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Three-dimensional (3D) chromatin structure has been shown to play a role in regulating gene transcription during biolog-

ical transitions. Although our understanding of loop formation and maintenance is rapidly improving, much less is known

about the mechanisms driving changes in looping and the impact of differential looping on gene transcription. One limi-

tation has been a lack of well-powered differential looping data sets. To address this, we conducted a deeply sequenced Hi-C

time course of megakaryocyte development comprising four biological replicates and 6 billion reads per time point.

Statistical analysis revealed 1503 differential loops. Gained loop anchors were enriched for AP-1 occupancy and were char-

acterized by large increases in histone H3K27ac (over 11-fold) but relatively small increases in CTCF and RAD21 binding (1.26-

and 1.23-fold, respectively). Linear modeling revealed that changes in histone H3K27ac, chromatin accessibility, and JUN

binding were better correlated with changes in looping than RAD21 and almost as well correlated as CTCF. Changes to epi-

genetic features between—rather than at—boundaries were highly predictive of changes in looping. Together these data

suggest that although CTCF and RAD21 may be the core machinery dictating where loops form, other features (both at

the anchors and within the loop boundaries) may play a larger role than previously anticipated in determining the relative

loop strength across cell types and conditions.

[Supplemental material is available for this article.]

The three-dimensional (3D) organization of chromatin is thought
to play an important role in transcriptional regulation and has
been implicated in many biological processes, including cellular
differentiation and response to external stimuli (Dixon et al.
2015). Whereas several types of 3D chromatin structures exist,
chromatin loops are of particular interest as they are thought to
regulate gene expression by bringing distal regulatory elements
(e.g., enhancers) into close physical proximity with gene promot-
ers via point to point interactions. Loop anchors are typically
enriched for enhancers and promoters and correlate with
differences in gene expression (Kagey et al. 2010; Kim and Dean
2012; Grubert et al. 2020). Aberrations to chromatin looping are
associated with a variety of human diseases and developmental
disorders such as Cornelia de Lange syndrome (Panarotto et al.
2022), polydactyly (Lettice et al. 2003; Paliou et al. 2019), and can-
cer (Kon et al. 2013; Ahn et al. 2021). Whereas the basic mecha-
nisms of loop formation have been established, major questions

remain regarding themechanisms driving differential looping dur-
ing biological development and their functional impact.

Themajority of chromatin loops are thought to form through
a process called loop extrusion, in which the cohesin complex is
loaded onto DNA and reels in chromatin until it reaches conver-
gently bound CTCF proteins (Sanborn et al. 2015). In rare circum-
stances, loops can form through noncanonical mechanisms
including phase separation (Krivega and Dean 2017; Monahan
et al. 2019; Ahn et al. 2021) or binding of lineage-specific factors
like LDB1 (Krivega and Dean 2017; Monahan et al. 2019; Ahn
et al. 2021). Although chromatin loops have been shown to
change over cellular transitions, the mechanisms that govern
these structural changes, and the impact of these changes on
gene expression, remain poorly understood (Rao et al. 2017;
Jeppsson et al. 2022).

The relationship between looping and gene expression is
even less clear. Cell type–specific loops correlate with differential
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expression patterns, supporting a role for loops in gene regulation
(Rao et al. 2014; Hu et al. 2021; Sey et al. 2022). Moreover, forced
looping between enhancers and promoters at select loci has been
shown to activate transcription (Rupon et al. 2013; Deng et al.
2014). However, several recent studies have called the role of loops
in regulating gene expression into question. Live cell imaging of
looping between SOX2 and an enhancer known to regulate its ex-
pression showedno correlation between enhancer-promoter prox-
imity and gene transcription (Alexander et al. 2019). In another
study, rapid and thorough degradation of cohesin led to a com-
plete removal of cohesin-driven loops in human cancer cells
with only a minor impact on gene expression (Rao et al. 2017).
In summary, the degree to which chromatin looping regulates
gene expression is still unresolved.

One impediment to answering these questions is that identi-
fying differential loops between cells and conditions remains chal-
lenging. Because of the depth of sequencing required for Hi-C data
sets, the statistical requirements of differential analysis, and the
cost of DNA sequencing, most existing differential looping studies
lack the statistical power to adequately identify differential loops.
And without comprehensive and rigorously defined sets of differ-
ential loops, it is challenging to determinewhatmechanisms drive
differential looping and what transcriptional impact they have.

To address this gap, we generated a deeply sequenced Hi-C
data set characterizing the differentiation of K562 cells into a
megakaryocyte-like state. By sequencing over 18 billion reads
across three time points and four biological replicates, we achieved
a statistical power of roughly 0.932 and identified 1503 differential
loops. Generation and intersection with accompanying maps of
chromatin accessibility, histone acetylation, transcription factor
(TF) binding, and gene expression revealed insights into both
themechanisms and the functional impacts of differential looping
during cellular differentiation. We find that regulatory features
both at and between loop anchors correlate with changes in
loop strength. Finally, we show that incorporating H3K27 acetyla-
tion and chromatin looping dynamics into linear models in addi-
tion to promoter acetylation improves predictions of changes in
gene expression.

