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The interactome networks at the DNA, RNA, and protein levels are crucial for cellular functions, and the diverse variations

of these networks are heavily involved in the establishment of different cell states. We have developed a diffusion-based

method, Hi-C to geometry (CTG), to obtain reliable geometric information on the chromatin fromHi-C data. CTG produces

a consistent and reproducible framework for the 3D genomic structure and provides a reliable and quantitative understand-

ing of the alterations of genomic structures under different cellular conditions. The genomic structure yielded byCTG serves

as an architectural blueprint of the dynamic gene regulatory network, based on which cell-specific correspondence between

gene–gene and corresponding protein–protein physical interactions, as well as transcription correlation, is revealed.We also

find that gene fusion events are significantly enriched between genes of short CTG distances and are thus close in 3D space.

These findings indicate that 3D chromatin structure is at least partially correlated with downstream processes such as tran-

scription, gene regulation, and even regulatory networking through affecting protein–protein interactions.

[Supplemental material is available for this article.]

The 3D architecture of chromatin is crucial to the functionality of
1D DNA sequences (Oudelaar and Higgs 2021) and is shown to be
involved inmany critical biological processes, such as gene regula-
tion, cell fate decisions, and even evolution (Bonev and Cavalli
2016). Sharing fixed genetic inheritance, the organization of geno-
mic structure is hierarchical, and the primary domains that make
up the hierarchical organization, such as compartments and topo-
logically associating domains (TADs), are largely conserved across
cell types (Rao et al. 2014). On the other hand, the variations of
chromatin structures among different cell states are pertinent to
their distinct genomic function (Bonev and Cavalli 2016; Wang
et al. 2023). The role of 3D chromatin structure in gene expression
regulation has been shown through the importance of loop, TAD
formation, and compartmentalization (Bonev and Cavalli 2016).
Various types of genomic changes are relevant to genetic disorders
and can lead to genomic diseases such as cancer (Corces and
Corces 2016; Li et al. 2020). However, the concrete correlation be-
tween 3D architecture and its function has not been completely
resolved.

Hi-C data provide us with genome-wide unbiased profiling of
genomic structure. The great success of high-throughput sequenc-
ing technology makes it possible to obtain Hi-C data with high
throughput. However, the quality and reproducibility of raw
Hi-C data are affected by technical and biological bias, and the
characterization of the genomic geometry requires normalization
tools. A number of normalization algorithms have been developed
to remove unwanted systematic bias (Imakaev et al. 2012; Knight

and Ruiz 2013; Shavit and Lio 2014). However, the unpredictable
technical bias that mainly comes from insufficient sampling re-
mains unaddressed, resulting in dubiously weak contact strengths
and random noise. The correlation between raw matrices and ma-
trices normalized by different algorithms increases with the se-
quencing depth (Han and Wei 2017), indicating the need for
sufficient sampling. Unfortunately, the randomly directed noise
conceals the real biological proximity information and distorts
the characterization of the chromatin structures among different
cell states, which renders great difficulties to downstream studies
at transcriptional and translational levels.

The dynamics of 3D genomic structure is related with its tis-
sue-specific function in gene regulation (Oudelaar and Higgs
2021). The central dogma states that genetic information flows
from DNA to RNA to protein. Similarly, an increasing number of
novel and tissue-specific protein–protein interactions (PPIs) are
also being detected (Huttlin et al. 2021; Kim et al. 2021; Swaney
et al. 2021). The protein interactome shows great variance across
cell types, which is important to shape cell specificity and to re-
spond to external and internal signals. To understand the mecha-
nisms of tissue-specific gene regulation and functionality,
integrating and analyzing gene regulatory networks and the inter-
actome at multiple levels (from DNA to RNA to protein) is neces-
sary. The accumulation of high-throughout interactome data
provides feasibility to decipher and understand the gene regulato-
ry network.
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Results

Overview of CTG

WeproposedHi-C to geometry (CTG), a diffusion-based algorithm,
to treat the technical insufficiency and uncover the geometric
structure fromHi-C data (Fig. 1). There are several algorithms using
a diffusion process to denoise and enhance the biological networks
(Cao et al. 2014; Wang et al. 2018). Inspired by these methods,
CTG takes the Hi-C contact matrix as the adjacency matrix of a
graph and outputs a CTG distance matrix. To eliminate the impact
of systematic biases, such as GC bias and restriction enzymes, the
Hi-C contact matrix is normalized by ICE (Imakaev et al. 2012).
The main inspiration of the CTG algorithm stems from the physi-
cal succession of the genomic structure. It is suggested that to con-
struct a valid Hi-C contact matrix, 80% of loci should have at least
1000 valid reads (Rao et al. 2014). The quantity of valid reads is in-
sufficient compared with the quantity of pairs of loci. Therefore,
we alleviate the insufficiency of Hi-C contact matrix by a diffu-
sion-based method that quantifies the information transmission
on the corresponding graph and integrates neighboring informa-
tion. Concretely, we quantify the diffusion property of each geno-
mic locus to all other genomic loci by integrating k-step (k =1, 2, 3,
……) transition probability matrices derived from a Hi-C contact
matrix (see Methods). Taking all other genomic loci into consider-
ation, the diffusion property is hence defined based on global in-
formation of the Hi-C contact matrix. As Hi-C contact matrix
and the graph share one-to-one correspondence, the physical suc-
cession of the genomic structure suggests that the proximal geno-
mic loci should share similar diffusion properties. We also showed
in the next section that genomic loci with a short CTG distance are
indeed proximal in physical space and vice versa. A CTG distance
matrix is constructed based on the similarity of the diffusion prop-

erty between genomic loci in theHi-C contactmap. Except for self-
distance, the calculation of CTG distance (L1 distance between
rows of transition probability matrix) ensures the matrix elements
are nonzeros. Similar with Hi-C contact probability matrix, a CTG
contact probability matrix is constructed based on the rank of a
CTG distance matrix (see Methods) that proximal loci have higher
CTG contact probability; approximating distributions for CTG dis-
tance are thus not required. CTG is an entirely physical-based
method that excludes external randomness as much as possible
and is not limited to any subset of Hi-C data.

Using this approach, we investigated the functionality of
gene–gene proximity in genomic structure and discovered the cor-
respondence of gene network architecture at the transcriptional
and translational levels. As the functions of DNA are associated
with its transcriptional and translational products, we correlate
here the genomic proximitywith RNA coregulation and PPIs along
the flow of central dogma. We found that genes that form cancer-
specific gene–gene interactions (GGIs) in genomic structure tend
to be largely involved in cancer-related pathways, and their tran-
script products are more likely to form gene fusion. Our following
results reveal a consistent interactome framework across the DNA,
RNA, and protein levels. Cell-specific GGIs are related to cell-spe-
cific PPIs, whose biological functions are correlated with the estab-
lishment of cell specificity. 3D genomic structure can be crucial for
understanding how the coding information on the cell type–spe-
cific PPI is stored and realized given that the interactingmolecules
can change significantly with the change of cellular state even for
the same cell type.

Validation of CTG

We showed below that CTG distance faithfully reproduces spatial
distance and thus provides information on the geometry of the

Figure 1. Schematic overview of CTG. The sparse Hi-C contact matrix is the starting data type of CTG. Taking the Hi-C contact matrix as the adjacency
matrix of a graph, CTG uses a diffusion-based strategy to uncover the geometry of genomic structure from Hi-C data. CTG quantifies the diffusion property
of each vertex by aggregating global diffusion information from the vertex to other vertices, respectively (as the red arrows illustrate). The CTG distance
between pairwise vertices is calculated by the similarity of their diffusion properties. CTG allows for a genome-wide insight into deciphering the gene reg-
ulation information coded in genomic structure.
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genome. CTG aims to recover a steady genomic structural geome-
try excluding any stochastic sources.

