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The mass production of the graphics processing unit and the coronavirus disease 2019 (COVID-19) pandemic have provided the 
means and the motivation, respectively, for rapid developments in artificial intelligence (AI) and medical imaging techniques. This 
has led to new opportunities to improve patient care but also new challenges that must be overcome before these techniques are put 
into practice. In particular, early AI models reported high performances but failed to perform as well on new data. However, these 
mistakes motivated further innovation focused on developing models that were not only accurate but also stable and generalizable 
to new data. The recent developments in AI in response to the COVID-19 pandemic will reap future dividends by facilitating, 
expediting, and informing other medical AI applications and educating the broad academic audience on the topic. Furthermore, 
AI research on imaging animal models of infectious diseases offers a unique problem space that can fill in evidence gaps that 
exist in clinical infectious disease research. Here, we aim to provide a focused assessment of the AI techniques leveraged in the 
infectious disease imaging research space, highlight the unique challenges, and discuss burgeoning solutions.
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The global burden of the coronavirus disease 2019 
(COVID-19) pandemic has led to an unprecedented accelera-
tion of data science research focused on digital clinical data 
and medical imaging. Patients with COVID-19 develop a spec-
trum of lung abnormalities, ranging from ground-glass opaci-
ties and crazy paving (interlobular septal thickening) to lung 
consolidation leading to acute respiratory distress syndrome. 
In addition to radiography and computed tomography, acute 
and chronic cardiopulmonary manifestations of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection 
may also be imaged with cardiac magnetic resonance (MR) im-
aging and ultrasonography. In the context of the rapidly chang-
ing pandemic, the data science community broadly applied 
emerging artificial intelligence (AI) tools toward quantitative 
and semiautomated measurement, classification, and interpre-
tation of medical images. This commonly included fundamen-
tal models for deep-learning-based image segmentation and 
machine learning (ML) classification of disease.

Unfortunately, early fervor and broad speculation outpaced 
practical and validated deployment of impactful models that 

were generalizable and not overfit to a geographic area, demo-
graphic group, disease stage, or genetic variant. The number of 
research papers and models in this field grew quickly, and a 
growing need emerged to review and assess the current status 
and impact of efforts. AI tools have been proposed for assisting 
radiologist workflows in resource-challenged settings, optimiz-
ing triage, or quantifying disease severity. However, it is gener-
ally agreed in retrospect that reported model performances may 
be misrepresented and may not generalize to larger more 
diverse populations, disease settings, and geographies.

Although the application of AI methods to imaging patients 
with COVID-19 may prove important in the current pandemic, 
the major scientific impact of this acceleration and lessons 
learned may well be felt indirectly in future broader applica-
tions to other infectious diseases, each with their own disease 
phenotype. It is in this space that AI methods have been less 
successfully applied in the past. The common translational par-
adigm, from bench to preclinical model to the patient, does not 
always apply to the high-consequence infectious disease setting. 
Whereas the human outbreak setting informs epidemiology, 
transmission, infection dynamics, and early characterization 
of human disease, preclinical models are often required to in-
terrogate pathophysiology, mechanisms of disease, and the ear-
ly development of therapeutic countermeasures.

The application of AI methods to preclinical and clinical im-
aging shares some common features and challenges, though the 
unique properties and often varying goals present specific chal-
lenges that will be discussed in this review article. ML methods 
require high-quality training data sets and often need time- 
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intensive and human resource–intensive manual definition of 
disease abnormalities or features in medical images. 
Preclinical modeling and imaging present a unique opportuni-
ty for rigorously controlled experiments, with preinfection 
baseline followed by serial imaging uniquely enabling longitu-
dinal assessment of disease. This enables a focus on specific hy-
potheses and can restrict the influence of confounding factors.

SCOPE AND APPROACH

We aim to provide an overview and assessment of the AI tech-
niques leveraged in the infectious disease imaging research 
space. We also aim to highlight the unique challenges of this re-
search space as it applies to humans and animal models of dis-
ease. This review will focus on organ–scale imaging (eg, chest 
radiography, computed tomography [CT], MR imaging, and 
positron emission tomography [PET]) in the context of infec-
tious disease research. Literature searches were conducted us-
ing PubMed and Google Scholar. with attention to both 
preclinical and clinical applications and models. Key terms 
used throughout the article are defined in Table 1.

