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Retrosynthesis prediction with an
interpretable deep-learning framework
based on molecular assembly tasks

Yu Wang1,2, Chao Pang 1,2, Yuzhe Wang1,2, Junru Jin1,2, Jingjie Zhang1,2,
Xiangxiang Zeng 3, Ran Su4, Quan Zou 5 & Leyi Wei 1,3

Automating retrosynthesis with artificial intelligence expedites organic
chemistry research in digital laboratories. However, most existing deep-
learning approaches are hard to explain, like a “black box” with few insights.
Here, we propose RetroExplainer, formulizing the retrosynthesis task into a
molecular assembly process, containing several retrosynthetic actions guided
by deep learning. To guarantee a robust performance of our model, we pro-
pose three units: a multi-sense and multi-scale Graph Transformer, structure-
aware contrastive learning, and dynamic adaptive multi-task learning. The
results on 12 large-scale benchmark datasets demonstrate the effectiveness of
RetroExplainer, which outperforms the state-of-the-art single-step retro-
synthesis approaches. In addition, themolecular assembly process renders our
model with good interpretability, allowing for transparent decision-making
and quantitative attribution. When extended to multi-step retrosynthesis
planning, RetroExplainer has identified 101 pathways, in which 86.9% of the
single reactions correspond to those already reported in the literature. As a
result, RetroExplainer is expected to offer valuable insights for reliable, high-
throughput, and high-quality organic synthesis in drug development.

Retrosynthesis aims to identify a set of appropriate reactants for the
efficient synthesis of target molecules, which is indispensable and
fundamental in computer-assisted synthetic planning1–3. Retro-
synthetic analysis was formalized by Corey4–6 and solved by the
Organic Chemical Simulation of Synthesis (OCSS) program. Later,
driven by sizeable experimental reaction data and significantly
increased computational capabilities, various machine-learning-based
approaches7, especially deep-learning (DL) models, have been pro-
posed and achieved incremental performance8.

In the early age of data-driven retrosynthesis, researchers pri-
marily focused on developing template-based retrosynthesis approa-
ches that rely on a reaction template to transform products into
reactants9,10. Among these approaches,molecularfingerprints with the

multi-layer perceptron are often used to encode molecular products
and recommend reasonable templates. For instance, Segler et al.9.
utilized extended-connectivity fingerprints (ECFPs)11 with an
expansion policy network to guide the template search, whereas Chen
et al.10. adopted a strategy similar to a single-step retrosynthesis pre-
dictor for their neural-guided multi-step planning. However, the pro-
cess of constructing reaction templates currently relies on manual
encoding or complex subgraph isomorphism, making it difficult to
explore potential reaction templates in vast chemical space. To
address these issues, template-free and semi-template methods have
emerged as promising alternatives, utilizing molecular fingerprints to
obtain molecular-level representations. Chen et al.12. introduced the
FeedForward EBM (FF-EBM)method, complemented by template-free
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models. FF-EBM leverages the fingerprinting technique to prioritize
potential precursors. In addition to molecular fingerprints, existing
template-free and semi-template approaches can be generally cate-
gorized into two classes: (1) sequence-based approaches13–15 and (2)
graph-based approaches16–18. The two classes of the method mainly
differ in the strategies of molecular representations; themolecules are
usually represented as linearized strings for sequence-based
approaches13–15, and as molecular graph structures for graph-based
approaches16–18.

Sequence-based approaches have been used to represent target
product molecules using serialized notations, such as SMILES (sim-
plified molecular-input line-entry system)19. Liu et al.20. introduced the
Seq2Seq model, which includes a bidirectional long short-term mem-
ory (LSTM)21 encoder and decoder for retrosynthetic translation. As
with neural machine translationmodels, like Transformer22, sequence-
based retrosynthetic approaches have gradually improved in perfor-
mance. Karpov et al.23. adapted the Transformer architecture with
modified learning rate schedules and snapshot learning for retro-
synthesis analysis, and Tetko et al.13. proposed a Transformer-based
retrosynthetic model with SMILES augmentation that improved per-
formance. With the rise of the pretraining-finetuning paradigm, Irwin
et al.24. proposed MolBART, which uses large-scale self-supervised
pretraining to speed up the convergence of retrosynthesis tasks.
However, there are two limitations: (1) the linearized molecule repre-
sentations, like SMILES, are difficult to explore the direct structural
information and atomic properties that are crucial for retrosynthesis
analysis, and (2) the SMILES-basedmolecular representation approach
is grammatically strict and not semantically valid, easily leading to
frequent invalid syntaxes. To address these limitations, other
approaches have been proposed to avoid invalid strings25–27 or embed
more abundant structural information28.

Graph-based approaches are commonly used to represent mole-
cules through graph structures, which are used to predict changes in
the targetmolecule and infer the reactants. This is usually done through
a two-stage paradigm that involves reaction center prediction (RCP)
and synthon completion (SC). Initially, this idea was used in forward
reaction prediction by Jin et al.29, who proposed using the Weisfeiler
−Lehman isomorphism test30 and graph learning to predict reaction
outcomes. With the development of graph neural networks (GNNs),
many GNN-based frameworks have emerged for retrosynthesis and
have achieved notable improvements in performance. For example, Shi
et al.17. presented the G2G framework, which utilizes relational graph
convolution network (R-GCN)31 for RCP and reinforcement learning for
SC. Following the same paradigm, Yan et al.32. and Somnath et al.33.
devised RetroXpert and GraphRetro, respectively; the former applied a
graph attention network (GAT)34 variant for RCP and a sequence-based
Transformer for SC, whereas the latter designed two massage passing
neural networks (MPNNs)35 for the two stages. Different from the above
approaches, Dai et al.36. proposed GLN, a method that leverages reac-
tion templates to connect products and reactants. Nevertheless, tradi-
tional GNNs merely focus on the local structures of molecules,
neglecting the effect of long-distance characteristics (e.g., Van der
Waals force). To solve this problem, Ying et al.37. proposedGraphormer,
introducing a shortest-path-based method for multi-scale topological
encoding. In addition to the above methods directly modeling graph
changes, there are other graph-based approaches that predict graph
changes by translating reactants18,38,39.

Although existing retrosynthesis approaches have achieved sig-
nificant progress in accelerating data-driven retrosynthesis prediction,
they still suffer from the following intrinsic problems: (1) sequence-
based approaches suffer from the loss of prior information about the
molecules. Meanwhile, graph-based approaches neglect sequential
information and long-range characteristics. Both approaches are
constrained in feature representation learning, limiting further per-
formance improvement. (2) Many of the existing DL-based

retrosynthesis approaches face the problem of poor interpretability.
Although some of them (e.g., template-based approaches) provide
human-understanding predictions (since templates can be linked to
literature precedents), the decision-makingmechanism of the existing
models remains unclear, which remarkably restricts the model’s
reliability and practical applications. Importantly, they fail to explain
how the models work or to provide the substantive insights. (3) Most
existing approaches focus on the single-step retrosynthesis prediction
that enables generating plausible reactants but is perhaps not pur-
chasable and which are usually accompanied by a tedious process of
hand-picking predictions. Therefore, the multi-step retrosynthesis
prediction with pathway planning from products to accessible reac-
tants is much more meaningful for experimental researchers in prac-
tical chemical synthesis.

