Table 8.
Binary segmentation results (mIoU) for models pre-trained on EndoVis17 and fine-tuned for each of the target datasets (Kvasir and Endomapper).
| Models | Datasets | Computational cost | |||
|---|---|---|---|---|---|
| EndoVis17 | Kvasir-Inst. | Endomapper | Params (M)+ | Time (ms)++ | |
| U-Net39 | 75.44 | 85.78 | 55.63 | 7.85 | 54 |
| TernausNet40 | 83.60 | N.A. | N.A. | 36.92 | 119 |
| LinkNet41 | 82.36 | 87.75 | 60.54 | 21.79 | 34 |
| MF-TAPNet42 | 87.56 | 86.81 | 66.87 | 37.73 | 155 |
| MiniNet v243 | 87.16 | 85.13 | 66.65 | 0.52 | 26 |
N.A.: Not available due to computational resource limitations.
+Params: Memory required by the model (M = millions of parameters).
++Time: Average inference time for 1 image on GPU RTX2080.