Results

Differentiation of K562 cells induces large-scale changes to 3D

chromatin structure across multiple scales

To understand how 3D chromatin structures change over cellular
differentiation, we performed a deeply sequenced, three-time-
point Hi-C time course tracking the differentiation of K562 cells
into a megakaryocyte-like state (Huang et al. 2014). We treated
K562 cells with phorbol 12-myrisate 13-acetate (PMA), which has
been shown to induce a megakaryocyte-like phenotype (Whalen
et al. 1997;Huang et al. 2014), for 0, 6, and 72 h.We confirmeddif-
ferentiation using qPCR for ITGB3, a megakaryocyte marker
(Supplemental Fig. S1A; Pencovich et al. 2011). As K562 cells differ-
entiate into a megakaryocyte-like state, they lose their potential to
differentiate into erythroid cells. We confirmed this with qPCR for
KLF1, an erythroidmarker, which decreases in expression over dif-
ferentiation (Supplemental Fig. S1B; Kuvardina et al. 2015). We
then performed in situ Hi-C on four biological replicates and se-
quenced them to a depth of roughly 6 billion reads per time point
(Supplemental Table S1). We generated Hi-C contact maps using
the Juicer pipeline (Rao et al. 2014), identified compartments using
the EigenVector package (https://github.com/moshe-olshansky/

EigenVector), topologicallyassociatingdomains (TADs)usingarrow-
head (Rao et al. 2014), and chromatin loopsusing SIP (Supplemental
Fig. S1C; Rowley et al. 2020). Replicates showed high similarity as
measured by principal component analysis (PCA) (Supplemental
Fig. S1D).We identified a totalof33,914 loopsmergedacross all sam-
ples (SupplementalTableS2).Our loopcalls agreedwellwithexisting
3D chromatin and functional data. For example, 98% of the loops
identified by Belaghzal were identified in our study (Supplemental
Fig. S2A,B; Belaghzal et al. 2021). In addition, we found that 32%
of the Perturb-seq pairs were supported by a loop in our data, and
69% of the CRISPRi pairs were supported by a loop (Supplemental
Table S3; Fulco et al. 2019; Gasperini et al. 2019).

Visual inspection of the data revealed clear changes at multi-
ple scales including nuclear compartments, TADs, and chromatin
loops (Fig. 1A–C). To assess the sequencing depth and replicates re-
quired to achieve sufficient statistical power, we analyzed our data
set using the RNASeqPower package (Hart et al. 2013). Using our
dispersion of 0.0019, median sequencing depth of 38 counts per
million (CPM) per loop, and an alpha value of 0.05 divided by
33,914 loops to account for multiple hypothesis testing, the statis-
tical power to detect twofold changes was 0.932, which is generally
considered to be well-powered (Fig. 1D; Cohen 1992).We used the
dispersion from our Hi-C data to model predicted statistical power
across multiple different sequencing depths and numbers of repli-
cates (Fig. 1D). Holding sequencing depth per replicate constant,
we found that decreasing to three or two replicates reduced the
power estimates to 0.762 and 0.416, respectively. To determine
how this increase in power translated into the number of differen-
tial loops,we subsampled our data tomultiple depths and analyzed
it with two, three, or all four replicates (Fig. 1E). Using our full data
set of four biological replicates (∼900 million reads per replicate),
we identified 1503 differential loops using DESeq2 (Love et al.
2014) with a log2(fold-change) (LFC) greater than 1.5 (adjusted P-
value< 0.05) compared to only 698 and 45 identified with three
or two replicates, respectively (Fig. 1E). This underscores how criti-
cal sequencing depth is in the sensitivity to detect differential
loops. Finally, we confirmed the quality of these differential loops
through aggregate peak analysis (Rao et al. 2014) (APA), showing
that gained loopshavehigher contact at 72versus 0h, and lost loops
have higher contact at 0 versus 72 h (Fig. 1F).We also identified dif-
ferential loops with the alternative approach of using HiC-DC+
(Sahin et al. 2021), and found that our differential loop calls over-
lapped very strongly with HiC-DC+ (Supplemental Fig. S2C). The
differential loops that were unique to either DESeq2 or HiC-DC+
hadoverall weakerP-valueswhen compared to the differential loops
that were identified by both methods (Supplemental Fig. S2D).