EARLY APPLICATIONS OF AI IN INFECTIOUS DISEASE 
RESEARCH

One of the earliest attempts at a computer-based clinical deci-
sion support system for infectious diseases was MYCIN, which 
used >500 rules to determine the bacterial species responsible 
for an infection, provide a diagnosis, and recommend an anti-
body regimen [1]. However, it eventually became clear that the 
decision process clinicians make is far too complex to encode in 
explicitly defined rules. Furthermore, inputting a long series of 
answers to questions was not easily integrated into clinical 
practice [2]. ML has the potential to solve many of these issues 
by using large amounts of data to automatically derive a logic 
system for providing clinical decision support. Initial applica-
tions of AI to aid in clinical decision making on infectious dis-
eases focused on structured and easily accessible types of 
medical data, including vital signs, laboratory measures, demo-
graphics, medical history, and physical examination data [2]. 
More complex (unstructured) data types, such as images, par-
ticularly 3-dimensional (3D) and time–series images, are diffi-
cult to quantify and thus require specialized AI methods to take 
full advantage of the wealth of information hidden within.

CURRENT AI APPROACHES FOR THE STUDY OF 
INFECTIOUS DISEASES USING IMAGING

As AI computer vision techniques have grown, so have their 
applications to infectious disease imaging. Imaging tasks that 
have been automated using AI have been directed toward 2 
fundamental questions: “Where is it?” (segmentation) and 
“What is it?” (classification). Segmentation is the process of 
identifying the pixels in an image that correspond with a region 

of interest. Once an image is segmented, further analyses can be 
focused on specific organs or tissues. Manual segmentation of 
images is a time-consuming process, particularly for high- 
field-of-view and high-resolution 3D images commonly produced 
by modern medical imaging modalities, such as CT and MR im-
aging. Manual segmentation is even more time-consuming for 
modalities that image over time, such as functional MR imaging 
and PET. Therefore, the development of reliable automated seg-
mentation methods is critical to advancing infectious disease im-
aging research and improving clinical practice.

Table 1. Definitions of Key Terms

Term Definition

AI Simulation of human intelligence in machines

Artificial neural networks Algorithm inspired by biological neural 
networks in which interconnected neurons 
process information

Convolutional neural 
networks

Type of neural network that uses a series of 
learnable convolutional layers to distill 
spatial features from imaging data

Deep learning A subset of ML, algorithms that use an 
artificial neural network to extract 
high-level features from data; these 
methods can be used to distill complex 
data types, such as images and text for 
predictive tasks

Labeled data Data that include class labels; for example, if 
the task is to predict the fruit name (class 
label) given the color and shape, the 
labeled data would include the fruit name, 
color, and shape

Low/poor-quality labeled data A labeled data set wherein the label is not 
accurate for some data points

ML A subset of AI, algorithms that learn without 
explicit instructions

Model generalizability The ability for a model to perform well on new 
data it has not been trained on

Partially labeled data A data set that includes some combination of 
labeled and unlabeled data

Preclinical model Nonhuman (typically animal) model of a 
disease in humans

Self-supervised learning A type of ML in which the algorithm learns 
from unlabeled data to form 
representations; the representations can 
be used later to better complete a more 
useful downstream task

Supervised learning A type of ML in which the algorithm learns 
from labeled data to produce the label for 
new data

Traditional/classic ML A subset of ML, algorithms that learn from 
structured (tabular) data

Unlabeled data Data that do not include class labels; for 
example, if the task is to predict the fruit 
name (class label) given the color and 
shape, the unlabeled data would include 
only the fruit color and shape

Weakly supervised or semi- 
supervised learning

A type of ML that falls between 
self-supervised and supervised learning, in 
which a small amount of labeled and a large 
amount of unlabeled data are used for 
model training