One way to test whether a sequencing-based method such as
Hi-C can faithfully reproduce geometric structure information is to
make a comparison with fluorescence in situ hybridization (FISH)
imaging data (Su et al. 2020), as the latter provides direct spatial po-
sition information of individual loci. Su et al. (2020) provided
high-resolution imaging data on the coordinates at 50-kb resolu-
tion for Chr 2 and Chr 21 of human lung fibroblast (IMR-90) cells
(from the GRCh38 assembly). The median spatial distance for 700
cells between pairs of imaged loci is thus a physical distance mea-
surement (Fig. 2A,B, right). Taking the Hi-C data of IMR-90 (Rao
et al. 2014), one can perform a direct comparison between the im-
aging spatial distance and the inverse contact probability (with
logarithm transformation), and the Pearson correlation coeffi-
cients are 0.790 and 0.897 for Chr 2 and Chr 21, respectively,
which is, to some extent, satisfactory. In contrast, as shown in Fig-
ure 2C, the calculation of the CTG distance matrix (Fig. 2A,B, left)
improves its linear correlation with the physical distancemeasure-
ment, and the corresponding Pearson correlation coefficients with
the imaging spatial distance matrix reach 0.952 and 0.930, respec-
tively. To exclude the impact of 1D genomic distance, we also cal-
culated the corresponding Pearson correlation coefficients with
the imaging spatial distance matrix at different 1D genomic dis-
tances; CTG distance remains in high correlation with imaging
spatial distance at ∼50 Mb. (Supplemental Fig. S1). These results
show that the CTG method provides a more accurate calibration
between two different experimental methods and that the dis-
tance metrics generated by the CTG method reproduce those ob-
served by superresolution experiment. CTG works on ChIA-PET
as well (Supplemental Fig. S2). For Chr 2, the corresponding Pear-
son correlation coefficients between the CTG distance derived
from ChIA-PET data and the median spatial distance reach 0.911
and 0.877 using CTCF and RNAPII, respectively.

We also found that the flexible 2D binning method
Serpentine (Baudry et al. 2020) performs well, and the correspond-
ing Pearson correlation coefficient with the imaging spatial
distance matrix for Chr 21 reaches 0.939. However, the program
faces difficulties for a large Hi-C system (Supplemental Fig. S3). It
is not suitable for ChIA-PET data as well.

The results of CTG are also consistent with known precise cis-
regulatory interactions, such as promoter-centered interactions de-
tected by Capture Hi-C (Jung et al. 2019) and enhancer–promoter
interactions from EnhancerAtlas (Gao and Qian 2019). Taking
IMR-90 as an example (from the hg19 assembly), the long-range
cis-regulatory interactions (greater than megabases) may be weak
or even undetected in raw Hi-C data at 40-kb resolution; these in-
teractions are more significant treated by CTG (Supplemental Figs.
S4, S5). The Hi-C contact matrix contains more details than it in-
tuitively shows. A/B compartments and TADs can also be found
from this analysis (Supplemental Fig. S6). We also transformed
the coordinates of precise cis-regulatory interactions from hg19
to GRCh38 using UCSC liftOver (Kuhn et al. 2013) and performed
similar analyses. As shown in Supplemental Figure S7, the results
of CTG using GRCh38 are consistent with results using the hg19
reference. We used the hg19 reference genome for following
analyses.

CTG reveals a steady genomic structural geometry

We evaluate the robustness of the CTG contact propensity map by
applications to different samples and compare the Hi-C data de-

rived from (1) normal colon tissue samples of different individuals
(Johnstone et al. 2020), (2) tumor colon tissue samples (Johnstone
et al. 2020), (3) different numbers of HEK293 cells (sample 0923-2
and 0923-4), and (4) repeated experiments on HEK293 cells (sam-
ple 0923-4 and 1002-5). The robustness of CTG is assessed by calcu-
lating the Spearman’s correlation coefficient of spatial interactions
from different samples at various genomic distances. Such a calcu-
lation is equivalent to calculating the Spearman’s correlation coef-
ficient of diagonal elements of Hi-C maps. For a Hi-C contact map
treated after ICE normalization, the correlations between different
samples decrease sharply as genomic distance increases (Fig. 2D,
top), indicating that the normalized Hi-C contact map is of high
confidence level at scales up to ∼5 Mb but not longer. In contrast,
the correlations of CTG contact maps are significantly higher and
hardly decrease with the genomic distance. We also compared
the Spearman’s correlation coefficient for individual genomic re-
gions between Hi-C and CTG contact maps, equivalent to calculat-
ing the Spearman’s correlation coefficient of each row of different
contact maps (Fig. 2D, bottom), where the latter also displays a
higher consistency than the former. In addition, the systematic
bias between different data sets for the Hi-C and CTG contact
map was quantified by a minus, or difference, versus distance
plot (MD plot) (Stansfield et al. 2018), to visualize the differences
between the two data sets, accounting for the linear genomic dis-
tance between interacting genomic regions. M is defined as the
fold-change between two Hi-C data sets, with its element Mij=
log2(IF

1
ij/IF

2
ij), where IF1ij and IF2ij are contact strengths between

pairs of genomic regions from two data sets. D is defined as the
1D genomic distance of pairwise genomic regions. In this way,
the systematic bias between different data sets is reflected by the
deviation of M from the M= 0 baseline. The MD plot (Fig. 2E) of
the CTG contact map is approximately symmetric to the about M
=0 baselinewithout any prior fitting. In contrast, for theHi-C con-
tact map, only 30% of nonzero elements can be faithfully calculat-
ed owing to the limitation of sparse data. The distributionobtained
for the Hi-C contact map (Fig. 2E, bottom) deviates significantly
from the baseline, indicating the impact of systematic bias.

We note here that the unprocessed Hi-C contact map is sub-
ject to large noise owing to incomplete statistics, and the large var-
iance of long-range interactions (>5 Mb) among similar samples
indicates that weak interactions or long-range interactions tend
to be unreliable. Therefore, a genome-wide comparison between
differentHi-Cdata sets is ambiguous, owing to thenoisyand sparse
data. By incorporating the genome-wide diffusion property of each
genomic region into consideration, theproblemassociatedwith in-
sufficient sampling for singular interactions is sufficiently
corrected. The CTG contact/distance maps reveal the hidden
reproducibility of Hi-C data and, more importantly, reveal that
the putative topologies of genomic structures are conserved across
different cell numbers and evendifferent individuals. The genomic
structures recovered by the CTG algorithm thus allow for a direct
comparison for replicate experiments and even for samples from
different individuals/experimental setups. Such a property of
CTG makes it suitable for characterizing the changes of genomic
structures under different conditions.

CTG characterizes the global structural changes in colorectal

cancer pathogenesis

In this section, we use the CTG method to analyze genomic struc-
tures derived from normal and tumor colon Hi-C data.
Compartmental recognition was performed in a previous study
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Figure 2. Validation of CTG. (A) The Hi-C contact matrix (left), CTG distance matrix (middle), and the median spatial distance matrix (right) of Chr 2 (res-
olution of 50 kb). (B) The Hi-C contact matrix (left), CTG distance matrix (middle), and the median spatial distance matrix (right) of Chr 21 (resolution of 50
kb). (C) The correlation between the CTG distance matrix and the median spatial distance matrix of Chr 2 and Chr 21. (D) The Spearman’s correlation for
the genomic sequence distance (top) and for the individual genomic region (bottom) between pairwise contact matrices derived from (1) normal colon
tissue samples, (2) tumor colon tissue samples, (3) different numbers of 293 cells, and (4) repeated experiments on 293 cells. (∗∗∗) P-value < 10−300

(t-test). (E) The MD plots between two normal colon tissue samples in view of genomic sequence distance.
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(Johnstone et al. 2020) on these data sets, which associated the
compartment changes during colorectal cancer pathogenesis
with stemness, invasion, and metastasis of tumor. In the follow-
ing, we show that CTG allows for new insights into cancer-related
changes of genomic structure. To ensure the consistency and re-
producibility of our analysis, pairwise normal and tumor samples
derived from four individuals were compared. We took
Chromosome 17 as an example in our latter single-chromosome

analysis to simplify our discussion. The conclusions are the same
for other chromosomes.