In this study, we propose RetroExplainer, a chemical knowledge
and DL-guided molecular assembly approach for retrosynthesis pre-
diction with quantitative interpretability. The overall framework of the
proposed approach is shown in Fig. 1. The contributions are general-
ized as follows:

• For a robust and informative molecular representation, we
proposed a multi-sense and multi-scale Graph Transformer
(MSMS-GT) for generalized molecular representation learning,
dynamic adaptive multi-task learning (DAMT) for balanced
multi-objective optimization, and structure-aware contrastive
learning (SACL) for molecular structural information capturing.
Results demonstrated that RetroExplainer performed excep-
tionally well on almost all of the 12 large-scale benchmark
datasets, including three commonly used datasets (USPTO-50K,
USPTO-FULL, and USPTO-MIT), and nine newly constructed
datasets using molecular similarity splitting methods.

• For good interpretability, we introduced an energy-based
molecular assembly process that offers transparent decision-
making and interpretable retrosynthesis predictions. This
process can generate an energy decision curve that breaks
down predictions into multiple stages and allows substructure-
level attributions; the former can help understand the “counter-
factual” predictions to discover potential biases from datasets,
and the latter can providemore granular references (such as the
confidence of a certain chemical bond being broken) to inspire
researchers to design customized reactants.

• To ensure the synthesizability of the product and avoid the
tedious manual selection of candidate reactants, we integrated
the proposed model with the Retro*10 algorithm and used it to
predict the synthetic routes of 101 complex drug molecules. To
validate the effectiveness of these routes, we used the SciFindern

search engine40 for similar reaction searches, and the results
showed that 86.9% of single-step reactions could correspond to
literally reported reactions.

Results
Performance comparison on USPTO benchmark datasets
To assess the effectiveness of RetroExplainer, we compared it with 21
comparative retrosynthesis approaches on three commonly used
USPTO benchmark datasets (USPTO-50K, USPTO-FULL, and USPTO-
MIT). To ensure a fair comparison, we employed the same data-
splitting method as the previous studies for model training and
evaluation32,36,41.

Table 1 displays the predictive performance of our RetroExplainer
and other existing approaches on the USPTO-50K dataset. The per-
formance was evaluated using the top-k exact-match accuracy, with
k set to 1, 3, 5, and 10. Compared to sequence-based and graph-based
approaches, RetroExplainer achieved the optimal level in five out of
nine metrics when k equals 1, 3, 5, and 1, 3 for known and unknown
reaction types, respectively. Although our model did not achieve the
optimal accuracy when k is equal to 10, the accuracy is close to that of
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the optimal model - LocalRetro, with a difference of only 0.2% and
1% under reaction class known and unknown, respectively. Moreover,
considering the accuracies within the two scenarios outlined above
(contingent on the provision of the reaction class), averaged across
top-1, top-3, top-5, and top-10 predictions, our model achieved the
highest accuracy, with a difference of 1% and 0.1% compared to the
runner-up models, namely LocalRetro for known reaction types and
R-SMILES for unknown reaction types, respectively.

The current random splitting method of datasets often results in
scaffold evaluation bias42. In the randomsplitting datasets, very similar
molecules might be present in both the training and test sets, easily
leading to information leakage of the training dataset and the pro-
duction of bias in the model evaluation. To overcome the potential
bias and validate the robustness of our method, we utilized the Tani-
moto similarity splitting method proposed by Kovács et al. 43. for the
USPTO-50K dataset. Specifically, we considered nine data splitting
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types with three degrees of similarity threshold (i.e., 0.4, 0.5, and 0.6)
and three degrees of splitting ratio (i.e., 0.2, 0.25, and 0.3) for the test
set, thus yielding nine Tanimoto similarity-based datasets. We eval-
uated and compared our RetroExplainer with the existing approaches
on the nine datasets. To simplify the comparison, we selected only
R-SMILES and LocalRetro as controls because they are the top-2 best-
performing methods among the existing methods. Figure 2 illustrates
the comparative results of our RetroExplainer, R-SMILES, and Local-
Retro on the datasets, respectively. It can be seen from Fig. 2 that our
RetroExplainer outperformed the top-1, -3, -5, and -10 accuracies of the
benchmark controls on most of the nine datasets. This further
demonstrates the effectiveness and robustness of RetroExplainer.
Moreover, the results also demonstrate that our model has stronger
domain adaptivity for unseen molecules with scaffolds compared to
the existing approaches.

To further validate the effectiveness and robustness of Retro-
Explainer, we compared it with the state-of-the-art approaches on two
much larger benchmark datasets (USPTO-FULL and USPTO-MIT).
Table 2 presents the predictive results. As can be seen, RetroExplainer
achieved the best performance with a large margin in all four metrics
(top-1 accuracy, top-3 accuracy, top-5 accuracy, and top-10 accuracy)
on both datasets. More specifically, RetroExplainer outperformed the
runner-up R-SMILES by 2.5%, 4.1%, 2.7%, and 2.8% in top-1 accuracy,
top-3 accuracy, top-5 accuracy, and top-10 accuracy on the USPTO-
FULL benchmark, respectively; similar results can be observed on the
USPTO-MIT dataset. The results demonstrate that RetroExplainer is
more effective and robust for the conditions when evaluated on larger
datasets and thus has more potential for large-scale training scenarios
compared to previous state-of-the-artmethods. Furthermore, ablation
studies in Supplementary Information Note 1 on scale information and
augmentation strategy discuss the effectiveness of these modules.
Additionally, we provide a case study illustrating how MSMS-GT
focuses on multi-scale molecular structures, which can be seen in
Supplementary Information Note 2.

Compared to previous retrosynthetic models like RetroXpert,
G2G, and GraphRetro, RetroExplainer achieves superior performance
perhaps due to its distinctive approach to datamodeling. To guide the
three scoringmodules, RetroExplainer aims to simultaneously capture
two types of distributions: the joint conditional distribution of RCs and
LGswhen themolecular graphof theproduct is provided, aswell as the
conditionaldistributionof connections amongLGswhenRCs, LGs, and
the product are determined. The former distribution enables more
informative representations that consider the influence of LGs on RCs
through the joint distribution. This enhancement also improves the
model’s generalization capability, especially in scenarios involving
multiple RCs and LGs. This improvement circumvents the need for
excessively iterative processes arising from multi-LG (and multi-RC)
issues. Furthermore, the presence of multiple LGs presents challenges
for conventional manual coding approaches in handling the connec-
tions between LGs and the current synthon. However, by learning from
the conditional distribution of these connections, RetroExplainer
adapts effectively to larger and more intricate datasets. More detailed
comparisons can be found in Supplementary Information Note 3.