Abbreviations: AI, artificial intelligence; ML, machine learning.
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With the advent of deep learning and enhanced computing 
resources, AI techniques have grown in popularity as an effec-
tive method to automatically segment images and have been 
applied across a wide range of infectious diseases. A probabilis-
tic information method [3] was used to segment different re-
gions of the whole brain to map abnormal subcortical brain 
morphometry in a human immunodeficiency virus (HIV) 
study [4]. A deep-learning-based method for tuberculosis de-
tection and segmentation in chest radiographs was also used 
[5]. More recently, a deep-learning-based method was devel-
oped to segment the liver in CT images of animal models of 
Ebola and Marburg virus, Lassa virus, and Nipah virus infec-
tions [6]. In this study, Reza and colleagues [6] found that a fea-
ture pyramid network model could segment the liver from a CT 
scan with a dice score of 95%. During the COVID-19 pandem-
ic, many automated lung lesions segmentation methods of CT 
scans and radiographs have been proposed, including the dual- 
branch combination network [7], semisupervised Inf-Net [8], 
slice-based 2-dimensional UNet [9], Dense-UNet [10], 
encoder-decoder-based attention network [11], dual-sampling 
attention network [12], and many similar convolutional neural 
network (CNN)–based methods [13].

In the context of infectious disease imaging, classification 
commonly involves predicting the infection status, disease se-
verity or stage, or response to therapeutic intervention. 
Classification of images can be performed in segmented regions 
or directly on the original image. Traditional ML algorithms, 
such as logistic regression, support vector machine, k-nearest 
neighbors, naive Bayes, linear discriminant analysis, and tree- 
based algorithms, can be used to classify images, but the un-
structured data must first be converted into a structured data 
format (ie, a table) through the calculation of descriptive fea-
tures. Image features can be quantified using simple metrics, 
such as volume or mean intensity (eg, volume and mean inten-
sity of a lesion). In addition, more complex metrics, such as ra-
diomic [14] features, can be calculated to quantify shapes and 
textures found within the image.

Studies of SARS-CoV-2 [15–19] and other infectious lung 
diseases [20] have successfully deployed traditional ML algo-
rithms for classifying images using radiomic features. AI ap-
proaches that have been applied to the imaging of infectious 
diseases have ranged in complexity from simple algorithms ap-
plied to structured data sets to the more complex deep-learning 
algorithms that excel in making predictions from unstructured 
data sets, including large imaging data sets. Deep-learning algo-
rithms, such as CNNs, have been widely used in infectious dis-
ease research, including for the classification (ie, detection) of 
COVID-19, pneumonia, and pulmonary tuberculosis [21–23].

CNNs have proved useful in a diverse array of studies related 
to infectious disease research and medical imaging; however, 
the introduction of the vision transformer model, has had a 
great impact in these domains and seems to suggest a new 

era in deep learning [24,25]. This model has been shown to out-
perform CNN models and ensemble approaches trained on bi-
nary and multiclass scan data sets [26]. Similarly, a multitask 
vision transformer model was trained to perform both diagnos-
tics and severity prediction of patients with COVID-19 [27]. 
When tasked with classifying radiographs as normal, 
COVID-19, or other infection, the model performed with areas 
under the curve of 0.932, 0.947, and 0.928; sensitivities of 
83.4%, 88.4%, and 85.4%; and accuracies of 83.8%, 84.9%, 
and 86.9% on a set of 3 external data sets [26].

Challenge: Disease Specificity

Imaging techniques, such as CT and MR imaging, can produce 
high-resolution 3D images with intensities that relate to the 
atomic density of the tissue and the nuclear (usually hydrogen, 
used as a proxy for water) density within the tissue, respective-
ly. Typically, viral infection either causes an inflammatory im-
mune response (leading to an increase in tissue density) or 
causes cell death (leading to a reduction in tissue density). As 
a result, ML models have performed well when trained to detect 
infections from medical images in areas such as the lungs [28– 
30]. However, changes in tissue density (captured by CT, struc-
tural MR imaging, and ultrasonography), brain blood flow 
(captured by functional MR imaging), and metabolic activity 
(captured by [18F]Fluorodeoxyglucose PET) are secondary ef-
fects of infection and thus not pathogen specific. As a result, 
AI models trained only on in vivo imaging modalities are lim-
ited in their potential performance as biomarkers of infectious 
disease progression. Of note, some PET tracers have been de-
veloped that aim to be bacteria specific, but they have been 
largely restricted to preclinical applications [31–34]. Building 
AI models that are trained on data that contain both physical 
and biological properties (eg, CT and blood biomarkers, or 
MR imaging and PET) would enable more specific models of 
disease that better generalize across the spectrum of infectious 
pathogens.