As can be seen from Figure 3A, the overall pattern of CTG dis-
tance matrices clearly distinguishes normal from tumor colon
samples. From direct visualization, the fine plaid patterns of nor-
mal samples become significantly blurred in cancer, where the
distinct genomic “chess-like squares” are no longer properly segre-
gated, and the specific long-range aggregation weakens. To be

A

B C D

E F

Figure 3. Global structural patterns of colorectal cancer revealed by CTG. (A) The CTG distance matrix for normal (top) and tumor (bottom) colon sam-
ples. Each column represents pairwise normal and tumor samples derived from the same patient. The yellow and red squares are examples of the differences
between normal and tumor samples. (B) The contrast ratio of the CTG distance map; the blue bars correspond to normal samples, and the red bars cor-
respond to tumor samples. (C) Contact probability as a function of genomic distance calculated from the CTG contact map. (D) Contact probability as a
function of genomic distance calculated from the Hi-C contact map. (E) The 2D Laplacian eigenmaps of CTG distance matrices for pairwise colon normal
and tumor samples. Each point represents a 40-kb genomic region. The color is used to represent the CpG density of the corresponding genomic region.
(F ) Contribution of sequence properties to structure-related E1 eigenvector.
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more quantitative, we calculated the contrast ratio of the genomic
“squares” over their proximal neighbors (Methods; Fig. 3B). The
contrast ratios were found to be significantly higher for normal
samples than for tumor samples (P-value =0.0084) and were con-
served across the four individuals. Such a result indicates that there
is clear insulation between neighboring regions in normal tissues,
the strength of which weakens in cancer samples. This change in
genome insulation indicates the potential transcriptional dysregu-
lation in carcinogenesis.

Next, we calculated the reconstructed contact as a function of
the 1D genomic distance (Fig. 3C). It can be seen that the tumor
samples display large decay rates in the megabase scale, and the
comparison between normal and cancerous CTG distancematrices
suggests the loss of specific long-range interactions in colon can-
cer, as revealed by Figure 3C. In comparison, the decay curve de-
rived from Hi-C data normalized by ICE only varies more
significantly over different samples (Fig. 3D), again validating
the effectiveness of CTG in revealing the consistent difference be-
tween normal and cancer cells.

Sequence properties, especially CpG density, were reported to
be an important factor affecting the organization of genomic struc-
ture (Liu et al. 2018). To gain an understanding of how 1D DNA
sequences affect the organization of 3D genomic structure, we per-
formed dimensionality reduction on the CTG distance matrix. The
nonlinear Laplacian eigenmaps (seeMethods) were used for dimen-
sionality reduction, as the eigenvectors obtained by thismethod are
interpretable and reveal information on hierarchical clustering (Fig.
3E; Supplemental Fig. S8). Sorted by eigenvalues, the leading eigen-
vector, E1, reflects the predominant structural patterns. We quanti-
fied the contribution of sequence properties, including sequential
similarity (CpG density) and sequential distance, to genomic struc-
ture by projecting the structure-related eigenvectors on these se-
quence properties. Reflected by the projection of E1 (Fig. 3F),
the dominant factor in structure determination changes from
sequential similarity in normal cells to sequential distance in colon
cancer, affecting the organization of A and B compartmental do-
mains and probably resulting in the dysregulation of transcription-
ally active or inactive states (see Discussion).

Gene coexpression and genomic proximity in colorectal cancer

pathogenesis

The genomic structure is believed to play a crucial role in the precise
gene expression program (Elimelech and Birnbaum 2020; Oudelaar
andHiggs 2021). Thegenomic interactionsbetweengenepromoters
and distal cis-regulatory elements have been studied extensively (Li
et al. 2022). Because less attention has been paid to the function of
gene–gene colocalization in genomic structures, we investigate
here the physical GGIs at genomic levels, represented through the
contacts between genomic bins in 40-kb resolution that contain
these genes. Of special interest is whether a correlation exists be-
tween gene–gene contact in chromatin and gene coexpressions at
the transcript level. The correlation network at transcript levels
was characterized by Spearman’s correlation coefficients of RNA-
seq data, with the RNA-seq data derived from The Cancer Genome
Atlas (TCGA)program, for86pairwisenormaland tumorcolon sam-
ples. The interaction network at genomic levels was quantified by
CTG distances. The two networks were aligned together in perspec-
tive of the genomic position of each gene.

To be more specific, we evaluated the one-to-one correspon-
dence between genomic colocalization and coexpression. For
both tumor and normal samples, the proximal gene pairs tend to

coexpress at the transcript level (Fig. 4A), and such an inter-depen-
dence is stronger for tumor samples than normal samples. In re-
verse, gene pairs that share a similar expression pattern tend to be
proximal at genomic levels for tumor samples (Fig. 4B), which is
againmoreprominent for tumor samples than for normal samples.
Such a difference between tumor and normal samples indicates an
increased correlation between genomic structure and gene tran-
scription in cancers in perspective of gene–gene interplay. Com-
pared with cancer samples, there is a weaker correlation between
gene pair proximity and their expression correlation across normal
samples; meanwhile, genes of large linear and spatial distances can
be highly transcriptionally correlated in normal samples, suggest-
ing other regulation mechanisms besides spatial cotranscription,
such as histone modification or DNA methylation, play more im-
portant roles in normal cells than in their cancerous counterparts.
The elevated dependence of gene coexpression on their spatial in-
teraction in chromatin may suggest that gene expression regula-
tion becomes more directly correlated with genomic structure. It
was discovered recently that the RNA and protein levels become
more strongly correlated in carcinogenesis, supporting that the reg-
ulation network simplifies in cancer pathogenesis (Nusinow et al.
2020). The increasing correlation in carcinogenesis may be partial-
ly owing to TADboundary loss.HiCExplorer (Wolff et al. 2020)was
used to detect TADs for four pairs of normal and tumor colon sam-
ples. If the overlap fraction of gene and TAD domain is >50% of
gene length, the gene is considered as belonging to the correspond-
ing TAD. The belonging TADs for 204 genes pairs with gene–gene
proximity and gene coexpression (Pearson correlation coefficient
> 0.5 in colon cancer samples) in cancer samples were detected.
In addition, 48 out of 204 genes pairs are related with TAD boun-
dary loss. They belong to different TADs in normal samples and
belong to the same TADs in tumor samples; the proportion is
23.5%. Moreover, we also found, besides solid tumors, a similar
correspondence of gene–gene proximity and gene coexpression
in acute lymphoblastic leukemia samples (Supplemental Fig. S9).