RetroExplainer provides interpretable insights
Inspired by the SN2 mechanism44, we designed a transparent decision
process via DL-guided molecular assembly for the interpretable ret-
rosynthesis prediction. The decision process consists of six stages, as
illustrated in Fig. 3a, which include the original product (P), leaving
groupmatching (S-LGM), initializing (IT), leaving group connecting (S-
LGC), reaction center bond changing (S-RCP), and hydrogen number
changing (HC). The decision process generates the energy scores for
each stage based on their contributions to the final decision. The
energy scores are determined by the learned modules, such as LGM,
reaction center prediction for attached hydrogen (RCP-H), reaction
center prediction for bond (RCP-B), and LGC; see Supplementary
Information Note 4 for more details on the calculation of energy

Fig. 1 | Overview of RetroExplainer. a The pipeline of RetroExplainer. We for-
mulated the whole process as four distinct phases: (1) molecular graph encoding,
(2) multi-task learning, (3) decision-making, and (4) prediction or multi-step path-
way planning. b The architecture of the multi-sense and multi-scale Graph Trans-
former (MSMS-GT) encoder and retrosynthetic scoring functions. We considered
the integration of multi-sense bond embeddings with both local and global
receptive fields, blending them as attention biases during the self-attention
execution phase. Upon obtaining shared features, we employed three distinct
modules to evaluate theprobabilities of five retrosynthetic events. These comprise:
the reaction center predictor (RCP), which includes both a bond change predictor
(RCP-B) and a hydrogen change evaluator (RCP-H); the leaving group matcher
(LGM), enhanced with an additional contrastive learning strategy; and the leaving

group connector (LGC). It is noteworthy to mention that the acronym MLP stands
for multi-layer perceptron. c The dynamic adaptive multi-task learning (DAMT)
algorithm. This algorithm is intended to acquire a group of weights according to
the descent rates of losses and their value ranges to optimize the five evaluators
equally. lti denotes the i th kind of loss score in the t th iteration. The lavgi means the
average of i th type of loss value over the loss queue from lti to lt�n

i , where n is the
length of queue we take into consideration. wt

i is the obtained weight of the i th
kind of loss score at the t th iteration.τ is a temperature coefficient. d. The chemical-
mechanism-like decision process.We designed a transparent decision process with
six stages, assessed by five evaluators to obtain the energy scores E1, . . . E5. The ΔEi

is the gap between the Ei and Ei+ 1.

Table 1 | Performance of our RetroExplainer and the state-of-
the-art methods on USPTO-50K benchmarks

Model Top-k accuracy (%)

Reaction class known Reaction class unknown

k = 1 3 5 10 1 3 5 10

Fingerprint-based

RetroSim41 52.9 73.8 81.2 88.1 37.3 54.7 63.3 74.1

NeuralSym8 55.3 76.0 81.4 85.1 44.4 65.3 72.4 78.9

Sequence-based

SCROP59 59.0 74.8 78.1 81.1 43.7 60.0 65.2 68.7

LV-Transformer23 - - - - 40.5 65.1 72.8 79.4

AutoSynRoute60 - - - - 43.1 64.6 71.8 78.7

TiedTransformer61 - - - - 47.1 67.1 73.1 76.3

MolBART62 - - - - 55.6 - 74.2 80.9

Retroformer63 64.0 82.5 86.7 90.2 53.2 71.7 76.6 82.1

RetroPrime64 64.8 81.6 85.0 86.9 51.4 70.8 74.0 76.1

R-SMILES65 - - - 56.3 79.2 86.2 91.0

DualTF46 65.7 81.9 84.7 85.9 53.6 70.7 74.6 77.0

Graph-based

GLN36 64.2 79.1 85.2 90.0 52.5 69.0 75.6 83.7

G2Gs17 61.0 81.3 86.0 88.7 48.9 67.6 72.5 75.5

G2GT18 - - - - 54.1 69.9 74.5 77.7

GTA16 - - - - 51.1 67.6 73.8 80.1

GraphRetro33 63.9 81.5 85.2 88.1 53.7 68.3 72.2 75.5

Graph2SMILES39 - - - - 52.9 66.5 70.0 72.9

RetroXpert32 62.1 75.8 78.5 80.9 50.4 61.1 62.3 63.4

GET38 57.4 71.3 74.8 77.4 44.9 58.8 62.4 65.9

LocalRetro57 63.9 86.8 92.4 96.0 53.4 77.5 85.9 92.4

RetroExplainer
(Ours)

66.8 88.0 92.5 95.8 57.7 79.2 84.8 91.4

The performance regarding existing methods is derived from their references. The best-
performing results are marked in bold.
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scores. The six-stage decision process is described as follows
(see Fig. 3a).
1. We started from the P stage and initially set the energy score of

the stage (denoted as E in Fig. 3a) as 0.
2. At S-LGM, we selected a leaving group (LG) assigned with an

energy score based on the predicted probabilities given by the
LGM module.

3. Afterward, we calculated the energy of the IT stage by adding the
energy of the selected LG at the S-LGMstage and the probabilities
of the corresponding event predicted by the RCP-H, RCP-B, and
LGM modules, respectively. It’s important to note that this
description encompasses two distinct stages: the S-LGM stage
and the S-RCP stage.

4. We then used a dynamic programming algorithm to expand all
possible nodes in the search tree during the LGC and RCP stages.
We selected the events with probabilities larger than a preset
threshold and fixed the energy scores of the stages accordingly.

5. Finally, we adjusted the hydrogen number and formal charge for
each atom to ensure that the modified molecular graph obeyed
the valence rule, and then we calculated the final energy scores
based on the cost of HC.
The decision curve generated by our RetroExplainer provides

insights into why the model may make “incorrect” predictions

(chemically reasonable but notmatching the ground truth recorded in
the dataset) and also helps to identify potential biases in the training
dataset.

As shown in Fig. 3b, the correct answer for synthesizing the target
product by aminedeprotecting is ranked top-6 byourmodel, while the
top-1 prediction is for C-N coupling. The HC stage is found to be the
key stage causing the difference in energy score, where RetroExplainer
tends to predict reactants with an increase in hydrogen number of the
amine, indicating the presence of HC bias for similar molecular scaf-
folds. Additionally, the straight lines with two slopes observed in the
interval between LGC and RCP of the top-12 predictions suggest that
the reactionpatterns differ in two types of reaction centers (RCs) in the
RCP, whether the C-N bond is broken (synthesizing or decomposing).
RetroExplainer understands that the synthesizing pattern is beneficial
for minimizing the energy score, and the corresponding slope of the
line in the LGC−RCP interval is calculated as negative, explaining why
the difficult reaction inwhich the hydrogen atom in the benzene ring is
removed is ranked as top-2. Moreover, the removed hydrogen atom in
the benzene ring results in a significant difference in energy compared
with the top-1 prediction, an easier reaction to synthesize the target
product, indicating the correlation between the decision curve and the
reaction difficulty. More examples of RetroExplainer’s performance
can be found in Supplementary Information Note 5.