Challenge: Data Scarcity

AI models using medical images, particularly neural networks, 
are large and complex and thus require a large number of la-
beled samples to train adequately. This is a prominent chal-
lenge, particularly in the infectious disease imaging research 
space. Data scarcity is a function of multiple factors, including 
the prevalence of the disease, severity of the disease, duration of 
the disease, difficulty of the labeling task, prevalence of experts 
that can perform labeling, data-sharing hurdles, and privacy 
regulations. As a result, human data are more available for 
some diseases (eg, COVID-19), while in other diseases, data 
from animal models of disease are more available (eg, Ebola vi-
rus disease, Nipah virus disease, and Lassa fever). Methods such 
as self-supervised, semisupervised, and weakly supervised 
learning aim to provide robust models trained on unlabeled, 
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partially labeled, or low-quality labeled data. Self-supervised 
learning, which has been used to pretrain a range of different 
attention models, has proved especially effective at leveraging 
unlabeled data toward significant improvements in model gen-
eralization and transfer learning [35].

Self-supervision, wherein a model learns a robust represen-
tation of a domain (eg, the English language), rather than task- 
specific information, has yielded significant improvements in 
model performance on complex downstream tasks involving 
small annotated data sets [36,37]. After the pretraining stage 
is complete, the models can be fine-tuned on the 
domain-specific data set, and the learned representation can 
be shifted slightly to facilitate performance on a complex 
task, while preserving the robust features learned from the large 
unlabeled training set [38–40] (Figure 1). Infectious disease re-
searchers can deploy various self-supervision techniques to use 
the large quantities of unlabeled data sets (including those from 
other, related domains) that are often readily available. Both vi-
sion transformers and deep CNN models used for COVID-19 
classification or detection are very often pretrained on large 
public data sets that include medical images as well as images 
from across many different categories (ie, ImageNet) 
[26,27,41–43]. Without this pretraining, the models would like-
ly be overfitted to task-specific data sets owing to the scarcity of 
data.

In addition to algorithmic improvements to accomplish 
higher performance with less training data, some have turned 
their focus on improving the quality of the data used to train 
models. This approach, termed data-centric AI, focuses on us-
ing domain knowledge and systematic processes to remove 
poor-quality data points and design the input features to guide 
the model to be more robust and generalizable. DataPerf is a re-
cently developed benchmark suite for ML data sets that aims to 
implement data-centric AI principles [44].

Challenge: Explainable AI

Most deep-learning models do not explain their predictions in 
a way that humans can understand [45]. For example, in CNNs, 
the convolutional layers are adjusted through the training pro-
cess to deconstruct the image into relevant features. However, 
the trained weights of the convolutional layers are not orga-
nized into human-interpretable concepts (eg, shapes and tex-
tures) making the inner logic of the model unknown 
(Figure 2). Such black-box models may not be safe to use in 
high-stake applications, such as medical image diagnosis 
[46,47]. It has been demonstrated that current AI systems can 
easily be fooled: a small, carefully designed change in how in-
puts are presented to an AI system can completely change diag-
nostic performance (eg, from a benign to a malignant 
diagnostic decision when rotating the input image a few de-
grees or putting a small amount of noise into the image) [48].

Without the ability to understand the reasoning behind a ra-
diological prediction, radiologists are unlikely to trust and 
adopt deep-learning models. This interpretability barrier is a 
critical challenge that AI researchers must overcome before 
these predictive models can be applied responsibly and adopted 
into clinical practice. Uninterpretable algorithms are still useful 
in some applications, such as the knowledge discovery process 
and the creation of baselines for performance comparison. 
However, uninterpretable AI models could have catastrophic 
consequences, such as severe impediments in therapy planning, 
intervention, and healthcare costs, [46,49,50].