Gene fusion and functional analysis of GGI formation in cancer

Next, we analyzed the local spatial contacts in chromatin for indi-
vidual genes (see Methods), where spatial GGIs are characterized.
The interactions formed in cancer but not in normal tissue are re-
ferred to as cancer-specific GGIs (csGGIs). Noticeably, genes in-
volved in csGGIs are prone to be more positively correlated in
tumor samples than in normal samples compared with respective
backgrounds (Fig. 4C; Supplemental Fig. S10). These csGGIs tend
to be properly insulated in normal cells but not in cancer. An ex-
treme case of the change of gene proximity in cancer development
is gene fusion, which can play an important role in cancer biology.
We did find that cancer-associated transcript fusions appear to as-
sociate with genomic proximity in cancer cells. Using the
FusionGDB2 data set (Kim et al. 2022b), which contains approxi-
mately 90,000 gene fusions, we found that intra-chromosomal
proximal genes are more likely to be involved in the gene fusion
events (Fig. 4D). It is known that fusion genes are related to the
downstream rewiring of protein interaction networks and there-
fore promote cancer (Latysheva et al. 2016). Our results showed
that fusion events are related to the upstream alterations of geno-
mic structure. Hence, the cause of the rewiring of protein interac-
tion networks may also be traced back to the genomic level,
which is analyzed in the next section. Further, we found that in-
tra-chromosomal proximal genes are alsomore likely to participate
in the similar biological process with their neighbors than those
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Figure 4. Passage of gene–gene interplay from genomic level to transcription and protein levels in colorectal cancer. (A) The distribution of transcrip-
tional Pearson correlation under different CTG distance of the whole chromosome; the color of each line indicates the corresponding CTG distance. (B) The
distribution of CTG distance under different Pearson correlation of the whole chromosome; the color of each line indicates corresponding Pearson corre-
lation coefficient. (C ) The distribution of correlation of gene pairs with csGGIs and overall background. (D) Distribution of CTG contact probability for gene
pairs with (blue) and without (orange) gene fusion events reported in FusionGDB2 data set. (E) Distribution of CTG contact probability for gene pairs with
(blue) and without (orange) similar biological process reported in HumanNet. (F) Distribution of CTG contact probability for gene pairs with (blue) and
without (orange) PPIs reported in STRING database (G) The proportion of intra-chromosomal gene pairs with STRING PPI at different CTG distances in
the tumor sample. The proportion refers to number of gene pairs with PPIs at fixed CTG distance/number of all gene pairs at fixed CTG distance. The back-
ground refers to number of gene pairs with PPIs/number of all gene pairs at all CTG distance. (H) The proportion of inter-chromosomal gene pairs with
STRING PPI at different CTG distances in tumor sample. (I) The gene network integrates colon cancer–related gene–gene interplay at the DNA, RNA,
and protein levels. The three kinds of edges indicate gene–gene interplays at three levels.
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that are far apart, and the gold-standard gene pairs of the
HumanNet v3 sharing pathway annotation (Kim et al. 2022a) are
found to be more proximal than random gene pairs (Fig. 4E).
Shorter CTG distances between gene pairs are associated with
higher probability of (1) gene fusion, (2) gene coexpression, and
(3) interactions between the proteins coded by the two genes. In
particular, the latter two occur in a cell type–specific manner and
thus show a possible passage of chromatin 3D structural and net-
working information to the downstream products such as mRNA
and proteins.

Hence, we expect the csGGIs found in genomic structures of
tumor colon samples by the CTG algorithm to play an important
role in transcriptional coregulation between genes. Therefore, we
further select csGGIs with notable changes in RNA correlation (tu-
mor correlation >0.5 and normal correlation <0.1) and construct a
csGGIsnetwork.We found that the cancer-related genes (seeMeth-
ods) are significantly enriched in the network, as 4.33% of genes
involved in this network are cancer genes, showing 15-fold enrich-
ment compared with the background. The cancer genes, including
ERBB3,HRAS,MAP2K2, PTK6, RAC1, SDC4,TSC2, and SRC, among
others, are connectedwitha largenumber (more than five) of genes
and thusmay play critical roles in this network (Supplemental Figs.
S11–S13). Meanwhile, these cancer genes were also reported to be
highly relative in colorectal cancer pathogenesis (Serebriiskii et al.
2019; Liu et al. 2021; Wang et al. 2021). We next performed func-
tional annotation analysis on all genes connected to more than
five genes in this network (Supplemental Table S1) and found these
genes to be strongly involved in the epidermal growth factor recep-
tor (ERGF) signaling pathwayandproteoglycans in cancer. In addi-
tion, HRAS, RAC1, SOS2,MAPK3, andMAP2K2 directly participate
in the colorectal cancer KEGGpathway. HRAS is involved inmulti-
ple cancer-relatedprocesses (Pylayeva-Gupta et al. 2011), andgenes
interacting with HRAS in the cancer genomic structure, for exam-
ple, IFITM3, DRD4, IRF7, and NLRP6 (Hur et al. 2020), are heavily
involved in the immune response. Such an analysis thus suggests
a change of immune response regulation in cancer pathogenesis.

Genomic proximity is related to PPI in colorectal cancer

pathogenesis

After interrogating the interplays between gene pairs at DNA levels
and their transcript product, we wondered whether such informa-
tion is further passed along the central dogma, such that GGIs at
the chromatin level correlate with the interaction between their
translational products. The interplays at protein levels were evalu-
ated by physical PPIs derived from the STRING project (Szklarczyk
et al. 2021). The genomic interactions and PPIs were aligned by
genes and protein isoforms generated from corresponding genes.
As Figure 4F shows, we did identify associations between the geno-
mic structure and PPIs that have not been discussed before.

First, it can be seen from Figure 4, G andH, and Supplemental
Figure S14 that the CTG distances between gene pairs with their
proteins forming known/predicted PPIs tend to be more proximal
than those without PPIs, for both intra-chromosomal gene pairs
with a more stable genomic structure and inter-chromosomal
gene pairs with a more flexible genomic structure. The spatially
proximal gene pairs are more likely to have their product proteins
form PPIs. These results suggest that contact information depos-
ited in genomic spatial structures has a tendency to pass to the pro-
tein level. Because the information passage of DNA–DNA (gene–
gene) interaction to PPI goes through RNA, we next examined
the correlation between different genes at the RNA andprotein lev-

els. Gene pairs forming PPIs in the STRING data set are indeed
more prone to be correlated in transcription than are randomly
chosen pairs, and such a tendency is found across different tumor
types (Supplemental Fig. S15). Although coexpressions are a por-
tion of gene interplays at RNA levels and PPIs in the data set are
not tissue-matched, gene pairs with GGIs and PPIs are more corre-
lated in transcription than are those only with PPIs (Supplemental
Fig. S16). It is reported that gene fusion events are relevant to the
rewiring of protein interaction networks in cancer (Lupiáñez
et al. 2015). As shown by Figure 4, D and F, the origin of the tran-
script fusions may be traced back to genomic levels, and this may
influence translational levels. Such results suggest that the infor-
mation of the gene regulatory network is at least partially coded
in 3D genomic structures and transferred to RNA andprotein levels
along with the central dogma, in a way beyond correct coding and
functioning of single genes, but also in the message-passage level
in the form of GGIs.

We integrated gene–gene interplay at theDNA, RNA, and pro-
tein levels to construct an interaction network at multiple levels.
As Hi-C is a sequence-basedmethod, the results may be influenced
by repetitive regions or structural variants that show a high diver-
sity between individuals. For example, the HLA genomic superlo-
cus tends to show high diversity in human genomes. To exclude
variation between individuals as much as possible, we determined
csGGIs from the overlap in four pairs of normal and tumor colon
samples. One thousand six hundred twenty-six pairs of genes are
seen to be at the center of the interaction network for colon cancer
(Fig. 4I). For example, STAT3/STAT5A, DSG2/DSC3, and RPTN/
SPRR3 all possess genomic proximity, transcription coregulation,
and potential protein interactions inferred from STRING. In fact,
these genes are all reported to be involved in colorectal tumorigen-
esis. For example, STAT3 is a known biomarker for colon cancer as
it is necessary for proliferation and survival in colon cancer–initi-
ating cells (Lin et al. 2011), and STAT5A is reported to be involved
in the regulation of colorectal cancer cell apoptosis (Du et al.
2012). The down-regulation of DSG2 and DSC3 in colon cancer
cells was found to suppress colon cancer cell proliferation (Cui
et al. 2011; Kamekura et al. 2014), and DSC3 is involved in tu-
mor-suppression activity (Cui et al. 2019). Finally, the overexpres-
sion of SPRR3 is known to promote cell proliferation through AKT
activation (Cho et al. 2010). Supplemental Figure S17 shows the
distribution of 1D sequence distance of gene pairs integrating
gene–gene interplay at the DNA, RNA, and protein levels. Gene
pairs that are distal (>5 M) in 1D genome are also involved in
this network; for example, CDCA8 and CDC20 are 5.7 Mb far
from each other, and they are both essential regulators of cell divi-
sion (Jeyaprakash et al. 2007; Yu 2007).

