Skip to main content
. 2023 Oct 3;14:6155. doi: 10.1038/s41467-023-41698-5

Table 2.

Performance of our RetroExplainer and the state-of-the-art methods on USPTO-FULL and USPTO-MIT benchmarks

Model/Dataset Top-k accuracy (%)
Reaction class unknown
k = 1 3 5 10
USPTO-FULL
FRetroSim41 32.8 - - 56.1
FNeuralSym8 35.8 - - 60.8
GGLN36 39.3 - - 63.7
SRetroPrime64 44.1 - - 68.5
GRetroXpert32 49.4 63.6 67.6 71.6
SR-SMILES65 48.9 66.6 72.0 76.4
GRetroExplainer (Ours) 51.4 70.7 74.7 79.2
USPTO-MIT
FRetroSim41 47.8 67.6 74.1 80.2
SAutoSynRoute60 54.1 71.8 76.9 81.8
SRetroTRAE28 58.3 - - -
SR-SMILES65 60.3 78.2 83.2 87.3
GLocalRetro57 54.1 73.7 79.4 84.4
GRetroExplainer (Ours) 60.3 81.6 86.4 90.5

S: Denotes sequence-based models.

G: Denotes graph-based models.

F: Denotes finger-prints-based models. The best-performing results are marked in bold.