Most loops were bound by CTCF at least at one anchor, yet
26.61% of loops were not bound by CTCF. We detected an equal
proportion of CTCF and non-CTCF loops at each of our time
points, and in the merged map. Differential loops were more en-
riched for CTCF than static loops (Supplemental Fig. S3A–C). We
compared the differential looping events observed between the 6
and 72 h treatments. Only 118 loops were differential between 0
and 6 h, and the majority of these were also differential between
0 and 72 h (Supplemental Fig. S3D,E).We found no significant dif-
ferences in their anchor CTCF enrichment (Supplemental Fig.
S3F), their significance in our DESeq2 analysis (Supplemental
Fig. S3G), or their size distributions (Supplemental Fig. S3H).
There was a slight increase in absolute log2(fold-change) for 72 h
differential loops (Supplemental Fig. S3I). Given thesemostly non-
significant differences between 6 h and 72 h differential loops, we
decided to focus our comparisons on 72 h versus 0 h.
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Genes at the anchors of gained, but not lost, loops show

concordant changes in expression

To assess the potential transcriptional impacts of differential loops,
weperformedRNA-seq across eight timepoints (0, 0.5, 1.5, 3, 6, 24,
48, and 72 h) in K562 cells treated with PMA. Gene expression
levels of biological replicates showed very strong similarities
(Supplemental Fig. S4A–D). DESeq2 analysis identified 3190 differ-
ential genes (adjusted P-value<0.05, LFC>2) which were grouped
into six clusters using k-means clustering (Fig. 2A). The biggest and
most unique changes were observed at 6 and 72 h (1619 differen-
tial, 527 unique genes after 6 h; 1925differential, 236unique genes
after 72 h), which coincide exactly with our selected Hi-C time
points. Consistent with the differentiation of these cells into a
megakaryocyte-like state, the up-regulated genes were enriched
for Gene Ontology (GO) terms relating to cell differentiation, cell
adhesion, andmorphogenesis, andpathways including focal adhe-
sion, hematopoietic cell lineage, and regulation of actin cytoskele-
ton (Supplemental Fig. S4E,F). Up-regulated genes include
megakaryocytemarkersVWF, FLI1, and ITGB3, further supporting
acquisition of a megakaryocyte-like phenotype.

To determine the relationship between differential loops and
gene transcription, we intersected the promoters of differential
genes with differential loop calls (Fig. 2B). We found that 9%
(126 of 1503) of differential loop anchors overlapped a differential
gene promoter. We also found that 93% (75 out of 81) of gained
loops that overlapped a differential gene promoter showed the
same direction of change as the gene (P=2.91×10−16, binomial
test) (Fig. 2C). This is consistent with our previous work in macro-
phages (Phanstiel et al. 2017; Reed et al. 2022) and suggests that
gained loops are relevant in increasing transcription of genes at
their anchors. Up-regulated genes found at the anchors of gained
loops include TGFB1 and THBS1, both of which are megakaryo-
cyte-related (Villeval and Vainchenker 2020; Wang et al. 2021).
An example of a gained loop with a concordant increase in gene
expression and chromatin accessibility is present at the INHBA lo-
cus (Fig. 2D).

In contrast, lost loops that overlapped a differential gene pro-
moter showed no such concordant behavior, with only 33% (15
out of 45) showing the same directional change as the gene (P=
0.04, binomial test) (Fig. 2C). These findings again agree with

A B C

D E F

Figure 1. Deeply sequenced Hi-C experiments provide sensitive detection of differential chromatin loops. (A) 20Mb region on Chromosome 7 at 100-
kb resolution comparing K562s at 0 h (top) to differentiated megakaryocytes at 72 h (bottom). Signal tracks show compartmental eigenvector calls
(light blue = compartment A, dark blue = compartment B). The arrow points to qualitative changes in compartmentalization. (B) Zoom-in of a 1.6
Mb region of Chromosome 7 at 25-kb resolution. TAD calls are indicated by ranges below the Hi-C map for each cell type (dark blue = cell type–specific,
gray = shared across cell types). (C ) Zoom-in of a 690 kb region in B at 10-kb resolution showing a regionwith differential loops. Arches indicate loop calls
(dark blue = cell type–specific, gray = shared across cell types). (D) Statistical power modeled across various theoretical sequencing depths at two, three,
and four biological replicates. Red line indicates themedian sequencing depth per loop (CPM: counts per million). (E) Actual number of differential loops
called at multiple different subsampled sequencing depths for different numbers of replicates (M: millions). (F ) Aggregate peak analysis for all loops,
gained loops, and lost loops.
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our previous work in macrophages (Phanstiel et al. 2017; Reed
et al. 2022), where we did not see a significant decrease in expres-
sion of genes at lost loop anchors, suggesting that loss of looping is
not sufficient to decrease transcriptional output (Phanstiel et al.
2017; Reed et al. 2022). This is also consistent with work by Rao
et al. that found almost no change in gene transcription following
virtually complete abrogation of loop extrusion (Rao et al. 2017).
Taken together, this suggests that loss of looping is generally not
sufficient to induce a decrease in transcriptional output of genes
at loop anchors. The anticoncordance we observed at loop an-
chors was also observed when looking at genes found between
loop anchors; 45% of lost loops (228 out of 503) had a differential
gene between their anchors, 64% of which (146 out of 228) over-