Fig. 2 | Performance comparison on the USPTO-50K dataset with Tanimoto
similarity splits. The sub-figures represent the top-k accuracies (k = 1, 3, 5, 10) of
our RetroExplainer and the existingmethods on the USPTO-50K dataset. These are
measured under various similarity thresholds for input molecule outcomes
(σ =0.4, 0.5, 0.6) and different splitting ratios (0.2, 0.25, and 0.3) for the combined

proportions of the validation and test set, respectively. Each result was derived
from three repeated experiments conducted with distinct random seeds. The
minimum, maximum, and median of the three data points are represented by the
lowerwhisker, upperwhisker, and central linewithin eachbox, respectively. Source
data are provided as a Source Data file.
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By analyzing the percentage of energy contributed by each stage
to the final energy score, themolecular assembly process offers ability
to attribute at the substructure level. This is necessary because in cases
with multiple RCs, changes in the number of multiple chemical bonds
or multiple atomic hydrogens are often merged into the same stage,
causing some ambiguity. Figure 3c displays six representative instan-
ces, which offer granular references.

Through the comparison between the top-1 and top-2 predictions
(molecules 1 and 2 in Fig. 3c), we can discover that the energy scores
can be potentially associated with the difficulty of the reactions, such
as selectivity. The argument is that although the connection between
I:33 and C:26 is not conducive to the reduction of energy, the energy
increase by the addition of one hydrogen atom at C:26 is roughly 13
times larger than the former energy (13.5 and 1.02). Our finding is
consistent with a previous study in which the C–N cross-coupling
reaction usually involves a specific catalyst and selectivity problems45.
Furthermore, the I:33 weakens this selectivity issue, which corre-
sponds to the fact that the prediction for molecule 1 is assigned less
energy than that for molecule 2.

By comparing molecules 3, 4, and 5, we can conclude that the
reason the correct answer’s energy score is overestimated is that the
model prefers to break the chemical bond between C:26 and N:27,
which can bring about a benefit of 5.40 for bond cleavage and 9.95 for
the decrease in energy score resulting from increasing the number of
hydrogen atoms at N:27 by one. These two forms of energy reduction
can completely offset the impact of the increase in energy caused by
the increase in hydrogen atoms at C:26. Therefore, the correct answer
from molecule 3 was ranked after predictions in molecule 2 and
molecule 5 because it did not benefit from the energy decrease
brought by breaking the C:26 and N:27 chemical bonds.

Another interesting phenomenon is that we observed the influ-
ence of steric hindrance on our model’s reasoning, which may imply
that our model can learn some rules similar to reaction mechanisms.
Comparing molecule 4 and molecule 6, their molecular structures are
identical, but different energy scores were predicted. The only differ-
ence is that the LG is connected to a symmetric but differently

numbered N. Although this leads to a change in the number of
hydrogen atoms at N:27 and N:30 in the prediction from molecule 6,
they can cancel each other out, and the sum of their effects on the
energy value is only -0.53%. In contrast, the most important factor is
the energy change brought by the chemical bond C:33−N:30 and the
chemical bond C:33−N:27; the former is almost one-tenth of the latter.
This is because the latter connection occurs before the chemical bond
is broken, and the connection between C:30 and N:27 will cause
greater steric hindrance than N:30, ultimately leading to an increase in
energy. This explains why this prediction frommolecule 6 was ranked
as top-21.

Using the energy-based process as demonstrated in Fig. 3a,
RetroExplainer can also re-rank the predictionsmade by other existing
approaches (to improve comprehension, we offer the pseudocodes of
the re-ranking algorithm in Supplementary Information Note 6), and
the results for the predictions (candidate reactants) made by other
existing approaches as well. To evaluate the re-ranking ability of our
model, we re-ranked the predictions generated by three different
retrosynthesis approaches (RetroXpert, GLN, and NeuralSym). They
were chosen because of the relative ease by which their prediction
results are obtained46. For each target product, we selected the top 50
predictions for re-ranking, and we introduced an evaluation strategy
based on the average percentage rank to figure out the problem that
many predictions have less than 50 results. The re-ranking results in
terms of the top-1, -3, -5, and -10 accuracies are shown in Fig. 4, and
indicate a significant improvement in prediction accuracy. These
results suggest that RetroExplainer has a strong re-ranking ability that
can improve the predictions of other existing methods.

Extending RetroExplainer to retrosynthesis pathway planning
In order to improve the practicality of our RetroExplainer for pathway
planning,we incorporatedourmodelwith theRetro*10 algorithmalong
with a list of purchasable molecules. To be specific, the single-step
model of Retro* was replaced by our RetroExplainer. To illustrate the
explanations provided by RetroExplainer, we used protokylol as an
example. Protokylol is a β-adrenergic receptor agonist used as a
bronchodilator. As shown in Fig. 5, our RetroExplainer devised a four-
step synthetic route for protokylol. The energy scores of the decision
process illustrate the key sub-processes that support RetroExplainer in
making the corresponding predictions. To further demonstrate the
practicality of our proposed scheme, we conducted a literature search
to find evidence for each reaction step. Although many of the pro-
posed reactions could not be found, we were able to find similar
reactions with high yields that matched the proposed reactions. These
reactions were found in articles by Ley et al. 47, Nair et al.48, Roberto
et al.49, and Neudörffer et al.50, respectively. Moreover, we also provide
101 cases for pathway planning containing 176 single steps, in which
153 single-step predictions can be found through a SciFindern engine
search40 with similar reaction patterns. For further information
regarding the experimental setups, results of multi-planning routes,
and the findings from literature searches, please refer to Supplemen-
tary Information Note 7, Supplementary Data 1, and Supplementary
Data 2, respectively.

