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Abstract

Objective: Kenya is heralded as an example of declining HIV in Africa, while its tuberculosis 

(TB) numbers continue rising. We conducted a comparative investigation of TB–HIV co-dynamics 

in Africa to determine the likelihood of reported trends.

Methods and results: Our mathematical modeling analysis exposes the notable incongruence 

of reported trends in Kenya because TB–HIV co-dynamics, tightly knit worldwide and most 

dramatically in sub-Saharan Africa, suggest that declining HIV trends should trigger reductions in 

TB trends. Moreover, a continental-scale analysis of TB–HIV trends places Kenya as an outlier in 

eastern and southern Africa, and shows TB outpacing HIV in western central Africa. We further 

investigate which TB processes across HIV stages have greater potential to reduce TB incidence 

via a sensitivity analysis.

*Corresponding authors. msanchez@nature.berkeley.edu (M.S. Sánchez), getz@nature.berkeley (W.M. Getz). 
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Conclusions: There are two parsimonious explanations: an unaccounted improvement in TB 

case detection has occurred, or HIV is not declining as reported. The TB–HIV mismatch 

could be compounded by surveillance biases due to spatial heterogeneity in disease dynamics. 

Results highlight the need to re-evaluate trends of both diseases in Kenya, and identify 

the most critical epidemiological factors at play. Substantial demographic changes have 

occurred in Kenya, including rapid urbanization accompanied by poor living conditions, which 

could disproportionately increase TB incidence. Other possible contributors include immune 

reconstitution due to the recent delivery of antiretrovirals, and an increased presence of the 

virulent Beijing/W TB genotype. Results support the importance of integrating information from 

closely interacting epidemics, because this approach provides critical insights unobtainable when 

components of generalized epidemics are considered individually.

Introduction

Worldwide, epidemiologists face great challenges when tracking temporal and spatial trends 

of infectious diseases (Walker et al., 2004; Ghys et al., 2006; Morgan et al., 2006; and 

Garnett et al., 2006a). Monitoring Kenya’s HIV epidemic has been particularly challenging. 

In this sub-Saharan country HIV prevalence declined from almost 10% in the late 1990s 

to 6.1% in 2005 (Supporting document), according to well supported recent estimates 

derived from a combination of different sources including annual sentinel surveillance in 

antenatal clinics since 1990 and Demographic and Health Surveys in 1993, 1998, and 2003 

(García-Calleja et al., 2005, 2006; Cheluget et al., 2006; and UNAIDS, 2006). The resulting 

downward trend is heralded as an example of declining HIV in Africa (Shelton et al., 2006). 

Prior to these numbers, HIV prevalence in Kenya was estimated to have reached 15% in 

2001 (Walker et al., 2003). A subsequent re-evaluation estimated prevalence peaking at 

15.4% in 1999–2000, and decreasing to 9.5% in 2003 (Asamoah-Odei et al., 2004). In stark 

contrast to its HIV trends (Fig. 1), Kenya has reported a steady and substantial increase in 

the number of new TB cases and deaths since the early 1990s (Currie et al., 2003; and World 

Health Organization, 2006a). The divergent TB–HIV trends reported for Kenya raise serious 

concerns given the tight epidemiologic linkage typically exhibited by the two diseases, an 

association that is particularly dramatic in sub-Saharan Africa (De Cock and Chaisson, 

1999; Corbett et al., 2003; and Nunn et al., 2005). Observed co-dynamics suggest strongly 

declining HIV trends should lead to declines in TB trends (Currie et al., 2003; Lawn et al., 

2006; and Dye, 2006).

Mathematical models provide an effective tool to explore epidemic interactions by 

integrating clinical knowledge on co-infections at the individual scale with mechanistic 

processes at the population scale. Furthermore, we can use long-term epidemiological trends 

from each epidemic, such as incidence and prevalence data, to cross-check anticipated 

effects (Currie et al., 2003; Williams and Dye, 2003; Salomon et al., 2006; Dye et al., 

1998; and Murray and Salomon, 1998). In this regard, valuable insights have been obtained 

by contrasting epidemiological trends of interacting diseases. For example, comparing 

syphilis and gonorrhea trends across the United States established the importance of partial 

protective host immunity in determining a pattern of synchronized epidemics characteristic 

of syphilis but absent for gonorrhea (Grassly et al., 2005). Differential mortality in men and 

women due to the 1918 influenza epidemic explains subsequent changes in TB mortality 
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trends in the first half of the 20th century (Noymer and Garenne, 2000). Co-infection with 

HIV and malaria may have enhanced the spread of both diseases in sub-Saharan Africa 

(Abu-Raddad et al., 2006) because HIV infected patients are more susceptible to malaria 

and, during febrile malaria episodes, HIV viral load increases. Integrating information on 

rates of curable sexually transmitted diseases (STD) and the timing of the HIV epidemic, 

together with sexual behavior differences, help explain the critically different outcomes of 

HIV/sexually transmitted intervention trials conducted in East Africa (White et al., 2004). 