lapped a gene that was increasing (P=2.69×10−5, binomial test)
(Supplemental Fig. S4G). Genes that overlapped the interior of
lost loops were expressed at significantly higher levels compared
to genes within gained loops (P=1.85×10−23, Wilcoxon rank-
sum test) (Supplemental Fig. S4H). This also agrees with our
work in macrophages (Phanstiel et al. 2017; Reed et al. 2022)
showing that extremely high expression of genes within loop
boundaries was associated with a weakening of the loop, suggest-
ing that high transcription at loop interiors might antagonize
loop extrusion. Indeed, several other studies provide evidence
that transcription can serve as a barrier to and/or interfere with
loop extrusion (Heinz et al. 2018; Brandão et al. 2019; Gu et al.
2020).

A

E F H

G

B

C

D

Figure 2. Gene expression and chromatin accessibility changes at differential loops. (A) RNA-seq normalized counts for all differential genes. Clusters are
indicated by bars on the right side of the heatmap. Line plots show the mean expression per cluster. (B) Pie charts showing the proportion of differential
loops (left) and genes (right). (C) Concordance analysis for the 126 differential loops that had a differential gene promoter at an anchor. Asterisk represents
P <0.05 (binomial test). (D) Example region of a gained loop with increased gene expression and chromatin accessibility at the INHBA locus. (E) ATAC-seq
normalized counts for all differential peaks. Clusters indicated by bars on the right side of the heatmap. Line plots show the mean expression per cluster.
(F) Pie charts showing the proportion of differential loops (left) and ATAC peaks (right). (G) Concordance analysis for the 647 differential loops that had a
differential ATAC peak at a promoter. Asterisk represents P<0.05 (binomial test). (H) TF motif enrichment analysis on all ATAC peaks at all loops (top), con-
cordant gained ATAC peaks at gained loop anchors (middle), and concordant lost ATAC peaks at lost loop anchors (bottom).
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Gained loops are associated with increased accessibility at AP-1

motifs

To assess which TFs were involved in loop-based regulation, we
mapped chromatin accessibility using ATAC-seq in K562 cells
treated with PMA for 0, 6, and 72 h. Differential chromatin acces-
sibility analysis with DESeq2 revealed 37,609 differential peaks
(adjusted P-value, LFC>2), which we grouped into four clusters
based on whether the peak reached maximal or minimal normal-
ized counts at 6 or 72 h (Fig. 2E). As was the case with gene expres-
sion, differential chromatin accessibility peaks were highly
concordant at the anchors of gained, but not lost, loops (Fig. 2F,G).

To understand the mechanisms driving differential looping,
we performed TF motif enrichment on various sets of ATAC peaks
at loop anchors (Fig. 2H). As expected, CTCF was the most en-
riched motif at ATAC peaks overlapping all loop anchors, which
is consistent with its known role in loop formation and mainte-
nance. In contrast, peaks of gained chromatin accessibility at
gained loop anchors were highly enriched for Activator Protein 1
(AP-1) family members. This is consistent with our previous
work showing the enrichment of AP-1 at the anchors of gained
loops during macrophage development (Phanstiel et al. 2017). In
agreement with these findings, members of the AP-1 transcription
factor family tended to be up-regulated early/midway during the
time course (Supplemental Fig. S5A). Peaks of decreased chromatin
accessibility at lost loop anchors were enriched for GATA family
members, albeit to a far lesser degree compared to the enrichments
observed at all or gained loops. GATA TFs have a well-established
role in mediating cell fate decisions in myeloid cell development
(Stachura et al. 2006; Tijssen and Ghevaert 2013; Noh et al.
2015). AP-1 family members were also found to be enriched
more at proximal (promoter) than distal loop anchors. Instead,
members of NF-kB were more enriched at distal loop anchors
(Supplemental Fig. S5B,C).

Differential looping is associated with chromatin features both

at and between loop anchors

To gain further insight into the mechanisms driving differential
looping, we generated matched CUT&RUN data sets for multiple
TFs and histone modifications. Because of the enrichment of
AP-1 motifs at the anchors of gained loops, we performed
CUT&RUN for JUN, amember of the AP-1 family.We also targeted
histone H3K27 acetylation, which is commonly used to identify
putative enhancers, and CTCF and RAD21, proteins with known
roles in DNA looping. For each assay, we performed differential
analysis and compared how each differential feature corresponds
to differential looping (Supplemental Fig. S6A–D). For all features,
weobserved statistically significant concordance at gained loopan-
chors (Fig. 3A,B). With the notable exception of RNA, all features
were also concordant at lost loop anchors, albeit to a lesser degree.

