipeline was better able to discern the phe-

notypes of these unidentified cells with enhanced SNR. To further investigate these discrepan-

cies, we generated a color overlay of markers from the raw image and the corresponding FR

map (Fig 4C-top). Comparing the pseudo-coloring of cell populations predicted by inForm

and our pipeline (Fig 4C-bottom) with the protein expression on top, we can easily spot many

CK+ tumor cells that are unassigned by inForm.

Discussion

A goal of image quantification pipelines is to remove noise and artifacts and normalize signal

intensities to eliminate batch variations so that imaging data can be combined. The amount of

manual curation, dependency on user-defined thresholding parameters, and lack of a unified

solution that works across different imaging platforms slows analyses and hinders robust and

reproducible results. We developed a framework that overcomes these challenges by replacing

the multi-step low-level image processing with a single-step pixel classification. We classify

each image such that all categories of undesired signal are placed in a different class from the

desired marker signal and continue the downstream analysis using the generated feature

representation map of the marker signal. This pipeline opens a new window for integrating

data across multiplex imaging platforms and constructing and training generalizable cell-type

annotators that can be used in a clinical study with patient and experimental variation.

Using FR maps instead of the raw images has several advantages beyond noise and artifact

removal. First, the positive signal intensity values are mapped to normalized values between 0

and 1 in the FR map. Therefore, the artifact removal and normalization are combined into a

single step and the normalization is completed at the image level in a very early stage of the

analysis.

In addition to noise and artifacts, the platform-specific properties of images such as differ-

ences in signal-to-noise ratio, autofluorescence, and background staining are removed from

the data. These platform-specific features do not carry useful information and only play con-

founding roles in downstream analysis. For instance, platform-specific features prevent single-

cell segmentation models trained using MIBI data from generalizing on fluorescence-based

imaging data [43]. Using our method, discretized and low-SNR signal of MIBI data is con-

verted to continuous and high-SNR signal using FR maps, making the images more similar to

fluorescence-based imaging data and making it easier to identify phenotypes. The general idea

of pixel classification works across all imaging platforms and thus provides a unified solution

for all the preprocessing required for robust cell clustering. Our platform-independent solu-

tion eliminates the need for alternative approaches that would otherwise be chosen according

to which works best for each imaging technology. For instance, while fluorescence-based

imaging data can be denoised using intensity-based methods, MIBI data require density-based

methods for denoising.

Previous computational methods for denoising and artifact removal require substantial

manual curation and parameter tuning and there is little consensus about which denoising

pipeline produces high quality and reproducible results [44]. Many parameters of the algo-

rithms used in the existing pipelines were tuned by hand and evaluated visually, leveraging the

expert knowledge of pathologists and biologists. In addition, based on the level and composi-

tion of noise, custom-built approaches were optimized by the investigators for different
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imaging data [44]. As a result, those methods are prone to human bias and may lack reproduc-

ibility. While our proposed method requires expert knowledge for labeling the training data, it

offers a unified solution for denoising MIBI data. This is achieved by redefining the problem

as a pixel classification problem, where the final value of a pixel is determined by an algorithm

that incorporates various imaging features extracted from the raw data. Unlike thresholding

parameters that are inferred by the user, our approach eliminates the need for manual thresh-

olding and instead relies on the algorithm’s decision-making process to determine the pixel

values. Evaluation of functional markers can still be performed with manual thresholding of

expression levels, however this process is easier and more robust using FR maps compared to

thresholding the raw signal data.

Although advantageous in many ways, supervised pixel level classification is computation-

ally expensive. For instance, generating FR maps for a 41-page image of 800 × 800 μm
(2048 × 2048 pixels) of a highly-expressed marker (e.g. tumor cell markers) in the TNBC data

took 140 minutes using an Intel Core i9 CPU-3.30GHz with 128 GB RAM. This time was mea-

sured to be less than 90 minutes for low-count markers (e.g. NK cell marker). The time

required for labeling the training data should also be considered as 10–15 minutes for adding

20–100 annotations for positive and negative classes depending on the variability in different

channels of a marker in a data set. For instance for labeling a marker like Foxp3, 10 annota-

tions per class is sufficient for the classifier to remove the noise from the data. For more ubiq-

uitous signals such as Beta-tubulin or Vimentin more examples are needed. While the run

time of our proposed framework is relatively high compared to conventional image prepro-

cessing pipelines, the significantly enhanced SNR reduces manual efforts required downstream

for quality control.