It should be noted that there is no all-purpose definition for 
explainability or interpretability because the proper application 
of the concept is domain specific [47,51,52]. A large number of 
interpretable prediction studies exist in the literature [47,53– 
111], but most provide explanations that are not faithful to 
what the original model computes. As agreed by pioneers in 
the field of deep learning, including Rudin, G. Marcus, 
Schölkopf, Doshi-Velez, and several others [112–118], the cur-
rently available methods in the literature tend to present “inter-
pretable” AI models in a misleading way such that the 
underlying mechanisms are not faithfully revealed.

Studies exploring how CNNs make predictions are typically 
done through post hoc interpretation techniques, but these do 
not provide a true (fully transparent) explanation. For instance, 
some studies remove parts of an image (pixels or regions) to de-
termine their impact on the final prediction (called perturbation- 
based or ablation-based methods) [119–121]. These methods do 
not reflect built-in explainability, and their interpretations fail 
for several reasons. For instance, perturbation-based methods 
assume that the model trained on the ablated data set follows a 
similar process to the model trained on the full data set; however, 
deep-learning models are known to vary widely as a result of 
subtle changes in the training data set [48].

A second major group of post hoc interpretation techniques 
uses neuron activation maps to discover attention (eg, CAM 
and Grad-CAM) (called localization-based or attention-based 
methods) [122,123] or looks at the interpretability of individual 
neurons [56,124]. It has been shown that attention and gradient 
information are often uncorrelated, with many different atten-
tion maps yielding identical results, while others have shown 
that removing visually interpretable neurons versus uninter-
pretable ones had no measurable effect on network prediction 
accuracy [125]. Although Grad-CAM is becoming the de facto 
visualization method, it has been noted by several researchers 
that Grad-CAM is very sensitive to noise and is not a complete-
ly reliable technique. It has been shown that an alternative ap-
proach, based on information bottleneck attribution (IBA) 
[126], is far superior to the widely adopted Grad-CAM ap-
proach [123]. The study tested >1100 CT scans of patients 
with varying levels of COVID-19 severity and without dense 
annotations and found that IBA had minimal false-positive 
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regions and was superior to Grad-CAM in >95% of the visual 
evaluations. Figure 3 shows the accurate localization of the IBA 
approach and failures of Grad-CAM.

In medical imaging of infectious diseases, many studies ap-
plied “explainable” models with varying levels of explainability. 
Methods such as Grad-CAM [123] and other direct gradient 

Figure 1. Self-supervised learning for medical image segmentation. The diagram describes an implementation of how unlabeled computed tomographic (CT) scans and 
self-supervised learning (specifically contrastive learning) can be used to enhance the performance of a supervised learning segmentation model. First, unlabeled scans are 
augmented using simple transformations, such as cropping, rotation, and blurring. These augmented scans are inputted into the self-supervised model, and the model is 
tasked with distinguishing augmented images that come from the same source image from augmented images that come from different images (ie, pretask). After training, 
the pretrained encoders can be transferred to a supervised learning model, which is given a small batch of labeled scans and tasked with producing the segmentation masks. 
Pretraining with a self-supervised learning task has been shown to enhance the performance of supervised learning models.
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Figure 2. Explainable artificial intelligence (AI) methods in medical imaging. Standard deep learning models are uninterpretable and therefore work as a “black box.” 
Explainable AI methods, such as ablation-based, attention-based, and concept-based methods, provide clinicians and researchers with additional information about how 
the model forms its predictions. Abbreviation: GGO, ground-glass opacities.

Figure 3. Grad-CAM compared with information bottleneck attribution (IBA) attention maps. Left, Computed tomographic (CT) scan with subtle ground-glass opacities 
(GGO) pattern. The proposed IBA shows the exact location of pathology without false-positives and precisely, while Grad-CAM fails. Arrows on the first row are pointing 
to areas within the image that are not true lesions but false positives predicted by Grad-Cam. Arrows on the bottom row point to true lesions not detected by Grad-Cam.
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approaches have been applied to infectious disease imaging 
[127,128]. For example, one study developed a robust deep- 
learning model for COVID-19 detection/characterization on 
CT scans from a diverse multinational cohort [129]. The model 
achieved 92.4% accuracy in the validation set and 90.8% in the 
independent test set for the COVID-19 diagnosis. The 
Grad-CAM algorithm was used to highlight the pathological 
regions that the algorithm learns from. While the accuracy 
was high, the Grad-CAM saliency maps did not reveal intuitive 
attention trends.