Investigating these trends more closely revealed two promi-
nent features. First, although all features increased at gained loop
anchors, some showed bigger changes than others. For instance,
the canonical mediators of chromatin looping, CTCF and
RAD21, increased by only 1.26- and 1.23-fold, respectively, at
gained loop anchors. In contrast, histone H3K27ac increased
nearly 14-fold at gained loop anchors (median=13.86-fold).
Chromatin accessibility and JUN binding increased by modest
amounts, 1.72- and 2.16-fold, respectively. Second, although in-
creased signals were observed at gained loop anchors, they were
also observed between loop anchors. For example, chromatin ac-

cessibility and histone H3K27ac peaks within the boundaries of
gained loops increased by 2.99- and 11.52-fold, respectively.

Examples of these trends are evident at the TBX3 locus (Fig.
3C). Gained enhancer-promoter looping is associatedwith increas-
es in CTCF and RAD21 occupancy at loop anchors as well as large
gains in chromatin accessibility and JUN occupancy at, between,
and even beyond loop boundaries. Expression of TBX3 itself, a TF
known to regulate developmental transitions (Weidgang et al.
2013), increases by over 50-fold. Taken together, these results
suggest that differential looping may involve more than just alter-
ations to CTCF and RAD21 occupancy. Theymay also bemediated
by chromatin-modifying proteins and condition-specific TF bind-
ing events that act both at loop anchors and within the loop
interior.

Changes in chromatin features predict changes

in chromatin looping

To explore this further and determine which chromatin features
are themost predictive of changes in chromatin looping, we inves-
tigated how changes in each feature correlated with changes in
looping (Fig. 4A). Despite the relatively small fold change of
CTCFpeaks at differential loop anchors, we found that CTCF occu-
pancy changes had the highest correlation (R2 = 0.189) with loop
log2(fold-change) (Fig. 4A), consistent with the role of CTCF in
the formation and maintenance of loops. However, changes to
multiple features in the loop “interior”—the region in between
the two anchors—also strongly showed strong correlations
with differential looping. Interior chromatin accessibility, histone
H3K27 acetylation, and JUN occupancy had correlations of 0.175,
0.154, 0.127, followed by anchor RAD21 occupancy (R2 = 0.117).
Several features showed very slight negative correlations including
interior gene expression andCTCF occupancy, which is consistent
with each of these having the ability to antagonize loop extrusions
as previously described (Brandão et al. 2019; Jeppsson et al. 2022;
Banigan et al. 2023). In addition to correlations with changes in
looping,manyof the features are highly correlatedwith each other
(Supplemental Fig. S7A).

Given the relationships between changes in looping andmul-
tiple features both at and between loop anchors, we next asked if
we could build a better model to predict differential looping using
multiple features simultaneously. We used the caret package to
perform LASSO regression (Kuhn 2008; Friedman et al. 2010).
We selected 1127 differential loops and 2254 nondifferential loops
that were matched for distance and contact frequency as our train-
ing set and held out 376 differential loops and 752 nondifferential
loops as a testing set to evaluate our model. We then used LASSO
with 10 cross-validations to generate a predictive model using var-
ious sets of features (Fig. 4A) and evaluated it by applying it to our
test set. Using all anchor features improved the correlation to R2 =
0.279, far higher than using the best single feature alone (CTCF an-
chor max, R2 = 0.189; Fig. 4B). Using only interior features yielded
an even more accurate model with an R2 of 0.317 (Fig. 4B).
Combining all features at both the anchors and interiors produced
the strongest predictions with an R2 of 0.405 (Fig. 4B,C). Further,
the model accurately predicted the signs of 91% of gained loops
and 72% of lost loops. Our predictions are much stronger for
CTCF loops than non-CTCF loops, where CTCF loops had a corre-
lation of R2 =0.413 (Supplemental Fig. S7B) and non-CTCF loops
had a much weaker correlation of R2 =0.28 (Supplemental Fig.
S7C). Additionally we used a random forest regression model
(Breiman 2001) to predict changes in looping and found similar
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results (Supplemental Fig. S7D). Whereas there were some differ-
ences in the importance of each of the individual features, the
three most important features from both the linear models and
random forest were the same (anchor CTCF, interior ATAC, and in-
terior H3K27ac) (Supplemental Fig. S7E). The predictive power of
histoneH3K27 acetylation, chromatin accessibility, and JUNoccu-
pancy is surprising, and especially so given that the highest corre-
lations were observed within loop boundaries rather than at
anchors themselves. This may suggest that epigenetic changes be-
tween anchor sites play a significant role in modulating loop
strength. However, we cannot rule out the participation of other
TFs and architectural proteins that we did not directly measure
with CUT&RUN.