Methods

Ovarian tumor sample preparation

Images from 12 previously described ovarian tumors were analyzed [41, 45]. Tumors were for-

malin-fixed, paraffin embedded (FFPE) and assembled in a tissue microarray (TMA) consist-

ing of 2 mm cores Akoya Polaris instrument. TMA construction was approved by Colorado

Multiple Institutional Review Board (#17–7788).

Computational framework

Data preparation: Multiplex imaging platforms commonly generate multi-page TIFF or OME

TIFF as their primary output. Every page represents a region of interest recorded with a dis-

tinct optical or mass channel. For the purpose of pixel classification with our pipeline, a repre-

sentative training set consisting of multi-page TIFF should be prepared. Every training set

TIFF contains the information from a single optical or mass channel, but with representative

regions of interest taken from the dataset. To generate a representative training set we use

quantitative scores obtained from the CU-IScore scoring system. CU-IScore [46] is a scoring

system developed in-house and publicly available, based on the IHC-Profiler method for quan-

titative evaluation and automated scoring of immunohistochemistry (IHC) images [47]. The

CU-IScore algorithm assigns a score from 0–300 based on the pixel intensity and abundance,

with higher scores indicating a higher SNR. By utilizing these quantitative scores, we ensure

that our training stacks include images with a range of scores, creating a representative subset

of the entire dataset for a given marker.

Pixel classifier training: Pixel classification has been extensively researched with versatile,

interactive, and user-friendly tools available for the analysis of microscopic imaging data [37–

39, 48, 49]. Therefore, we did not develop any tool for pixel classification and instead used
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TWS [37], a series of library methods that combines Fiji [49] and WEKA [50] and provides an

interactive tool for extracting non-linear features and statistical properties of imaging data

from user-provided examples. To use the TWS, two sets of inputs are needed from the user: a)

multipage TIFF training sets that includes both examples or labels from class I (signal) and

class II (noise and artifacts) for each channel of interest, and b) the manual selection of nonlin-

ear features that should be used for classification: To generate label data for the pixel classifica-

tion training, we provide annotations on the images of the training stack using the TWS

interface. Notably, these annotations can be conveniently generated in a single step, encom-

passing positive signals categorized in class I, as well as all types of noise and artifacts classified

within class II. A list of nonlinear features, their parameters, and information gain score that

quantifies the importance of each feature in our classification as well as a visualization of the 5

top features are given, respectively, in Tables A and B and Fig D in S1 Text.

Pixel classifier evaluation: TWS provides library functions to evaluate the effectiveness of

the extracted features in classification as well as the accuracy of used classification algorithms.

When using the Random Forest (RF) algorithm for pixel classifcation, we maintain the out-of-

bag (OOB) error as a performance measure below a certain threshold. Each decision tree

within the RF algorithm is then trained using only a subset of the labeled data, with some sam-

ples held out from each tree’s training process. The OOB error provides an estimate of the

model’s performance on unseen data. Additionally, we evaluate the model performance using

multiple performance measures including areas under the receiver operating characteristic

and the precision-recall curves to explore the sensitivity and specificity of the trained classifier.

These built-in performance measures in WEKA package can guide the user in building an

appropriate classifier.

Pixel classification of our datasets: Since the size of the image sets in both datasets we bench-

marked is fairly limited, we did not generate a training subset and instead built a stack from all

available regions of interest of a given channel. We note that this approach is only feasible

when the dataset size is not very large. Furthermore, we maintained the out-of-bag error below

a certain value (around 1%) during training with a Random Forest algorithm with 1000 deci-

sion trees. An additional visual inspection of the resulting FR maps was used to correct the

pixel labels until optimal results were obtained.

We have developed a series of code that generates the required data structure for the classi-

fier and integrates the output of the classifier with the single-cell segmentation results. Using

the the FR maps and the cell segmentation maps, we generate a cell table with cells in row and

summary statistics of expression as well as spatial information and morphological properties

of cells in columns.

Data analysis

Ovarian tumor data collected by Vectra: using inForm software (Akoya Biosciences), the

images were spectrally unmixed, individual cells were identified using DAPI+ nuclei, and the

phenotyping algorithms were trained by marking over 100 cells as positive or negative for each

of the phenotypic markers in the panel (CD3, CD8, CD68, CD19, and CK). The algorithms

were applied to the entire dataset and the data were merged and consolidated in Phenoptr

Reports, an open access software package by Akoya Biosciences. Using our proposed pipeline,

we generated five stacks from the phenotypic markers where each stack contained 12 images.