Changes in STD incidence can be used to monitor the HIV epidemic because of the shared 

transmission route (Pinkerton et al., 2003).

We elaborated an existing TB–HIV model (Salomon et al., 2006) to include person–level 

interactions between HIV and TB across the four WHO HIV stages (Williams et al., 2005). 

The original purpose of our model was to investigate the potential impact of shortening TB 

treatment duration in high HIV prevalence areas (Sánchez et al., 2008). The HIV epidemic 

was treated as an external input, whereby HIV incidence and progression occurred as 

background processes that generated HIV prevalence levels reported for Kenya (Cheluget 

et al., 2006). We estimated disease parameters, including some that are very difficult to 

measure in clinical settings, using an iterative calibration process to simultaneously fit TB 

and joint TB–HIV epidemiological data from Kenya spanning 1980–2004 (Methods and 

Supporting document). Furthermore, our detailed model permitted us to investigate not only 

which disease processes can have a greater impact on TB incidence, but also the HIV stage 

at which we can intervene to cause a greater reduction in TB numbers.

The striking mismatch between TB and HIV trends reported for Kenya and those projected 

by the model led us to analyze TB–HIV trends for the whole of Africa to gain a wide-

range perspective on TB–HIV co-epidemiology. Our comparative process provides the 

first example where reported HIV and TB trends cannot be reconciled given present-day 

knowledge on their co-dynamics, and demonstrates the value of monitoring epidemiological 

trends at broad spatial scales via the comparison of trends of tightly linked co-infections 

within a mathematical modeling framework. We further explore potential causes for the 

incongruent TB–HIV co-dynamics in Kenya.

Methods

Our compartmental model considers 42 TB categories and 5 HIV stages linked by disease 

processes (see Supporting document for a detailed explanation of the model structure). HIV 

affects TB rates characterizing infection, progression, and mortality. TB only influences 

HIV dynamics indirectly because it does not alter the rates of HIV infection or progression. 

We conducted all our computational analyses in Matlab®. The generation of the Latin 

Hypercube matrices and the sensitivity and uncertainty analyses (Blower and Dowlatabadi, 

1994) were done in Simlab®.

Model formulation

Our model formulation is an extension of Salomon et al. (2006), the major difference 

between the two studies being the greater complexity characterizing the categories and 

processes representing the HIV epidemic in our model. The model consists of a set of 
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discrete time difference equations with 1 month updates, which we have solved using a 

competing rates formulation to approximate continuous processes on time scales finer than a 

month (see Supporting document for our calculation method). This modeling scheme has the 

advantage that when a group of individuals is subjected to multiple processes simultaneously 

(e.g. individuals in the latent fast-progressor class can either die or break down to active 

disease) their outcome at any time step is determined in such a way that an artificial order 

of processes does not have to be defined because all processes act simultaneously. However, 

this approach does introduce the implicit assumption that each individual can only undergo 

one state transition per time step. More specifically, we assumed all TB processes and 

both background and HIV mortality operate as competing rates, while HIV infection and 

progression occurs independently from TB progression for those persons that do not die at 

each particular time step.

TB–HIV historical reconstruction

Each simulation reconstructs the history of the TB and HIV epidemics in Kenya through 

a series of historical phases (Supporting document). An epidemic of TB without treatment 

is run to equilibrium, generating conditions corresponding to 1958, when the first Kenyan 

national TB control program started (Odhiambo et al., 1999). This period includes partially-

effective TB treatment and lasts 20 years. We then introduce HIV to match relevant 

increases in HIV prevalence beginning in the early 1980s. After 15 years DOTS begins 

and gradually increases its coverage over the next 2 years to replicate its official initiation in 

Kenya in 1993, and the achievement of nationwide coverage by 1996 (Hanson and Kibuga, 

2000). We simulate DOTS for 10 years, until 2006.