Influence of reaction types
In contrast to the circumstance where the reaction type is unknown,
we add extra embeddings into a super node when the reaction type is
given. This super node is then extracted as a graph-level representa-
tion after Lmessage-aggregation layers. Table 1 illustrates the increase
in top-k accuracy when the reaction type is introduced. To investigate
how the reaction type affects the performance of RetroExplainer, we
extracted four types of hidden features based on their sources (from
the last RCP layer or last LGM layer) and whether they are informed of
the reaction type. The labels of the reaction type color the distribu-
tions of the compressed hidden features through t-SNE (t-distributed

Table 2 | Performance of our RetroExplainer and the state-of-
the-art methods on USPTO-FULL and USPTO-MIT
benchmarks

Model/Dataset Top-k accuracy (%)

Reaction class unknown

k = 1 3 5 10

USPTO-FULL
FRetroSim41 32.8 - - 56.1
FNeuralSym8 35.8 - - 60.8
GGLN36 39.3 - - 63.7
SRetroPrime64 44.1 - - 68.5
GRetroXpert32 49.4 63.6 67.6 71.6
SR-SMILES65 48.9 66.6 72.0 76.4
GRetroExplainer (Ours) 51.4 70.7 74.7 79.2

USPTO-MIT
FRetroSim41 47.8 67.6 74.1 80.2
SAutoSynRoute60 54.1 71.8 76.9 81.8
SRetroTRAE28 58.3 - - -
SR-SMILES65 60.3 78.2 83.2 87.3
GLocalRetro57 54.1 73.7 79.4 84.4
GRetroExplainer (Ours) 60.3 81.6 86.4 90.5

S: Denotes sequence-based models.
G: Denotes graph-based models.
F: Denotes finger-prints-based models. The best-performing results are marked in bold.
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Fig. 3 | Generated explanations through a decisionprocess based onmolecular
assembly. a The searching routes of two predictions, including reactions with
and without leaving groups. b The decision curve of top-12 predictions by

RetroExplainer. The same reaction patterns have the same gaps of energy. c Nine
representative instances for substructure attributions, which allows a granular
insight.
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Stochastic Neighbor Embedding) in Fig. 6. It is evident that the reac-
tion type imposes a more regular constraint on the hidden repre-
sentationof the product than being free from reaction type limits. This
enhances the location process of RCs and the matching procedure
of LGs.

Furthermore, we find different clusters in the same reaction
type from Fig. 6a, c, indicating that some reaction types can be further
divided intomoreadvanced classes depending on the specific task. For
example, functional group interconversion (FGI) is divided into two
clusters in Fig. 6a and three clusters in Fig. 6c, depending on their
maximumchange in the number of attached hydrogens fromproducts
to reactants. When the reaction type is not given (Fig. 6b, d), we can
still obtain a rough outline relating to the maximum change in
hydrogen count, which generalizes the similarities between different
classes from a task perspective. Notably, according to the Davies
−Bouldin (DB) Index51, with the reaction type as a label, the more
similar the distributions are, the higher the accuracy of the task
(from 81.6% to 91.2% on RCP and from 65.4% to 73.2% on LGM) is.
Therefore, the results indicate that an effective way to improve the
performance of the reaction-type-unknown model might be to
impose extra constraints for hidden features only during the training
stage (e.g., SupContrast52 and our contrastive technique for LGs).
These constraints improve the fitting ability within the domain of the
training sets. However, the extra regular loss functions might also
increase the risk of overfitting, which means the degradation of gen-
eralization to samples out of the dataset distributions. Additionally, to
reduce the effect of randomness on the clusters, we added nine t-SNE
plots using different random seeds in Supplementary Informa-
tion Note 8.

Discussion
Although RetroExplainer achieves impressive performance and inter-
pretability, there are several limitations in our proposed method that
deserve further research in the future.

Limited performance in predicting rare LGs. The LGM module is
designed as a predictive classifier on a pre-collected LGs database,
which simplifies the difficulties in LGs generation from Eq. (S3.5) in
Supplementary Information Note 3 and guarantees the legality of LGs
by imposing a strong prior (that is, all the LGs come from our pre-
collected database). However, our LGM method is limited in its flex-
ibility in generating rare LGs, which is a common challenge for many
data-driven models that are essentially limited by the quality of the
training set. Even translation-based models are not as robust for pre-
dicting common LGs to generate unseen LGs. In addition, in our
model, although we adopt several strategies like SACL that allow the
LGM module to find similar LGs from the database as the agency of
unseen LGs during the re-ranking exogenous reactants mode (can be
referred to the algorithm in Supplementary Information Note 6) and
enlarging the LGs database (in USPTO-FULL we collected about
70,000 LGs), we cannot entirely eliminate this bias (some cases are
displayed in Supplementary Information Note 9). Therefore, several
DL techniques, such as pretraining on LGM, meta-learning, active
learning, and data augmentations, might be promising to be intro-
duced for deep retrosynthetic learning to boost the robustness against
rare LGs predictions.

Limited flexibility of decision process. We proposed a SN2-like
molecular assemblyprocess to generate decision actionswith energies
for retrosynthesis predictions. However, this process is so fixed that
some decision actions do not intuitively accord with other distinct

Fig. 4 | Re-ranking performance of RetroExplainer. The box plots depict re-
ranking results in terms of top-1, -3, -5, -10 accuracy, and percentile average rank in
comparison to three standard retrosynthesis models: Retroxpert, GLN, and Neur-
alsym. Each result was derived from three repeated experiments conducted with

distinct random seeds. The minimum, maximum, and median of the three data
points are represented by the lower whisker, upper whisker, and central line within
each box, respectively. Source data are provided as a Source Data file.
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reaction types, although it does work. For instance, reaction
types without LGs are the pecial cases that intuitively fit the SN2
mechanism (see cases in Supplementary Information Note 10).
Therefore, many other reaction mechanisms can be introduced;
for example, cycloaddition and elimination-addition, which can be

flexibly referred to design the decision process. Additionally,
we advise to add a mechanism selection module determined
by the confidence of LGM and RCP to decide which type of
mechanism is suitable to produce explanations easier for human
understanding.
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Fig. 5 | Retrosynthesis planning for protokylol has been carried out by Retro-
Explainer. A four-step synthetic route to protokylol is presented. In each step, the
portion of the text in blue highlights the documented evidence supporting the
reaction, whereas the red section describes the decision-making process of our

model. Key abbreviations include:DCC forN,N’-Dicyclohexylcarbodiimide;NHS for
N-Hydroxysuccinimide; DCM for Dichloromethane; BMS for Dimethyl sulfide bor-
ane; THF for Tetrahydrofuran; STAB for Sodium triacetoxyborohydride; RT for
Room Temperature; and ΔE represents the change in energy scores value.
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The disability to produce finely-grained predictions. Likemost data-
driven retrosynthesis models, our RetroExplainer is unable to predict
more detailed reaction information, such as reaction operations,
temperature, and duration, due to the research gap of corresponding
DL models and the lack of public datasets, which has become
a more and more urgent challenge to the development of an auto-
mated synthesis platform. This is an issue for our future research to
explore.

Methods
Problem definition
For the convenience of description and discussion, we here briefly
introduce the problem definition.

Graph-based retrosynthesis prediction. Generally, a chemical
reaction can be denoted as ðfGp;igNpi= 1,fGr;jgNr

j = 1Þ, where Gp represents a
product graph and Gr is a reactant graph. Similarly, a reaction infer-
ence model can be f θðfGp;igNpi= 1,j,fGr;jgNr

j = 1Þ, where θ is a group of learn-
able parameters.However, retrosynthesis prediction is not as simple as

an inverse model f γðfGr;jgNr
j = 1,j,fGp;igNpi = 1Þ for forwarding inference. In

practical analysis, the input only includes the main product, which
neglects any other by-products as a prior knowledge. Thus, the actual
model for retrosynthesis is f γðfGr;jgNr

j = 1,fGp;igNpi= 1=fGp;mg,j,Gp;mÞ, where
Gp;m denotes the main product. It is more complex than the forward
prediction, which is why the performance of the forward model is
generally better than that of retrosynthesis prediction.