Beyond commonly considered visual interpretation meth-
ods, some researchers have proposed improving the interpret-
ability of deep-learning models by embedding radiographic 
interpretations (concept-based explainable AI). The idea is to 
learn the radiographic explanations of the object of interest 
(eg, pathological region) from radiologists and train the deep- 
learning architecture to learn these features in addition to the 
main outcome (eg, classification). For instance, the explainable 
capsule network (X-Caps) study [130] describes a novel multi-
task capsule network providing radiographic explainability for 
prediction. Visual explanations (called “attributes”) are encod-
ed as tasks and defined by radiologists using standard guide-
lines. For example, to detect infectious lung disease in a CT 
scan, the attributes may be set up as the existence of the follow-
ing patterns: ground-glass opacities, consolidation, traction 
bronchiectasis, cysts, centrilobular nodules, reticulations, hon-
eycombing, and subpleural lines.

Challenge: Spectrum Bias

The clinical utility of AI models is highly dependent on their 
ability to perform well across the spectrum of cases they are an-
ticipated to analyze. AI researchers use techniques such as strat-
ified cross-validation to ensure that the distribution of 
sub-classes in the testing set matches the training set. 
However, if the full data set does not replicate the range of cases 
in the population, then the calculated performance metrics may 
not represent the model’s performance on the population 
(termed spectrum bias). In clinical studies, spectrum bias 
may affect model performance on ethnic, age, or sex minorities. 
Spectrum bias can also occur as a result of recruiting methods 
and can lead to models biased toward those financially able to 
take time off to participate in a research study.

In preclinical research, much more control is maintained 
over animal demographics. However, differences in disease 
presentation across species can lead to another form of spec-
trum bias. In nonhuman primate models of SARS-CoV-2 infec-
tion, only a mild form of the disease has been replicated 
[131,132]. However, in crab-eating (cynomolgus) macaque 
models of Ebola virus disease, infection leads to death faster 
than that seen in humans (macaques, 5–8 days from exposure 
to death; humans, 4–10 days incubation period, followed by 
death at 6–16 days after onset of symptoms) [133,134]. Thus, 

animal models of infectious diseases sometimes overrepresent 
and sometimes underrepresent the disease’s pace and severity 
in humans. More work is needed to fine-tune these animal 
models to replicate human disease more accurately. In the 
meantime, AI researchers must keep this in mind while train-
ing their models on animal data for predictions on human data.

The primary method to improve the generalizability of a bi-
ased data set is to collect more data from the underrepresented 
group. If this is not an available option, other methods that 
have been developed to compensate for class imbalances may 
be applied. For example, designing the loss function to increase 
the penalty for incorrect predictions of the minority group 
draws the model’s “focus” to that group, potentially balancing 
performance across the minority and majority groups [135]. 
Other techniques involve inflating the weight of minority 
samples by reducing the number of majority samples (undersam-
pling), creating duplicates of the minority samples (oversam-
pling), and creating synthetic minority samples. In medical 
imaging, synthetic minority images can be created using genera-
tive adversarial neural networks, which have shown success in al-
leviating class imbalances [136]. In a study by Waheed and 
colleagues, it was found that COVID-19 detection in radiographs 
could be improved from 85% to 95% accuracy using generative 
adversarial neural networks [137].

UNIQUE GOALS AND CHALLENGES OF AI 
APPLICATIONS TO IMAGING ANIMAL MODELS OF 
INFECTIOUS DISEASES

Animal models of infectious diseases provide unique opportu-
nities to study infectious diseases in a highly controlled envi-
ronment typically not possible in the clinic, especially in most 
outbreak settings. With these opportunities also comes unique 
challenges in collecting and analyzing data in this field 
(Table 2). Ultimately, AI research on animal models of infec-
tious diseases must be designed to build toward improving pa-
tient care, and thus goals must be carefully crafted to ensure this 
outcome.