The interactions betweenmultiple genes can also be observed
in the chromatin structure. We downloaded the protein-complex
interactions from UniProt and extracted the components of 155
protein complexes, and 118 out of 1626 gene pairs are related
with protein products of the same protein complex, including
the spliceosome complex (SNPNP70, SUGP1, PRPF31, PRPF38A,
PRPF4, SF3A3, SF3B1), the chromatin remodeling complex
(HDAC1, RBBP4, SMARCC1, PBRM1), and histocompatibility com-
plex (HLA-A, HLA-B, HLA-C) (Fig. 4I). It is known that the relevant
translational products make up the HLA class I (HLA-A, HLA-B,
HLA-C) and class II (HLA-DQ, HLA-DR) complexes, which play im-
portant and distinctive roles in presenting processed peptide anti-
gene (Giudizi et al. 1987; Choo 2007). The results indicated that
not only direct protein interactions within each class of complex
but also coregulation between the two complexes may be partially
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coded in genomic structure, although they are distant in the linear
genome. CTG provides statistically csGGIs; the related biological
consequences require further experiments.

Tissue-specific coupling of PPI and genomic interactions

Functional proteins are directly involved in diverse biological pro-
cesses, and proteins are shown to be strongly coregulated (Gonc
et al. 2022). The associations and interactions between proteins
are crucial for proper cellular homeostasis and regulations. The
protein post-translational modification and the copy numbers of
proteins can change with the cell states (e.g., through the cell cy-
cle) and cell types. Meanwhile, the protein interactomes show
great variety across cell types to shape cell specificity and to re-
spond to external and internal signals, as a wide range of novel
and specific PPIs are gradually detected (Huttlin et al. 2021; Kim
et al. 2021; Swaney et al. 2021). The integrated STRING PPI data
set contains both tissue-matched and unmatched PPIs, which al-
low the statistical analysis of GGI-PPI correlation but limit one
from precisely matching GGIs with PPIs in a cell state–specific
manner. To overcome this problem,wenext performed an analysis
based on the tissue-matched PPI data sets from the affinity-purifi-
cation mass spectrometry (APMS) technique (see Methods).

Fortunately, the BioPlex project has compiled a comprehen-
sive data set of PPIs of HCT116 and HEK293T cells (Huttlin et al.
2021). The cell-matched BioPlex PPIs consist of about 71,000
and about 120,000 interactions, respectively, and they are all in-
cluded in our analysis. Consistent with the results obtained using
STRINGdata sets, as shown in Figure 5, A and B, genomic proximal
gene pairs in HCT116 and HEK293T cells are also more likely to
possess corresponding PPIs, and on the other hand, gene pairs
with corresponding PPIs also tend to be spatially closer in genomic
structure than thosewithout knownPPIs, although the current PPI
list is probably far from being complete.

The mutual correspondence between GGI and PPI uncovers a
significant correlation between genomic interactions and PPIs.
The genomic proximity information appears to be partially pre-
served in both transcription and translation. Furthermore, the in-
tra-chromosomal gene pairs with PPIs (Fig. 5A,B, left) displayed a
tighter correlation with genomic structure than did inter-chromo-
somal ones (Fig. 5A,B, right). It is known that genes with related
functions tend to cluster along the linear genome and in individual
chromosomes (Hurst et al. 2004). The higher intra- than inter-chro-
mosomal DNA, RNA, and protein coupling is consistent with this
functional requirement. Next, to exclude the impact of 1D genomic
distance within chromosomes, we evaluated GGI–PPI correlation at
fixed genomic distances and found that genepairs with correspond-
ing PPIs tend to bemore proximal in all genomic distances (Fig. 5C)
than thosewithout. Limitedbyamajorityofweak or even undetect-
ed interactions, these signals are insignificant in raw Hi-C data sets
with 90% zero elements, again showing the importance of further
data processing for the Hi-C matrix. We also performed functional
annotation analysis for proximal gene pairs with tissue-matched
PPIs for HCT116 cells (Supplemental Tables S2 and S3), quantifying
the correlation between genomic interactions and protein interac-
tions for this colorectal carcinomacell line. Thesegenomic-proximal
intra-chromosomal PPIs significantly correlate with cell adhesion
and immune response, enriched in “interferon signaling pathway”
and “antigen presentation” (HLA genes). In accordance, the inter-
feron gene family is heavily involved in cancer-related pathways,
such as those of JAK-STAT and PI3K-AKT signaling (Horvath 2004;
Burke et al. 2014). Meanwhile, HLA genes play vital roles in cancer

immunotherapy (Anderson et al. 2021). The interactions of HLA
genes in both the genomic and protein levels in colon cancer cell
lines are consistentwith findings on solid colorectal cancer samples.
On the other hand, the functions of genomic-proximal inter-
chromosomal PPIs are relevant to RNA exosome and proteasome,
which mediate the degradation of RNA and protein (Makino et al.
2013). The degradation system was shown to play important roles
in cancer studies (Manasanch and Orlowski 2017; Taniue et al.
2022), and the two degradation systems may follow common prin-
ciples (Makino et al. 2013). These results showed the possible roles
chromatin and corresponding protein complex structures may
play in the establishment of cell identity, as the structural-related
PPIsare incorrespondencewiththecell-specificbiologicalprocesses.

Next, we studied the specific genomic and protein interac-
tions of breast cancer cell line MCF-7 and its normal counterpart
MCF-10A cells (Kim et al. 2021) and compared them. The specific
PPIs were quantified by overexpression APMS (PPI-score > 0.65)
(Kim et al. 2021). The number of MCF-10A-specific PPIs is 559,
and that of MCF-7-specific PPIs is 1325. From Figure 5D, one ob-
serves a clear tendency that gene pairs with MCF-7-specific PPIs
aremore likely to possess genomic interactions inMCF-7 cells rath-
er thanMCF-10A-specific PPIs, whereas in contrast, such a trend is
insignificant for MCF-10A cells. In addition, gene pairs with MCF-
7-specific PPIs are more distal (t-value =−16.23, P-value=1.79×
10−57), and those with MCF-10A-specific PPIs are more proximal
(t-value=7.08, P-value=1.99×10−12) in MCF-10A cells than in
MCF-7 cells. These results thus reflect a tissue-specific correspon-
dence between GGIs and PPIs. The fact that the breast cancer cell
line MCF-7 displays a more significant correspondence than its
normal counterpart may reflect that fewer cell-specific PPIs were
identified in the normal cells than in the cancer cells. This observa-
tion may also indicate the cancer-specific PPIs to be more strongly
correlatedwith the changes in genomic structure, although the in-
ference requires more experimental evidence owing to the limited
quantity of MCF-10A-specific PPIs. As specific and important ex-
amples, we analyzed TP53, GATA3, and SMARCB1 and their corre-
spondingMCF-7-specific PPI neighbors. As shown in Figure 5E, the
PPI neighbors of these genes, for example, CBX1/TP53, ITGB1/
GATA3, and PI4KA/SMARCB1, tend to be proximal judged by com-
parison to their mean distances to all genes. Their proximal PPI
neighbors enrich more MCF-7 fitness genes (Behan et al. 2019),
such as EIF5/TP53, GTPBP4/GATA3, and PAM16/SMARCB1, than
distal PPI neighbors do in genomic structure, suggesting the impor-
tance of genomic structure to cell functionality and survivability.