Reaction center (RC) and leaving group (LG). In this work, the RC is
defined as a subgraph Gc = f u,vð Þ,euvjeuv 2 Gp,euv=2Gr;j,8Gr;j 2 fGr;igNr

i= 1g,
where u,vð Þ denotes an atom pair and euv is their edge. Furthermore,
synthons are a set of graphs modified by products according to RCs.
These synthons are not usually chemically valid and can be later con-
verted to final reactants by attaching LGs. Herein, LGGl is defined as a
subgraph from reactants, which contains reactants atoms and edges
that do not occur in themainproduct. Namely, LG records information
from by-products fGp;igNpi = 1=fGp;mg.

Transformer from a graph neural network (GNN) perspective.
Before this section, the Preliminaries and Notes section in

Fig. 6 | Distributions of t-SNE fromhidden layers of RetroExplainer. a–dHidden
features are derived based on two criteria: (1) whether the reaction type is recog-
nized, and (2) the origin of the hidden features (either from the reaction center
predictor, RCP, layer, or the leaving group matcher, LGM, layer). Subsequently,

these features are reduced to two dimensions using t-SNE techniques. Distinct
colors represent various reaction types, while diverse styles are assigned based on
the maximum count of hydrogen alterations.
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Supplementary Information Note 11 is recommended. In the data flow
of the Transformer, a sentence can be seen as a fully connected graph
with the semantic edge, where word tokens are processed as nodes. In
this view, multi-head attention (MHA) can be factorized as follows:

m lð Þ
a : =

X
w02Nw

eaw0wS
l�1ð Þ
w0 WV , m lð Þ

w : = eawwS
l�1ð Þ
w WV , ð1Þ

s:t:eaw0w = SOFTMAX
S l�1ð Þ
w0 WQ S l�1ð Þ

w WK

� �T

ffiffiffiffiffiffi
dk

p
0
B@

1
CA, ð2Þ

S’’
lð Þ
w =COMBINE lð Þ m lð Þ

a ,m lð Þ
w

� �
: =CONCAT m l;kð Þ

a +m l;kð Þ
w

n onhead

k = 1

� �
WO,

ð3Þ

where Nw = S= wf g is the semantic neighbor set of w, and dk is the
hidden dimension of WK . Then, Eq. (S11.10) acts like a non-linear
propagation layer in a typical GNN, which transforms S’’

lð Þ
w to final S lð Þ

w .
Note that the normalized attentionmatrix eAs composedof eaw0w of each
word token pair w0,wð Þ can be considered as a group of adaptive
parameters that describe the dynamic distribution of semantic edges.
However, the standard Transformer cannot handle edges on a
topological space. As a variant of the Transformer, our RetroExplainer
solves this edge embedding problem.

The framework of the proposed RetroExplainer
The overview of our RetroExplainer is illustrated in Fig. 1a. As shown,
our RetroExplainer contains four major modules: (1) MSMS-GT mod-
ule, (2) DAMT learning module, (3) explainable decision-making
module, and (4) prediction and pathway planning module. The work-
flow of our RetroExplainer is described below.

TheMSMS-GTmodule, illustrated inFig. 1b (right), utilizes amulti-
sense and multi-scale bond embedding strategy for the chemical
bonds and topological embedding of the atoms to capture chemically
important information. The molecular vectors resulted from former
two encoders are blended via the MHA mechanism. In the DAMT
learning module, the resulting hidden molecular representations are
simultaneously fed into three specific task heads: RCP, LGM, and LGC,
shown in Fig. 1b (left), which are trained using a DAMT learning strat-
egy (as shown in Fig. 1c) to train each sub-task equally. RCP identifies
changes in bonds and atoms’ hydrogen count, LGM matches the LGs
(asdescribed in theReaction center (RC) and leaving group (LG) section)
from the collected database for products, and LGC connects the LGs
and fragments from the product. The decision-making module trans-
forms the product into reactants using a decision process consisting of
five retrosynthetic actions (as shown in Fig. 1d) and energy scores for
decision curves, thus simulating a reversed molecular assembly pro-
cess. Finally, based on single-step predictions, a heuristic tree-search
algorithm is integrated into the last module to discover efficient syn-
thetic routes with transparent decision-making processes while
ensuring the accessibility of the starting reactants. More details about
the MSMS-GT module, DAMT learning module, and decision-making
module are described below.

Multi-sense and multi-scale Graph Transformer (MSMS-GT)
module
Atomic and topological embedding.Given reaction data Sr represented
by SMILES, the related molecule graph of the product Gp = V,Að Þ is
constructed, where atoms are viewed as a set of nodes V with size N.
To fit such graph data into the Transformer variant, a naive approach
considers atoms as word tokens, which are then a reference to build a

fully connected graph of the semantic domain. In RetroExplainer, we
adopt this simple method and additionally employ a topological
embedding that measures a node’s importance in the space domain’s
graph insteadof using conventional position encoding,whichdestroys
original permutation invariance. In detail, we use degree counts of the
node to describe the above importance. Therefore, the initial node
feature h 0ð Þ

v of atom v can be calculated as follows:

h 0ð Þ
v =

XKa

i = 1

ϕxi
xi

� �
+ϕd degðvÞð Þ, ð4Þ

where ϕ �ð Þ with different subscripts denote different embedding
functions, Xi is the i-th atomic feature (e.g., atomic number, formal
charge), and ° vð Þ2R is the total degree count of atom v. By introdu-
cing such structural signals as strong prior knowledge, the attention
score in Eq. (S11.7) can capture both semantic and space domain
information.

Multi-sense and multi-scale bond embedding. Equipped with
topological embedding, RetroExplainer is improved because bene-
ficial structure messages are passed for better graph understanding.
Nonetheless, it still neglects abundant bond information, whichmakes
the model unable to distinguish some isomers that share the exact
degree count of each atom. The details can be found in Supplementary
Information Note 12.

Therefore, it is necessary to introduce bond information to
improve the graph expressivity of the model. In the implementation,
we encode bond properties (e.g., σ orbit, π orbit, conjugated bond),
which are then represented as adjacencymatricesfAi 2 f0,1gN ×NgKb

i = 1 of
different Kb senses, rather than using the type-based approach to
embed edge features. The reason is that by directly exposing specific
reaction-related attributes (e.g., whether in the ring) hidden by bond
type, RetroExplainer can better understand complex reaction data.
Furthermore, some bond types share the same properties (e.g., C-C
andC=Chave σ orbit, but conventional encoding for bond type cannot
express such signal, whereas multi-sense embedding is free of this
message gap).