Changes in histone acetylation and chromatin structure predict

changes in gene expression

Predicting gene expression patterns from chromatin features is a
long-standing and difficult problem in the field of gene regulation.
Recent advances have been made by incorporating both 2D (e.g.,
histone H3K27 acetylation) and 3D (e.g., Hi-C contacts) features
into the activity-by-contact model of gene regulation (Fulco
et al. 2019). Thismodel has been successful in assigning enhancers
to their target genes but has typically been applied to resting cells

rather than biological transitions. A notable exception is the work
of Beagan et al. that correlated changes to ABC score to changes in
gene expression (Beagan et al. 2020) albeit at only a handful of ge-
nomic loci. We leveraged this approach to determine if chromatin
dynamics could help predict changes in gene expression in a
genome-wide fashion.

To evaluate our ability to predict changes in gene expression,
we built and evaluated four linearmodels over 1000 permutations.
In the first model, changes in gene expression were predicted
based solely on changes in promoter H3K27ac, which performed
well with amedian R2 of 0.417 (Fig. 5A). In the secondmodel, add-
ing information from the nearest enhancer slightly decreased the
predictive power (Wilcoxon rank-sum test on permutations, P=
1.99×10−6; median R2 =0.412; Fig. 5B). In contrast, in the third
model, by combining H3K27ac information from both the pro-
moter and enhancers that were physically looped to the promoter,
the median R2 increased significantly to 0.444 (Wilcoxon rank-
sum test on permutations, P=1.99×10−122; Fig. 5C). We then cal-
culated a modified ABC score (see Methods) by taking the product
of loop strength and distal enhancer activity for each looped en-
hancer-promoter pair, summing across all enhancers that were
looped to each gene, and then calculating the fold change.
Finally, the last linear model built using both promoter histone
H3K27ac and change in ABC score increased the median R2 even

A B

C

Figure 3. Changes in chromatin features are correlated with changes in looping. (A) Intersections of each feature at the loop anchors and interior for
gained, static, and lost loops (dark blue = anchor, light blue = interior). All plots are on the same scale for the y-axis, showing log2(fold-change).
Wilcoxon rank-sum test was performed for each feature to compare gained/lost anchors to static anchors and gained/lost interiors to static interiors; as-
terisks represent P<0.05. (B)Median unshrunken log2(fold-change) of each data set at gained loops (left), and lost loops (right). Asterisks represent P<0.05,
dots represent P>0.05. (C ) 600-kb region around a loop at the TBX3 locus at 10-kb resolution. The arrow is pointing to the gained loop. Signal tracks for
ATAC-seq, H3K27ac, JUN, CTCF, RAD21, and RNA for K562s at 0 h and differentiated megakaryocytes at 72 h show increased occupancy for all features.
Gray bars indicate 10-kb loop anchors.
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further to 0.453 (Fig. 5D), a significant improvement compared to
all other models (Wilcoxon rank-sum test on permutations, P=
1.95×10−182; Fig. 5E,F). The improvement was even more drastic
when building and applying the model to specifically differential
genes and differential loops. For the models built on differential
loops and differential genes, R2 values improve from 0.674 (pro-
moter onlymodel) to 0.763 for the promoter plus ABC scoremodel
(Supplemental Fig. S8A–E). These findings suggest that alterations
to both enhancer activity and contact frequency can tune tran-
scriptional programs during cellular differentiation. At the same
time, this does not rule out the participation of other TFs and their
abilities to tune gene expression.

Discussion

Collection and integration of deeply sequencedHi-C and other ge-
nomic data characterizing the differentiation of K562 cells into a
megakaryocyte-like state strengthened previous findings and pro-
vided novel observations into the mechanisms and impacts of
changes to 3D chromatin structure. Our results confirmed canon-
ical roles for CTCF and RAD21 in loop establishment and were
consistent with chromatin looping playing a role in transcription-
al activation and/or enhancement; however, these results also
revealed strong correlations between differential looping and
other regulatory features including chromatin accessibility,
histone H3K27 acetylation, and AP-1 occupancy, and found a
lack and/or anticorrelation of gene expression at lost loops.
Differential looping correlated with transcriptional and regulatory
features both at and between loop boundaries. In many cases, the
correlations with internal features were stronger than the correla-
tion with anchor signals. These results raise further questions re-
garding the mechanisms driving differential looping and point
to previously underappreciated roles of molecules other than
CTCF and cohesin.