Model calibration

In our calibration, we allowed the value of specified parameters to vary in order to 

identify the parameter set that generates the model trajectory with the closest fit to the 

epidemiological trends of interest. Calibrating a model is particularly valuable when the 

uncertainty in the numerical values of the parameters characterizing the different disease 

processes is large. We varied a total of 12 parameter types, of which nine were partitioned 

across HIV stage for a total of 47 parameters. In our selection we targeted those parameters 

that were most important in the sensitivity analysis of Salomon et al. (2006), and reflected 

core processes of TB natural history or the impact of TB control programs and HIV on 

TB dynamics. We first defined uniform parameter ranges for these chosen 47 parameters 

(Table S2) based on published literature, expert opinion, and several preliminary calibration 

rounds. We then proceeded to generate candidate parameter sets using the Latin Hypercube 

Sampling method, LHS (Blower and Dowlatabadi, 1994). All parameters had constant 

values throughout each run (i.e., throughout all the years corresponding to the historical 

reconstruction) except for two TB control parameters: the proportion of new cases entering 

the detectable pool and the proportion of cases (both smear-positive and negative) entering 

DOTS programs. To address the impact of decreased immunity as HIV infection progresses, 

we defined constraints for the relative magnitudes of specific parameters, satisfying the 

inequalities uninfected>stage I and stage II>stage III>stage IV or vice-versa. We did not 

constrain the relative magnitudes of parameters pertaining to stages I and II, because of the 

uncertainty on how the immune system is affected by early stage HIV infection in regards 
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to TB infection and progression (Sonnenberg et al., 2005; and Fox et al., 2006). By leaving 

the relative magnitudes of these parameters unconstrained, we wanted to establish what 

individual-level TB progression patterns would emerge from the calibration of our model to 

country-level data.

We defined the following goodness of fit measure:

GF =
over‐all‐values

(Obs − Exp)2

0.5(Obs + Exp)2
,

where ‘observed’ corresponds to reported epidemiological data and ‘expected’ is the model 

output, which varies with each parameter set (Supporting document). The best-fit trajectory 

is that one with the smallest GF .

We first evaluated the fit of simulated trends to the full TB and TB–HIV datasets in 

Kenya (1980–2004, 106 measures) reported in the WHO Global TB Database (World Health 

Organization, 2006b) and the WHO Global TB Reports from 2001 to 2006 (Supporting 

document) under the HIV prevalence series covering this time period (Cheluget et al., 

2006; and UNAIDS, 2006). When the difficulty in fitting post-1997 trends became evident 

(see below), we conducted a second calibration to the ‘pre-1997’ TB and TB–HIV dataset 

(1980–1997, 44 measures) and the HIV prevalence series also until 1997. We conducted an 

additional calibration to establish if our model could capture the rise in TB case notifications 

throughout the full dataset (1980–2004) given different assumptions regarding HIV trends 

(see Supporting document).

Pan-African patterns

We calculated the relative average annual changes in TB case notifications between 1998 

and 2004, and compared it to the relative average annual changes in HIV prevalence 

between 2003 and 2005 for those African countries recently reported by both WHO (World 

Health Organization, 2006b) and UNAIDS (UNAIDS, 2006). Owing to substantial revisions 

for many countries, HIV estimates from earlier years could not be used at the continental 

scale. We subtracted 1 from this ratio to obtain a measure centered at 0:

relative_change =
1 + TB_case_notifications(2004)

TB_case_notifications(1998) − 1 /6

1 + HIV_prevalence(2005)
HIV_prevalence(2003) − 1 /2

− 1 .

The only exception was Zambia, who did not report a TB case notification estimate in 1998; 

for this country we used the 1999 estimate and divided the ratio in the numerator by 5 

instead of 6 (to accommodate for the 1-year shorter interval to 2004).

Sensitivity analysis

We determined which parameters caused greater changes in TB incidence over the 25 

year projection period (2006–2030) at a stable 6.7% HIV prevalence level. We calculated 

the partial rank correlation coefficients (PRCC) with respect to TB incidence at the very 

Sánchez et al. Page 5

Epidemics. Author manuscript; available in PMC 2023 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



beginning and end of this time period for the 47 parameters allowed to vary in the model 

calibration, using the 1000 parameter sets that provided the best fit to reported Kenyan 

trends (Fig. 1 and Supporting document).

Results

Model calibration

Throughout the model calibration, it was not possible to obtain a satisfactory reproduction 

of TB trends reported prior and subsequent to 1997 while incorporating the reported HIV 

prevalence drop after 1997. Fig. 1 shows how beyond 1997 the poor fit arises because HIV 

prevalence declines strongly while TB measures continue to increase linearly. We note that 

the best-fitting values of the parameters for HIV stages I and II were ordered according 

to a progressively deteriorating immune system for all parameter types in the pre-1997 

calibration, and for all but two types in the full dataset calibration (Supporting document).