With bond encoding improved, the next problem is how to inte-
grate it into graph data for a Transformer. It is not easy because an
atom-pair-based bond cannot be embedded to the degree that a single
atom defines. Inspired by Eq. (2), where atom-pair-based semantic
edges are learned, we consider bond information as natural prior
knowledgeof themolecular structure andadd it to the semantics score
before SOFTMAX �ð Þ. Then we have:

m lð Þ
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ffiffiffiffiffiffi
dk

p +
XKb
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ϕi Ai;uv

� �
, eauv =SOFTMAX auv

� �
,

ð6Þ
where Nv =V= vf g is a set of neighbors of atom v. However, it still
cannot be as expressive as a simple GNN in practice, which excessively
focuses on 1-hop neighbors in the space domain. To alleviate this
problem, Graphormer proposes a shortest-path embedding to acquire
a global scope, and it achieves SOTA (state-of-the-art) performances in
graph domain tasks. Meanwhile, a global distance Ag can be easily
calculated by bond length or three-dimensional (3D) conformation
optimized by MMFF53. Introducing global embedding, we have:

auv =
h l�1ð Þ
u WQ h l�1ð Þ

v WK
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ffiffiffiffiffiffi
dk

p +
XKb
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� �
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where RBF is a Gaussian radial basis function calculated as follows:

RBF Að Þ=
exp � A� ϕmean

� �2
=2ϕ2

std

� �
ffiffiffiffiffiffi
2π

p
ϕstd

: ð8Þ

It should be noted that global embedding introduces spatial
information but ignores bond features in the overall scale. Further-
more, atom environment (AE), which regards several atoms as a token,
plays a significant role in retrosynthetic prediction. Therefore, inspired
by RetroTRAE28, we propose a multi-level AE embedding that captures
various radii of AEs by simply calculating different powers of the 0-1
adjacency matrix Ai. Thus, the final attention score is calculated as
follows:

biasuv =
XKb

i

XKr

j = 1
ϕiðA j
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Local Item
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, ð9:1Þ
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v WK

� �T

ffiffiffiffiffiffi
dk

p + biasuv,
ð9:2Þ

whereA j
i is the j-th power ofAi, whichdescribesAEwith j radius; andKr

is the maximum radius of AEs we take into account. Note that we later
use the local item to denote ϕiðA j

i;uvÞ and global item to denote
RBFðAg;uvÞ. What calls for special attention is that A j

i with Ai 2 0,1f gN ×N

records the number of paths for length j between each atom, which
describes j radius environment for each central atom. Finally, in Eq. (9),
we firstly employ a self-attention mechanism to learn a semantic
relation for the combined feature of node, secondly, introduce amulti-
level environmentfA j

ig
Kr

j = 1 and multi-sense embedding fAigKb
i = 1 to take

advantage of abundant bond information on a local scale, and thirdly,
add a global embedding for atoms to capture a global scope in the
spatial domain. Therefore, by calculating auv in Eq. (9), the expressive
power of RetroExplainer is at least as powerful as GNNs. Additionally,
the global item RBFðAg;uvÞ allows the chance to introduce the 3D
distance embeddings, although that has been proven to be unneces-
sary, according to the results in Supplementary Information Note 13.

Specific task heads and decision-making module
In RetroExplainer, three specific task heads are designed for different
demandswhoseoutputs are all useful to retrosynthetic analysis for the
planning of reaction pathways. In detail, the RCP gives a probability
distribution for eachbond changewhich decides RCs; LGMevaluates a
compatibility score between the product and each candidate LG; and
LGCdetermines the locationwhere theRCand LG connect. Notice that
all specific task heads are closely related, so they are modeled in a
multi-task distribution manner. Thus, the distribution of the three
units can be modeled as follows:

pθ Gr;i

� 	Nr

i= 1





Gp;m

� �
= pθ1

Gr;j

n oNr

j = 1





Gp;m, Gl; j

n oKl

j = 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LGC

pθ2
Gc;i

� 	Kc

i = 1
, Gl;i

� 	Kl

i = 1





Gp;m

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RCP&LGM

,

ð10Þ

where Kc and Kl denote the number of RCs and LGs, respectively.
Notice that pθ1

�ð Þ in Eq. (10) also obscurely models the conditional
distribution between the given main product and unknown by-
products because once the by-products are predicted correctly, the
related reactants can be easily influenced by dual models of higher
performance synthesis prediction.

Reaction center prediction (RCP). Instead of directly predicting the
bond typeofRCs,we factorize it into twosub-tasks for bond (RCP-B) or
hydrogen (RCP-H) change. Between the two sub-tasks, we model the

bond change prediction as a sparse edge link identification task and
the hydrogen change prediction as node-level classification with 2k + 1
labels, where k is the max number of changed hydrogens. To predict
RCs for a given productGp with node representation h Lð Þ

v after L layers,
we calculate the probabilities of bond change puv for atom pair u,vð Þ
and hydrogen change pv for atom v, which can be viewed as follows:

puv = σ CONCAT
h Lð Þ
u WQ h Lð Þ

v WK

� �T

ffiffiffiffiffiffi
dk

p
8><
>:

9>=
>;

nhead

i= 1

0
B@

1
CAWbond

0
B@

1
CA, ð11Þ

pv = SOFTMAX h Lð Þ
v Watom

� �
, ð12Þ

whereWbond andWatom denote linear layers that aggregate messages
from different heads. In addition, RCP is optimized as follows:

LB = �
X

ðGp ,RCÞ

X
u,vð Þ2RC

yuv log puv

� �
, LH = �

X
ðGp ,RCÞ

X
v2RC

log pv;yv

� �
:

ð13Þ

Leaving group matcher (LGM). We model LGM as a graph-level
multi-classification task insteadof an autoregressive one. The reason is
that we find a small ratio (about 0.46%) between the LG and the
number of reactions, meaning several definite patterns appear in LGs.
As a result, after applying a heuristic breadth-first traversal algorithm
to unify permutations for nodes in the same kind of LGs, we can obtain
231 types of LG in USPTO-50K. Based on these collected LGs, we con-
struct a vocabulary VLG whose index maps a determinate LG. There-
fore, the predicted distribution pGp

and optimizing target for LGM are
as follows:

pGp
=hGp

WLG,hGp
=h Lð Þ

s ,LLG = �
X
Gp

log
exp pGp;y +

� �
P

y2VLG
exp pGp;y

� � , ð14Þ

where hGp
is a graph-level representation for Gp, and hs denotes the

feature of the super node. The super node is like <cls> token in natural
language processing and is a virtual node in a practical sense, which is
set to be connected by a virtual edge to all the other nodes.