The correlation between gained loops and the expression
genes at their anchors agrees with many previous studies and
supports the role of chromatin looping in gene activation. The

increased predictive power when incorporating acetylation
dynamics of looped enhancers and the dynamics of loop strength
itself further emphasize this point. In contrast, loss of looping does
not coincide with decreased expression of anchor genes. In fact,
more genes were increasing in expression than decreasing at the
anchors of lost loops. This is consistent with our previous studies
of macrophage development and activation, neither of which
identified a decrease in expression at lost loop anchors (Phanstiel
et al. 2017; Reed et al. 2022). Taken together, this suggests that al-
though loopsmay be involved in transcriptional activation, loss of
looping alone may not be sufficient for transcriptional repression
or decreased expression. This agrees well with previous studies in-
volving rapid depletion of cohesin and subsequent global loss of
loop extrusion-driven loops. Rao et al. 2017 found that loop elim-
ination did not substantially alter gene transcription—as mea-
sured directly using PRO-seq—in human colorectal cancer (HCT-
116) cells. In contrast, loop disruption does inhibit activation of
proinflammatory transcription in macrophages treated with LPS
(Takeuchi and Akira 2010) (a bacterial cell wall component com-
monly used as a model for inflammatory activation), again sug-
gesting that loops do play a role in gene activation. While it is
difficult to fully reconcile these findings, the evidence seems to
be mounting that although increased looping can play a role in
gene activation, events beyond loop disruption are required to
decrease expression levels. One possible explanation is that loop-
ing imparts some sort of regulatory memory that is not erased as
soon as the loop is disrupted. Similar mechanisms (e.g., the kiss-
and-runmechanism) (Karr et al. 2022) have been suggested before.
While these trends are coming into focus, more functional studies
are required to understand the exact role of chromatin looping in
gene activation and repression.

Our data also support the theory that loop loss may be a re-
sult, rather than cause, of changes in gene transcription.
Differential genes within lost loops are significantly biased toward
increased expression. And those increased genes tend to be fairly
highly expressed. We observed these exact same phenomena in
macrophages responding to LPS (Reed et al. 2022). This is

A B C

Figure 4. Changes in chromatin features predict changes in chromatin looping. (A) R2 multiplied by the sign of association for all possible features cor-
related individually against changes in all loops in themodel (top). Heatmap (bottom) is a legend inwhich the feature, position, andmeasure for each bar are
reported (features: A =ATAC, K =H3K27ac, J = JUN, C=CTCF, R = RAD21, T = RNA; positions: A = anchor, I = interior; measures: M=max, S = sum). (B) R2

values calculated for the anchor only, interior only, or all feature models. (C ) Scatterplot showing the predicted loop fold-change versus actual loop
fold-change for the testing data set for looping. (Gray = static loops, teal = gained loops, maroon= lost loops, R2 calculated for all loops included in the
testing data set.)
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consistent with transcription occurring at a high level between
loop boundaries being antagonistic to loop extrusion, something
that is easy to imagine given that both involve fairly large molec-
ular complexes traversing the same stretch of DNA. Indeed several
previous studies have suggested that transcription can act as a mo-
lecular barrier to the loop extrusion process (Heinz et al. 2018;
Brandão et al. 2019; Gu et al. 2020).

We revealed that changes to multiple other chromatin fea-
tures (i.e., chromatin accessibility, histone H3K27 acetylation,
andAP-1occupancy) are roughlyaspredictive as changes to known
loop extrusion-related proteins CTCF and RAD21. The correlation
between looping and these other featureswas strongest for features
within the loop interior, which may provide clues into the nature
of this relationship. One possibility is that increased accessibility,
histone H3K27 acetylation, and AP-1 binding might play a role in
increasing the efficiencyor rate of cohesin loading. This seems con-
sistent with previous findings that suggested that cohesin loading
takes place preferentially at active gene promoters (Kagey et al.
2010), which are also associated with histone acetylation, TF bind-
ing, and chromatin accessibility. It is important to acknowledge
that we cannot rule out the possibility that all of these internal
changes are the result, rather than cause, of differential looping
events.

Despite the findings presentedhere, several limitations of this
studymust be consideredwhen interpreting the data and speculat-
ing about their meaning. First, this study is largely correlative.
Although intersecting the results of this study can provide impor-
tantmechanistic insights, several of the results raise newquestions
that must be addressed by future functional experiments. Second,

in contrast to our previous work (Reed et al. 2022), this time course
lacked the temporal resolution to put regulatory and transcription-
al events in temporal order, whichmakes it difficult to infer the di-
rection of causality between any two features. This was a conscious
decision as the current cost of sequencingmakes it unfeasible to ac-
quire deeply sequenced data sets across deeply sampled time cours-
es; however, this is likely to change soon as sequencing costs
continue to decrease (November 2018; Almogy et al. 2022). The
recent development of Micro-C will also greatly benefit the
resolutionof future studies, therebyallowing for evengreater detec-
tion of differential looping with reduced sequencing costs
(Krietensteinet al. 2020). Finally, although this studyencompassed
a broad number of regulatory features—including ATAC-seq,
which when combined with motif analysis can provide insights
into the bindingpatterns of hundreds of TFs—there are a vast num-
ber of other features thatmay influence looping (e.g., DNAmethyl-
ation and other architectural proteins) for which we are not
measuring nor explicitly accounting for.