Goals of AI Applications to Imaging Animal Models of Infectious Diseases

There are 3 main goals of AI in the research space of animal 
models of infectious disease imaging. One goal is to directly 
translate predictive models to humans. For diseases in which 
high-quality labeled data are more easily produced in animals 
than collected in humans (eg, rare and severe diseases); predic-
tive models can be trained on animal models and applied in hu-
mans. However, this is challenging because the animal model of 
disease must replicate all key features of the disease in humans. 
An example of a model trained on animal data and likely to per-
form equally well on human data is deep learning for 
lung-lesion phenotyping in nonhuman primates. This is be-
cause lung lesion types (eg, ground-glass opacities, crazy- 
paving, and consolidation) are defined by common radiological 
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patterns and are not specific to anatomy, disease, or species 
[138].

The second major goal is to build biomarkers of disease 
progression for application in animal models. Such biomarkers 
could be used as a benchmark for assessing the effectiveness of 
emerging therapies. Imaging biomarkers (and AI-empowered 
imaging biomarkers) can be collected in vivo, enabling longitu-
dinal studies and eliminating the need for serial sacrifice. 
Imaging biomarkers are well positioned to fill this role because 
all major imaging modalities (ie, CT, MR imaging, PET, and ul-
trasonography) quantify disease characteristics downstream of 
the initial infection. For example, imaging biomarkers of neu-
rological impairment from HIV infection (termed HIV/ 
neuroAIDS) have been developed using MR spectroscopy, dif-
fusion tensor imaging, and functional MR imaging; these mo-
dalities measure changes in neurochemicals, brain tissue 
structure, and brain function, respectively. All of these 
measures do not detect HIV but instead detect a downstream 
consequence of HIV infection and can be correlated with clin-
ical symptoms and signs. Imaging biomarkers bridge the gap 
between virus detection (too detached from symptoms) and 
symptom detection (too late in the disease process), thus filling 
an important role in therapy development.

The third major goal is to enhance our understanding of un-
derlying disease mechanisms that are common between animal 
models of disease and the disease in humans. Particularly, mod-
els with high interpretability (eg, feature weights in logistic re-
gression, feature importance in decision trees, and saliency 
maps in CNNs and graph-based data mining) provide 

information on the structure of predictive models and conse-
quently a window into the system being modeled. 
Feature-importance measures have been used to determine 
the most important features in applications such as the predic-
tion of COVID-19 disease progression [139], detection of influ-
enza [140], and prediction of HIV therapy potency [141]. In a 
study examining the use of laboratory data for predicting the 
disease progression of COVID-19, feature importance was 
used to identify D-dimer, C-reactive protein, and age as the 
top 3 features used by the ML model [139]. Unlike linear stat-
istical models, feature importance in a nonlinear ML model can 
highlight strong nonlinear relationships between features and 
the classification task. It should be noted that, although high 
feature importance suggests a relationship between a predictor 
and a classification task, there are no currently agreed-on con-
ventions for determining how accurate a model must be and 
how important a feature must be to be considered “significant” 
(eg, the 95% confidence interval convention). Further work is 
needed in this area to maximize the knowledge gained from 
feature-importance calculations; until then, AI researchers 
must be cautious in their interpretation.

Challenges of AI Applications to Imaging Animal Models of Infectious 
Diseases

Animal imaging studies of infectious diseases with sample sizes 
typical of AI research are rare, primarily owing to the costs as-
sociated with such studies. In vivo modeling of highly infec-
tious diseases imposes significant logistical and financial 
challenges. In a typical animal imaging experiment, specialized 
scanners (eg, high-field MR imaging, micro-CT, and small- 
animal PET) are needed to image the small organs found in ro-
dent models of disease. Furthermore, infectious disease imag-
ing requires specialized infrastructure to protect researchers 
during the scanning procedure [142]. To study highly infec-
tious and high-consequence biological agents (eg, Marburg, 
Ebola, Lassa, Hendra, and Nipah viruses) entire facilities 
must be designed for maximum contaminant (biosafety level 
4) conditions that encompass the animal care sections as well 
as imaging suites [143]. Although imaging animal models of in-
fectious diseases is associated with a high cost per sample, ex-
periments can be precisely designed to improve the value of 
each sample for training a predictive model.