Leaving group connector (LGC). We also design LGC as a sparse
edge link process like RCP-B in Eq. (11). The difference is that we only
predict the connections between connected atoms in LGs and the
product, which reduces computation complexity fromOðNMÞ toOðNÞ,
where N,M denotes the number of atoms for product and LG,
respectively. The motivation is the limited number of connected
atoms in LGs.

Chemical knowledge and deep-learning (DL)-guided molecular
assembly decision process. RetroExplainer offers a more transparent
and interpretable approach to retrosynthesis analysis compared to
previous end-to-end prediction methods. As illustrated in Fig. 3a, the
process can be divided into six stages: P, S-LGM, IT, S-RCP, S-LGC, and
HC. The process is evaluated using a flexible user-designed energy
function that calculates the predicted probability distribution. In the
S-LGM step, the energy score is based on the compatibility between
the LG and the product, as determined by LGM. In the IT step, the
selected LG is not attached, and all potential RCs remain intact. In S-
LGC, the connected bonds are identified and scored using LGC. It is
important to note that information on connected bond types is
recorded in the matched LG. In bond changing, RCP identifies and
scores the bonds from RCs. Finally, in the HC step, we adjust the
amount of hydrogen for noncompliant atoms and filter out all illegal
molecules to generate the final reactants. In this study, we define the
energy function as the negative logarithm of the probabilities of
associated conditions.
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Augmentation modules
Structure-aware Contrastive Learning (SACL). In LGM, given a product
Gp, we directly predict the index of the most appropriate LG for Gp,
which, however, still ignores the rich structural information of LG and
limits the performance of overall prediction. Hence, benefiting from
contrastive learning techniques in molecular representations (e.g.,
MolCLR54, 3D Infomax55), we also adopt a contrastive learning strategy
thatminimizes the divergence of representations between LG h+

GLG
and

matched product h+
Gp

and maximize it in any other conditions. Based
on this supervised contrastive-learning-based idea, an optimizing
object inspired by SupContrast can be viewed as follows:

Lc = �
X
Glg

1

G+
p




 



X
G+

p

log
exp sim hGlg

,h+
Gp

� �
=τ

� �
P

Gp
exp sim hGlg

,hGp

� �
=τ

� � , ð15Þ

where sim hu,hv

� �
measures the similarity between hu and hv, and τ is a

hyper-parameter and a scalar. In practice, recognizing a positive
instance for every batch brings in extra costs. For this reason, after
regular forward of LGM, we decorate every hGLG

with the same
contrastive token and then input it to the LGM to predict the
corresponding index in vocabulary VLG. Thus, the enhanced loss
function LLG for LGM is as follows:

Llg = � 1
2

X
Gp

log
exp pGp;y+

=τ
� �

P
y2Vlg

exp pGp;y
=τ

� �
0
@ +

X
Glg

log
exp pGlg;y+

=τ
� �

P
y2Vlg

exp pGlg;y
=τ

� �
1
A,

ð16Þ

where pGLG
= hGLG

+hcon

� �
WLG denotes the distribution that LGM pre-

dicts, and hcon is the feature of the contrastive token. This strategy
plays the same role as Eq. (14) without the above extra costs. Fur-
thermore, what needs to be emphasized is that we only apply this
technique in the training stage. As a result, we canmakeRetroExplainer
perceive the structural information of LGs without extra prior
knowledge.

Dynamic adaptive multi-task learning (DAMT). To predict prob-
abilities of bond changes puv, hydrogen attachments pv, and LGM pLG

jointly, product Gp is first sent into shared layers to learn the mutual
representation of three tasks, which is thenpassed to each specific task
layer. Because of the immediate relevance between the RC and LG, it
can be a mutual promotion learning process for multi-task training.
However, optimizing four targets at the same time can be conflicting
for parameters in a shared layer due to the discordance of complexity
for tasks and magnitude for loss functions. In RetroExplainer, we
propose a multi-task learning strategy that can adaptively adjust
weights for the above three losses. In detail, we introduce a descent
rate for i-th loss r tð Þ

i in t-th training step to measure the complexity of
i-th task and a normalizing coefficient αi to unify the magnitude of i-th
loss. Combined above, the total loss of t-th step L

tð Þ
T is as follows:

L
tð Þ
T =

XKt

i= 1

exp
r tð Þ
i
τ

� �
PKt

j = 1 exp
r tð Þ
j

τ

� �αt
iL

tð Þ
i

0
BB@

1
CCA, r tð Þ

i =
L

t�1ð Þ
i

L
t�2ð Þ
i

,αt
i =

nPt�n
j = t�1L

ð jÞ
i

,

ð17Þ

where n is the capacity of the queue that we take into consideration to
obtain α. The pseudocode of DAMT can be found in Supplementary
Information Note 14.

Model implementation details
We trained RetroExplainer using the AdamW56 optimizer for gradient
descent with a weight decay rate of 0:01. Additionally, we adopted a

polynomial decay learning rate scheduler with an extrawarm-up stage.
The learning rate was controlled by the scheduler to increase linearly
and rapidly to a preset peak value (2 × 10�5) from the initial learning
rate (1 × 10�7) and then decrease slowly with the process of iterations.
The whole training phase was monitored by the early stop strategy
with the patient epoch and the maximum epoch set to 50 and 2000,
respectively. The shared MSMS-GT encoder layer was set to 16, and
each sublayer was assigned as a single layer, where the dimensions of
the hidden layer and feedforward network were 512 and 1024 for
the three datasets (i.e., USPTO-50K, USPTO-FULL, and USPTO-MIT),
respectively. Additionally, for DAMT, we set the queue length to 50 to
obtain the normalizing coefficients. The complete training phase for
the USPTO-50K dataset takes around 40 hours when the reaction type
is provided and 38 hours when it is not provided, utilizing a single
RTX3090 GPU core; by contrast, it takes roughly 7.5 and 14.5 days for
the larger datasets, USPTO-MIT and USPTO-FULL, respectively, when
run on three RTX3090 GPU cores in parallel.

Data availability
We used the benchmark datasets USPTO-50K, USPTO-MIT, and
USPTO-FULL for all our experiments. For a fair comparison, we used
the same version and splits as those provided by Yan et al. 32. for
USPTO-50K and USPTO-FULL. The USPTO-MIT dataset is provided by
Chen et al.57, as Yan et al.32. have not run their model on this dataset.
Additionally, because the USPTO-50K comes with the risk of a data
leakage caused by erroneously using anatomicmapping algorithm,we
shuffle these mapping numbers to ensure the position of RCs is not
concentrated in the first position of the atomic arrangement. Source
data are providedwith this paper throughhttps://doi.org/10.6084/m9.
figshare.23590230. Source data are provided with this paper.

Code availability
All code used in data analysis and preparation of the manuscript,
alongside a description of necessary steps for reproducing results, can
be found in a GitHub repository accompanying this manuscript:
https://github.com/wangyu-sd/RetroExplainer. Additionally, the
source code is also available at Zenodo repertory58 through https://
zenodo.org/record/8251390.
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