In summary, CTG revealed that a proportion of genomic
proximity information is directly reflected at both the transcrip-
tional and translational levels. Such an observation suggests that
the PPI information is at least partially coded through genomic
proximity in the nucleus (see Discussion).

Discussion

In central dogma, the sequence information of theDNA ismapped
into that of RNA and then that of proteins, effectively resulting in a
passage of the linear sequence information (Wood 2005). It is well
appreciated that the 1D DNA sequence information, which turns
into the amino acid sequence of proteins, largely determines their
3D structures (Wang et al. 2017). Such a notion has brought great
success in the prediction of protein structures, with the usage of co-
evolutionary information found by the alignment of protein se-
quences (Ovchinnikov et al. 2017). Despite the precise structure
of proteins, we examined in this study whether the global
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interactome and regulatory framework formed by proteins is also
coded in DNA levels. The linear genomic distribution of genes is
fundamental to the establishment of a regulatory framework; there
aremany gene clusters located next to each other in a genome that
are functionally coregulated and form complexes (Yi et al. 2007).
Besides the fixed linear genome, the dynamic 3D genomic struc-
tures provide variability to the regulatory network and could also
be relevant with the cell-specific interactomes at the protein level,
as well as the regulatory network at RNA level.

The precise gene expression program through interactions be-
tween gene promoters and distal cis-regulatory elements has been
widely investigated. A genome-wide interrogation on the correla-
tions between proximal genes in genomic structure and their func-
tions at transcriptional and translational levels, on the other hand,
is still needed, partly owing to the large noise and sparsity in long-
range interactions in Hi-C data. To obtainmore reliable chromatin
3D structure information using Hi-C data, we developed and pre-
sent here a computational method, CTG. The genomic structure

A

C

E

B

D

Figure 5. The tissue-specific correspondence of PPI and genomic proximity. (A) The proportion of intra-chromosomal (left) and inter-chromosomal
(right) gene pairs with HCT116-related PPI at different CTG distances. The proportion refers to number of gene pairs with PPIs at fixed CTG distance/
number of all gene pairs at fixed CTG distance. The background refers to number of gene pairs with PPIs/number of all gene pairs at all CTG distance.
The enrichment degree refers to the proportion/background. The control is one. (B) The proportion of intra-chromosomal (left) and inter-chromosomal
(right) gene pairs with HEK293T-related PPI at different CTG distances. (C) The CTG distance of gene pairs in fixed 1D genomic distance. The CTG distance
between gene pairs with corresponding PPIs (blue scatters) is more proximal than the median CTG distance of all gene pairs at all 1D genomic sequence
distance (orange line). (D) CTG distance of gene pairs with MCF-7-specific and MCF-10A-specific PPIs in MCF-7 cell. (E) TP53-, GATA3-, and SMARCB1-
related MCF-7-specific PPIs. The distance to TP53 indicates the CTG distance; the green circle indicates the background distance, the pink scatter indicates
MCF-7 fitness genes, and the dashes indicate genomic proximal neighbors.
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derived from CTG was shown to be high-
ly consistent with imaging data obtained
by the FISH technique, thus validat-
ing the physical interpretation of the
former. The reproducible and stable
structure framework allows a consistent
study of the variation of genomic struc-
tures amongdifferent samples and exper-
iments. We found here that the genomic
GGIs at DNA levels are correlated with
coexpressions at RNA levels and PPIs at
protein levels. The physical contact in-
formation between genes at the DNA lev-
el is thus likely transferred to the protein
level for at least a subset of genes.

First, from DNA to RNA levels, ge-
nome-wide correspondence between ge-
nomic proximity and coexpression in
colorectal cancer was detected. Such an
observation triggers us to speculate that
the long-range interactions of the geno-
mic structure play a fundamental role in
the global transcriptional regulation, en-
suring that specific linearly distant genes
can share similar transcription environ-
ments, such as transcription factor bind-
ing and epigenetic hallmarks, and thus
are coregulated. Second, fromDNA topro-
tein levels, associations between genomic
proximity andPPIswere also detected.We
showed such an association on both integrated and tissue-matched
PPI data sets. The genomic-proximal PPIswere found to be enriched
in tissue-specific biological processes in several cell lines with avail-
able data, including HCT116, HEK293T, MCF-7, and MCF-10A.
Third, from RNA to protein, it is confirmed that gene pairs with de-
tected PPIs are prone to be positively correlated in transcription for
various types of normal and cancer samples deposited in TCGA. A
more comprehensive picture of the biological information passage
through central dogma thus likely goes beyond the single gene (pro-
tein) and the sequence (chemical formula) level and includes more
complex interaction information (Fig. 6). In this scenario, the three
layers of regulatory networks (roughly speaking, DNA, or more pre-
cisely, chromatin, RNA, andprotein) are inter-connectednot onlyat
the single gene level but also partially at the levels of gene–gene
and protein–protein pairs. The contributions of nuclear proximity
for gene expression covariations have been detected in mouse em-
bryonic stem cells, and these covariations play a part in ensuring
stoichiometry between interacting proteins (Tarbier et al. 2020),
which is consistent with our results.

The PPIs can change significantly with the change of cellular
state even for the same cell type. It is also known that cell-specific
DNAmethylation and chromatin structure can be passed through
different generations of cells (Wootton and Soutoglou 2021).
Considering the fixed genetic inheritance, not only genetic but
also epigenetic information is passed through DNA to proteins.
We showed that the variable interactomes at the protein level, as
well as the regulatory network at the RNA level, could be affected
by the dynamic 3D genomic structures, and the latter can be
passed through cell replication. On the other hand, the distinct
epigenetic hallmarks affect the accessibility and TF and RNA bind-
ing preference to DNA of specific genomic regions and introduce
distinct GGIs over a similar 1D DNA sequence for different tissues.

These interactions are all likely to participate in the establishment
of tissue-specific gene regulatory networks.

In fact, the storage and passage of interactome information in
genomic structure can be crucial for tissue specificity and stability
of the regulatory networks. It is known that the tissue/cell-specific
PPIs play essential roles in the functionalorganizationof regulatory
networks (Huttlin et al. 2021). However, proteins can vary heavily
in a number of copies, diffuse relatively freely in the cell if not an-
chored, and can have short lifetimes. Many of them are also
required to respond quickly to external signals and other changes
of cellular states. In addition, the cell is a painfully crowded and
complex environment for proteins to find and associate with
each other faithfully in a timely and well-organized manner, as
required by signal transduction, especially if the population and
distribution of individual proteins were entirely random or inde-
pendent of each other. The highly responsive PPIs also impose dif-
ficulties for the proteins tomaintain cell state–related information
with constant disturbance as a result of cross talk with the environ-
ment. In such an environment, a coordinated production of pro-
teins can be envisioned to facilitate their interactions, the
occurrence of which at the right place and right time could be es-
sential for the information cascade. In contrast to proteins, genes,
including their copynumbers, positionson the linearDNA, and3D
chromatin, are less variable and provide a more stable information
storage. This study suggests that a coordinated and cellular state–
dependent, highly regulated PPI network can be achieved through
the use of information stored in GGIs in 3D chromatin structure.
Such an information flow is expected to result in coordinated tran-
scription and eventually to functional PPIs. One can imagine that
such PPIs involve not only pairs of proteins but also heterocom-
plexes formed by multiple proteins, the formation of which re-
quires conceivably an even higher level of coordination.