A core tenet of the data-centric AI approach is that a predic-
tive model trained on a small but well-designed data set may 
learn the generalizable predictive features better than a model 
trained on a large and noisy data set [44]. Finely tuned exper-
imental parameters and highly controlled environmental fac-
tors can be used to create higher-quality training data 
compared to what is possible in humans. Parameters such as 
exposure dose and time from exposure can be precisely con-
trolled in animal studies. Furthermore, preexposure data points 
and long-term follow-up data points are more easily collected 

Table 2. Major Challenges for Humans and Animal Artificial Intelligence 
Infectious Disease Imaging Research and Corresponding Solutions

Challenges Solutions
Animal 

Research
Human 

Research

Data scarcity Self-supervised learning, 
semisupervised learning, 
and data-centric AI

X X

Model 
interpretability

Explainable AI techniques X X

Disease specificity Multimodal models X X

Spectrum bias Improvement of recruiting 
methods and animal 
models, bias loss term, 
oversampling or 
undersampling, and 
synthetic data

X X

Development of 
imaging tools

Additional funding for 
research

X …

Control over 
environmental 
variables

Careful design of input 
features and explainable 
AI techniques

… X

Cost per image Additional funding for 
research

X …

Privacy Federated and swarm 
learning

… X

Abbreviation: AI, artificial intelligence;
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in animal studies. Environmental factors, such as diet, physical 
activity, and comorbid conditions, vary widely in the human 
population but are easily standardized in animal studies. By 
keeping environmental factors consistent and using 
preexposure-corrected data, researchers can be more confident 
that high-performing predictive models are learning generaliz-
able concepts and are not biased by confounding factors.

Image preprocessing, such as normalization, registration, 
and segmentation, can have an immense impact on the perfor-
mance of a predictive model. Classic image-analysis techniques 
provide an opportunity for imaging scientists to leverage de-
cades of previous research to minimize variability in imaging 
data unrelated to the infectious agent. Importantly, many of 
these techniques can significantly improve model performanc-
es without acquiring more data. Unfortunately, processing 
tools for animal images are less refined than those for human 
images. For example, brain researchers use registration tools 
to align brains across scans and control for slight differences 
in brain shape and size to focus predictive models on changes 
in intensity within common regions of the brain. While well- 
tuned for application in human imaging, the necessary 
templates and tools for preprocessing are not as developed 
for animal imaging, increasing the noise that predictive models 
must work around.

Unique Challenges of AI Applications to Imaging Infectious Diseases in 
Humans

Compared with animal models of infectious diseases, human 
imaging data are much noisier and more complicated by un-
controlled and confounding factors. These factors range across 
the full spectrum of human environmental and genetic variabil-
ity, and each factor can modulate the response to infection di-
rectly or indirectly. Human data are also more often collected 
across multiple sites, introducing another layer of confounding 
factors. These confounders can distort model performance in 
ways that are not readily apparent. For example, it has been 
found that some imaging-based predictive models were detect-
ing medical interventions in response to diseases [144,145] 
rather than biological markers of diseases. This can be particu-
larly dangerous for clinical applications, as untreated patients 
with a disease are at the greatest risk for harm (compared 
with treated patients and those without disease). Great care 
must be taken to ensure that data fed into AI models do not 
contain features that have spurious correlations with the re-
sponse variable. In addition, explainable AI techniques must 
become common practice to ensure that models are using ap-
propriate features to form predictions.

CONCLUSIONS

Infectious disease imaging during the pandemic has proven a 
fertile ground for the development and application of classic 

ML, deep learning, and AI data science. AI tools have been 
used for both preclinical and clinical purposes but need to be 
fine-tuned. As AI researchers tackle increasingly complex 
problems, increasingly complex solutions have been developed. 
When patients’ well-being is at stake, an equal, if not greater, 
effort must be dedicated to developing methods to ensure 
that new AI techniques are adequately generalizable, explain-
able, and unbiased. An AI roadway laid on the foundation of 
COVID-19 imaging and data acquisition attempts may facili-
tate subsequent passage toward robust and generalizable 
models. Certainly, the long-term impact on the data-science re-
search community is broad.
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