Despite these limitations, these findings improve our under-
standing of how different trans regulators and epigenetic features
govern changes in looping, as well as our understanding of the
relationship between looping and gene expression. The deeply
sequenced nature of this differential Hi-C analysis offers a unique-
ly well-powered data set with which to explore a pressing number
of biological questions. Moreover, these data were acquired in one
of themost widely studied human cell lines (K562) for which hun-
dreds of publicly available genome-wide data sets are already avail-
able. As such, this study provides a valuable new resource for future
studies of chromatin biology.

A B E

C D F

Figure 5. Changes in gene expression are explained by combined proximal and distal enhancer activity and loop strength. Scatterplots showing pre-
dicted gene fold change versus actual gene log2(fold-change) (LFC) based on one permutation of (A) promoter H3K27ac LFC alone, (B) promoter
H3K27ac LFC and the nearest enhancer to the promoter’s LFC, (C) promoter H3K27ac LFC and distal looped H3K27ac, and (D) promoter H3K27ac
LFC and the modified ABC LFC (dark gray = differential gene, light gray = static gene). (E) R2 for each model calculated based on 1000 permutations of
splitting the data into training and testing sets. A Wilcoxon rank-sum test was performed to compare each group to the promoter only model; asterisks
represent P<0.05. Red dots represent the single permutation from A–D. (F ) Estimates for each term in each model were calculated based on 1000 permu-
tations of splitting the data into training and testing sets.
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Methods

K562 culture and differentiation

K562s were cultured in RPMI media (Corning 10-040-CV) with
10% fetal bovine serum (FBS) (Gibco 26140079) and 1% penicil-
lin-streptomycin (PS) (Gibco 15140122). Formegakaryocyte differ-
entiation, K562s were plated in either 6-well plates (RNA-seq,
ATAC-seq) or T-175 flasks (Hi-C, CUT&RUN) at a density of 1 ×
105 cells/mL and treated with 25 nM PMA (Sigma-Aldrich
P1585-1MG). After 24 h, the cells become semi-adherent. Cells
were provided with fresh media and PMA after 24 h and 48
h. Cells were collected without treatment or after 6 or 72 h. For
all treatments and library preparations, K562s were thawed and
immediately split into two T-25 flasks to create biological
replicates.

Genomic library preparation

Hi-C libraries were prepared according to the protocol as described
in Rao et al. (2014). RNA-seq libraries were prepared using the
KAPA RNA HyperPrep kit with RiboErase (HMR). ATAC-seq librar-
ies were prepared according to the Omni ATAC-seq protocol de-
scribed in Corces et al. (2017). CUT&RUN libraries were prepared
following existing protocols (Skene and Henikoff 2017) modified
for use with cross-linked cells. Complete descriptions of all geno-
mic library preparations can be found in the Supplemental
Material.

Genomic library processing

All genomic data were processed using in-house pipelines, utiliz-
ing Juicer, FastQC (version 0.11.5, https://www.bioinformatics
.babraham.ac.uk/projects/fastqc/), MultiQC (Ewels et al. 2016),
Trim Galore! (version 0.4.3, https://www.bioinformatics.babraham
.ac.uk/projects/trim_galore/), Salmon (Patro et al. 2017), HISAT2
(Kim et al. 2019), SAMtools (Danecek et al. 2021), deepTools2 (Ra-
mírez et al. 2016), txImport (version 1.2.0) (Soneson et al. 2015),
BWA-MEM (Li and Durbin 2009), MACS2 (Zhang et al. 2008), and
BEDTools (Quinlan and Hall 2010). Complete descriptions of
all genomic library processing can be found in the Supplemental
Material.

Differential analysis

Differential analysis of loops, genes, and peaks were performed
with DESeq2. All significant loops/genes/peaks had an adjusted
P-value<0.05. A log2(fold-change) > 2 was used for differential
genes/peaks and a log2(fold-change) > 1.5 was used for differential
loops. Complete descriptions of all differential analysis can be
found in the Supplemental Material.

Linear models

LASSO regression within the caret package was used to build the
chromatin looping linear model. The base R function lm was
used to build the gene expression linearmodels. Complete descrip-
tions of all linear modeling can be found in the Supplemental
Material.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under SuperSeries
GSE213909. The Hi-C data are available under accession number
GSE214123. The RNA-seq data are available under accession num-

ber GSE214123. The ATAC-seq data are available under accession
number GSE213295. The CUT&RUN data are available under
accession number GSE213908. The code to process and ana-
lyze these data is available at GitHub (https://github.com/
mbond0718/MEGA2023) and as Supplemental Code.
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