Figure 6. Passage of gene–gene interplay through central dogma. Lines between pairwise genes, tran-
scripts, and proteins represent GGI, transcriptional coregulation, and PPI, respectively.
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In contrast to the fast accumulation of Hi-C data, high-
throughput quantifications of tissue/cell-specific PPIs are still chal-
lenging. The genomic structure changes provide important knowl-
edge and complementary information in predicting tissue-specific
PPIs, which is expected to be of use in understanding the dynamic
function of proteomics, as well as the resulting gene regulation
network. To understand the molecular mechanisms leading to
the various molecular associations, it would be necessary to thor-
oughly analyze the sequence and structure properties of proteins
identified through chromatin structure analysis. The underlying
mechanisms and functions of the passage of chromatin structure
information to transcription correlation and PPI require much
more experimental and computational validations and tests. For
a more decisive evaluation of the GGI and PPI relationship, con-
current measurement of them in the same cells at the single-cell
level would also be extremely valuable.

Methods

CTG algorithm

W denotes the Hi-C contact map normalized by ICE. Before per-
formingCTG, we exclude genomic loci without any detected inter-
actions with others (e.g., the centromere). Therefore, the matrix
elements of input matrix W are either nonzero (with detected in-
teractions) or zero (without detected interactions), and each row
of the matrix is with at least one nonzero element. It is a positive
symmetric matrix and is regarded as the adjacency matrix for a
weighted connected network G(V,E), where the vertices V= {v1,
v2,…vn} denote the nonoverlapping genomic regions, and the edg-
es E= {ei,j} denote the contact strength between pairwise genomic
regions. D is the diagonal degree matrix for the network, where
the matrix element Di,i =

∑n
j=1 Wi,j. A one-step transition proba-

bility matrix P(1) can be derived by row-normalization of W:

P(1) = P = D−1W.

As W is diagonalizable, P is also diagonalizable:

P = ULU−1.

The eigenvectors U= {u1,u2,…,un} reflect the characteristics of the
referencematrix P. From the perspective of spectral analysis, the ei-
genvectors indicate the hierarchy of the network, and the eigen-
vector corresponding to the largest eigenvalue indicates the most
predominant hierarchy level of the network. Specific to genomic
structures, the eigenvectors are, respectively, assigned to hierarchi-
cal structures, such as compartments and TAD structures. In addi-
tion, the local systematic biases are more likely to be assigned to
eigenvectors of small eigenvalues, as they are not global properties.

The k-step transition probability matrix P(k) can be written as
the kth power of P(1):

P(k) = Pk = ULkU−1.

With step number k increasing, eigenvectors associated with the
genomic structure are preserved. Meanwhile, for a larger k, the
contributing proportion of eigenvectors (corresponding eigen-
values) changes, where eigenvectors corresponding to larger
eigenvalues of Λ gradually contribute more, and P(k) highlights
the predominant hierarchy level of the network. P(k) converges
to the invariant distribution quickly, and the difference between
P(k−1) and P(k) decreases sharply, which means P(k) provides less
and less new information with k increasing. An exponential de-
cay is chosen to fit the convergence, and α denotes the attenua-
tion factor. A transition propensity matrix S within k steps is
defined as

S(k) =
∑k
t=1

exp(−at)Pt .

When k approaches infinity, S(k) converges to S (Supplemental
Methods):

S = UL[exp(a)I − L]−1U−1.

I denotes the identity matrix.
Therefore, the properties of S are independent from the value

k. Si denotes the ith row of S and represents the integrated diffusion
propensity of the ith vertex. The L1 norm of Si can be written as

Si‖ ‖1 = lim
n�1

∑
k

exp(−ak) = 1
exp(a)− 1

.

Considering the uniformity of the L1 norm of Si, we quantify the
similarity between pairwise genomic regions i and j by calculating
the L1 distance between Si and Sj. A CTG distance matrix, denoted
as DI, is constructed from the Hi-C contact matrix, and the dis-
tance measures the similarity of pairwise genomic regions by their
diffusion propensity in a genome-wide fashion. CTG distance DIij
between pairwise genomic regions i and j is defined as

DIij = Si − Sj
∥∥ ∥∥

1.

A CTG contact probability matrix, C, is constructed by the rank of
the CTG distance to avoid approximating distributions of the CTG
distance matrix and to make comparison with Hi-C contact prob-
ability. TheCTGdistance is sorted from least to greatest, andweuse
exponential function to normalize rank between (0,1):

C = exp(−rank/n).

Hi-C experiment

Cell culture and fixation

HEK293 cells (American Type Culture Collection) were cultured at
37°C under 5% CO2 in a humidified incubator. We cultured
HEK293 cells in DMEMmedium (Gibco 11965092) with 10% fetal
bovine serum and 1% penicillin–streptomycin. To gather the cells
for Hi-C processing, the cells were washed twice using PBS, de-
tached by adding 1 mL 0.25% trypsin-EDTA (Gibco 25200056) to
their culture dish, centrifuged at 500g for 5 min, and recovered in
PBS buffer. The cells were counted by a cell-counter to determine
the concentration. For sample 0923-4, 1000 cells were extracted
to a 0.5-mL Eppendorf lobind microcentrifuge tube (Eppendorf
32119210) for each sample. For samples 1002-5 and 0923-2,
10,000 cells were extracted.

The cells were then fixed by adding formaldehyde (Sigma-
Aldrich 47608) to a final concentration of 2% for 10 min at
room temperature and then quenched by 0.2 M glycine (Sigma-
Aldrich 50046) for 10 min. The fixed cells were centrifuged at
2500g for 5 min to discard the supernatant and washed with 0.5
mL PBS (Gibco 20012027) once.

Hi-C experiments

Hi-C experiments were performed followingmethods described by
Rao et al. (2014) with some modifications. Briefly, the fixed cell
pallet was lysed in 100 µL Hi-C lysis. The fixed cell pallet was lysed
in 100 µL Hi-C lysis buffer (10 mM Tris-HCl at pH 7.6 [Rockland
MB-003], 10 mM NaCl [Invitrogen AM9760G], 0.2% IGEPAL CA-
720 [Sigma-Aldrich 238589], 1× cOmplete protease inhibitor
[Roche 04693116001]) on ice for at least 30 min. The tubes were
centrifuged to remove all the supernatant. Fifty microliters of
0.5% SDS (Invitrogen 15553027) was added to each tube and incu-
bated for 20 min at 65°C. To quench the reaction, 25 µL of 10%
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Triton X-100 (Sigma-Aldrich T8787) was added and mixed by pi-
petting up and down several times. The tubes were then incubated
for 20 min at 37°C. To perform chromatin digestion, 10 µL 10×
NEBuffer2 (NEB B7002S), 10 µL 25 U/µL MboI (NEB R0147L),
and 5 µL water were added to each tube and incubated with rota-
tion for 24 h at 37°C. MboI enzyme was inactivated for 20 min
at 62°C. Fill-in mix that contains 14 µL 0.4 mM biotin-dATP
(Invitrogen 19518018), 0.17 µL 10 mM dTTP (NEB N0446S),
0.17 µL 10 mM dGTP (NEB N0446S), 0.17 µL 10 mM dCTP (NEB
N0446S), and 3 µL 5 U/µL DNA polymerase I large (Klenow) frag-
ment (NEBM0210V) was added and incubated for 45 min at 37°C
with rotation. Next, 12 µL 10% Triton X-100, 1.5 µL 100× BSA
(NEB B9000S), 5 µL 10× T4 DNA ligase reaction buffer (NEB
B0202S), 2 µL 400 U/µL T4 DNA ligase (NEB M0202V), 10 µL 10
mMATP (NEB P0756S), and 2 µLwater were added to each sample,
and the ligation reaction was performed by incubating with rota-
tion for 24 h at room temperature.