We then used the TWS tool [37] to train a pixel classifier for each stack and produced a set of

FR maps for each marker. We selected Gaussian blur, Sobel filter, mean, median, and entropy

kernels for noise reduction and texture filtering. Finally, we extracted single-cell expression

values by measuring the signal counts on the FR maps of the positive class. To avoid any
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discrepancies caused by differences in the single-cell segmentation, we used the same cell seg-

mentation maps produced by inForm. We used the extracted single-cell information as input

to FlowSOM [42] and identified tumor cells and four groups of immune cells. The unidentified

cluster includes cells with no positive signal for the present markers or cells with co-expression

of mutually exclusive markers.

Breast cancer tissue collected by MIBI: We trained a Random Forest classifier using the fol-

lowing features: Gaussian blur, for denoising, mean, median, and entropy kernels for texture

filtering, and Sobel filter and difference of Gaussians as edge detectors. We used the single-

cell segmentation maps that were generated in TNBC study [2] to extract the single-cell

information from our FR maps. Then we followed the exact hierarchical clustering scheme

that was originally used to identify the cell types. In doing so, initially FlowSOM was used to

cluster the cells into “Immune” and “Non-immune” using 16 markers (CD45, FoxP3, CD4,

CD8, CD3, CD20, CD16, CD68, MPO, HLA-DR, Pan-Keratin, Keratin17, Keratin6, p53,

Beta catenin, EGFR). Then, using 8 markers (Vimentin, SMA, CD31, Beta-catenin, EGFR,

Keratin 17, Keratin 6, Pan-keratin) non-immune cells were clustered to into Epithelial, Mes-

enchymal, Endothelial and Unidentified. Immune cells were clustered into 12 groups using

13 markers (CD4, CD16, CD56, CD209, CD11c, CD68, CD8, CD3, CD20, HLA-DR, CD11b,

MPO and FoxP3). We then manually labeled merged and labeled the clusters with different

cell types.

Supporting information

S1 Text. Fig A. Top: Marker expression per cell measured using the images (top row) and the

FR maps (middle row) overlaid on the tSNE plot for rest of the immune and tumor markers.

The bottom row demonstrate correlation between marker expression per cell from raw images

(x-axis) and FR maps (y-axis). The strength and direction of these correlations are quantified

using Spearman’s rank correlation coefficient. Left: Cells are sorted by cell types identified by

our clustering (y-axis) against marker expression (x-axis). Expression values for each marker

are measured from the FR maps. Stacked bar plot shows the abundance of each cell type in the

dataset. Right: Cell-cell comparison between the cell type identified by the TNBC study versus

our framework (left panel). Numbers in table cells indicate the percentage of cells in the dataset

where columns and rows, respectively, compare their identified types by the baseline and our

framework. Fig B. Quantifying the correlation between the raw image pixel intensity and

FR maps for marker-positive cells. Correlation plots illustrating marker expression per cell

from raw images (x-axis) against FR maps (y-axis) are presented in rows 1 and 3. Specifically,

these plots focus on cells where the average FR map values per cell exceed a selected threshold

value. To rationalize the chosen threshold values (indicated by red lines), histograms display-

ing average values per cell measured from FR maps are included, delineating positive cells for

a given marker from the negative ones. We note that the mapping from pixel values in the raw

image to the FR map is influenced not only by pixel intensity but also by the spatial informa-

tion of surrounding pixels. Consequently, positive signals may yield large values in the FR

map; however, as these values increase in the raw image, the values level off in the FR map.

This characteristic does not present any issues, as our framework is not designed to assess the

level of expression for functional markers, but rather to determine whether a cell is positive or

negative for a given marker. Fig C. Cell types clustered by marker expression. Expression val-

ues for each marker are measured from the raw image (left) and the FR maps (right). Table A.

Classification features extracted for the breast cancer and the ovarian cancer datasets. Table B.

Classification features from Table A in S1 Text in descending order of importance for CD20

marker from breast cancer dataset. Fig D. The figure displays the top 5 features utilized for
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pixel classification of images from the CD20 channel from the breast cancer dataset.

(PDF)
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