Library construction

After ligation, DNA fragments were released by the addition of 15
µL 10% SDS and 30 µL Proteinase K (Qiagen 19133) to each tube
followed by incubation for 3 h at 50°C. The DNA fragments were
purified by Ampure XP beads (volume ratio 1:1; Beckman
Coulter A63881), and the DNA fragments were eluted in 27 µL wa-
ter. Tagemtation was performed by adding 4 µL 8× TD buffer (80
mM Tris-HCl at pH 7.6, 40 mM MgCl2 [Invitrogen AM9530G],
80% N,N-dimethylformamide [Sigma-Aldrich D4551]) and 1 µL
TTEmixV50 Tn5 enzyme (Vazyme TD501) to the 27-µLDNA tem-
plate. The tubes were incubated for 1 h at 55°C. To stop the reac-
tion, 8 µL 5× TS (Vazyme TD503) was added to each tube and
incubated at room temperature for 5 min. To prepare Dynabeads
M-280 streptavidin (Invitrogen 11206D) for the capture of ligation
junctions, 25 µL streptavidin beads was washed by 1× BWbuffer (5
mMTris-HCl at pH 7.6, 0.5mMEDTA [Invitrogen AM9260G], 1M
NaCl) and resuspended in 13 µL 4× BW buffer (20 mM Tris-HCl at
pH 7.6, 2 mM EDTA, 4 M NaCl) for each sample. The beads were
then mixed with 40 µL segmentation mix and incubated over-
night with rotation at room temperature. The streptavidin beads
were washed twice with 1× BW buffer, washed twice with 10
mM Tris-HCl (pH 7.6), and resuspended in 20 µL 10 mM Tris-
HCl (pH 7.6). PCR amplification was performed by the addition
of 5 µL 10 µM Nextera index mix(Vazyme TD203) and 25 µL Q5
high-fidelity 2× master mix (NEB M0492S) to the 20 µL sample.
The PCR program is available in the Supplemental Methods.

Post-PCR purification was performed using Ampure XP beads
(0.8 times the volume of the PCR mix) according to the manufac-
turer’s instructions.

Library QC and sequencing

The libraries were quantified using Qubit 1× dsDNA HS assay kits
(Invitrogen Q33230), and the size distribution was assessed using
a 5200 fragment analyzer system (Agilent M5310AA). The quali-
fied libraries were then quantified by qPCR and sequenced by a
2× 150-bp paired-end run on a NovaSeq 6000 system (Illumina).

Sequencing data processing

Paired-end reads were first under adaptor trimming using cutadapt
(version 2.10) (Martin 2011) with default arguments. Reads <20 bp
were filtered out after adapter trimming. Trimmed reads were
mapped to Genome Reference Consortium Human Build 37
(hg19; downloaded from UCSC, https://hgdownload.soe.ucsc
.edu/goldenPath/hg19/bigZips) and processed byHiC-Pro (version

2.11.4) (Servant et al. 2015) using default settings. The contactma-
trix extracted by HiC-Pro were then used in downstream analysis.

Contrast ratio

The Sobel operator is a discrete derivative operator for edge detec-
tion, which is defined as

Sx =
−1 −2 −1
0 0 0
1 2 1

⎧⎨
⎩

⎫⎬
⎭, Sy =

−1 0 1
2 0 2
−1 0 1

⎧⎨
⎩

⎫⎬
⎭.

Convolutionwas performed on a distancemap Iwith the Sobel op-
erator as the kernel:

Gx = Sx∗I,
Gy = Sy∗I,

G =
����������
G2

x +G2
x

2
√

.

Distinct edges will be emphasized by G for a distance map with
“chess-like squares.” Therefore, G reflects the contrast ratio of the
genomic “squares” with distinct edges over their proximal neigh-
bors, and the mean of G is defined as the overall contrast ratio of
the distance map.

Laplacian eigenmaps

Given a CTG distance map I, it is transformed into weight matrix
W by an exponential kernel:

A = exp(−mI).

μ reflects the scale of genomic structure we focused on. A large μ
amplifies weights of short distance, and a small μ amplifies weights
of long distance. To avoid the impact of uneven degree distribu-
tion, the normalized Laplacian L is constructed:

L = I − D−1/2AD−1/2,

where D is the degree matrix for W.
L is diagonalizable, and the bottom three eigenvectors, E0, E1,

and E2, are computed. E0 is excluded as it is not informative:

Y = E1
E2

[ ]
D−1/2.

The coordinates for n genomic regions {y1|y2|…|yn} ∈R2 are ac-
quired by converting the columns of Y into 2D vectors:

[y1|y2|. . .|yn] = Y.

Genomic neighborhood and csGGIs

The neighborhood for a given genomic region is defined by its ra-
dial distribution function (RDF), taking a small proportion of ge-
nomic regions within the neighborhood. The diameter of the
neighborhood is determinedby boundaryof the highest character-
istic peak, where the slope of the tangent line of the cumulative
RDF is calculated, and the tangent linewith the largest slope is cho-
sen as a guideline. The diameter is quantified by the point that the
guideline intersects with the x-axis. The neighborhood for a given
genomic region is then settled. Pairwise genomic regions within
each other’s neighborhood are defined to have GGIs.

The fold-change of the CTG distance between tumor samples
and normal samples is calculated, where m denotes the mean
of the fold-change and σ denotes the standard deviation. The
csGGIs are GGIs from tumor samples with the extreme change
in CTG distance (fold-change <m−3σ, according to the 3σ rule).
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Gene function analysis

GO enrichment analysis of all the given gene clusters in this work
was conducted usingDAVID (https://david.ncifcrf.gov). Individual
gene functions were obtained from GeneCards (https://www
.genecards.org). Cancer genes were obtained from COSMIC
(https://cancer.sanger.ac.uk/cosmic).

Visualization

The PyMOL program (version 1.8, https://pymol.org/2/) was used
to visualize the genomic structure (Xie et al. 2017) in Figure 1. The
VMD program (Humphrey et al. 1996) was used to render the pro-
tein structure.

Data sets

Hi-C data

For normal and tumor colon samples, we used Hi-C data obtained
from the NCBI Gene Expression Omnibus (GEO; https://www
.ncbi.nlm.nih.gov/geo/) accession number GSE133928: The
normal samples are BRD3162N-sb, BRD3179N, BRD3187N, and
BRD3462N; the tumor samples are BRD3162, BRD3179,
BRD3187, and BRD3146. For the HCT116 cell line, we used Hi-C
data fromGEOGSE133928. For theMCF-7 andMCF-10A cell lines,
we used the sample from GEO GSE165570. Hi-C matrices were
normalized using the ICE algorithm (Imakaev et al. 2012).

Gene expression data

We downloaded all available tumor–normal pairwise somatic ex-
pression data for patients from the TCGA GDC data portal (https
://portal.gdc.cancer.gov) and selected expression data with more
than 10 patients for 17 cancer types/subtypes. All expression
data were converted to transcripts per million (TPM) format.

PPI data

To build a comprehensive protein–protein interactome, we assem-
bled PPIs from three sources: (1) PPIs from the STRING project
(https://www.string.com), (2) HCT116-related PPIs from the
BioPlex project, and (3) MCF-10A-related and MCF-7-related PPIs
from Kim et al. (2021). The cell-specific PPIs were determined
from the second and third sources with PPI score≥0.65 and eight-
fold or more change.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE233166. CTG source codes and scripts are available at GitHub
(https://github.com/PKUGaoGroup/CTG.git) and as Supplemental
Code.
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