The TB case notifications could be matched by the model if we allowed the HIV epidemic 

to increase monotonically to a prevalence of 22.7% in 2004 (Supporting document). Under 

this calibration the fit to the TB case notification trends improved by more than 5 times as 

compared to that of the best-fitting parameter set to reported HIV trends, while the overall 

fit to the full dataset worsened by less than 20%. The latter occurred mainly because of a 

worsening of the fit to combined TB–HIV measures, particularly in later years.

Pan-African patterns

When comparing country level TB–HIV co-dynamics across Africa (Fig. 2), Kenya registers 

as an extreme instance of TB increasing disproportionately to HIV compared to other 

countries with substantial HIV prevalence (chiefly those in eastern and southern Africa). 

Moreover, when considering all countries in Africa for which both UNAIDS and WHO 

provide official HIV and TB yearly estimates, Kenya’s ratio of relative annual changes is 

third only to those of Cameroon and Nigeria. Our analysis further reveals that TB case 

notification rates are growing at a faster pace relative to HIV prevalence in the western 

section of central Africa, as compared to other African regions. Fig. 3 highlights the 

notable increase in Kenyan TB notification rates as compared to Uganda, which has recently 

experienced an important drop in HIV levels.

Sensitivity analysis

Fig. 4 summarizes the most influential parameters on TB incidence throughout the 

projection period for both the calibrations to the 1980–2004 and the 1980–1997 datasets. 

With minor exceptions, parameters with PRCC>0.2 in magnitude were the same and had 

similar magnitudes for the two calibrations (Supporting document).

Discussion

The process of building and calibrating a model to investigate the impact of HIV on 

TB control (Sánchez et al., 2008) uncovered how in Kenya the recent trends of these 

two diseases were at odds. Hence, in order to further our understanding of TB–HIV co-
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dynamics, we examined the joint epidemiological trends of TB and HIV across Africa at 

different spatial scales. At the community level, the detailed field study of Lawn et al. (2006) 

provides valuable corroboration of how changes in HIV trends will lead to changes in TB 

trends. In a South African township, TB case notification rates tapered off in 2002–2004 

after a gradual decrease in the HIV prevalence increase rate during 1996–2004. At larger 

geographic scales, Uganda is the only African country where HIV prevalence has undergone 

a decrease comparable to that reported for Kenya (UNAIDS, 2006; and Murphy et al., 

2006). Ugandan TB case notification rates have been roughly constant since 1994, in sharp 

contrast to those of Kenya (Fig. 3). In Zimbabwe, HIV prevalence probably peaked in 1998 

(Gregson et al., 2006; and Mahomva et al., 2006), and a reduction in TB case notifications 

started by 2003 (World Health Organization, 2006a). In our analysis Kenya is extraordinary 

among African countries in terms of relative TB and HIV dynamics (Fig. 2), even though 

the numbers officially reported by WHO and UNAIDS (UNAIDS, 2006; and World Health 

Organization, 2006a) do not provide the most optimal time frames for comparison because 

they do not capture the main drop in HIV prevalence occurring in Kenya in the late 1990s 

(i.e., our measure disproportionately captures changes in TB trends compared with those of 

the causal factor, HIV, therefore underestimating the potential impact of Kenya’s substantial 

HIV decline). Furthermore, Cameroon and Nigeria, the only two countries with a higher rate 

of TB growth as compared to that of HIV, have much lower TB case notification rates and 

lower HIV prevalence levels than Kenya (UNAIDS, 2006; and Murphy et al., 2006). The fast 

TB growth in relation to HIV trends observed in the western section of central Africa also 

merits further investigation.

In consequence, we found that the lack of congruency in Kenya is supported not only 

because reported trends cannot be reconciled within the realm of our general understanding 

of TB–HIV co-epidemiology (Fig. 1), but also because the joint patterns in Kenya constitute 

an extreme example of TB–HIV co-dynamics in Africa (Figs. 2 and 3). Below we present a 

discussion of our exploration into the potential causes for the mismatch. For a discussion on 

the various limitations of our modeling exercise, please refer to the Supporting document.

TB case detection

The most parsimonious explanation for the incongruent TB and HIV trends is that TB 

case detection has improved in Kenya. No major changes in DOTS coverage have been 

reported in Kenya since 1995 (World Health Organization, 2006a). If the increasing TB 

case notifications do not reflect improvements in DOTS coverage, then an increase in the 

case detection rate from the 1990s to the 2000s, compounded by underreporting in earlier 

years, could be responsible for our inability to fit the data with our model. Moreover, HIV 

could have exacerbated the difference by making public health workers more aware and 

likely to detect new TB cases (see above). Indeed, Mansoer et al. (in press) found that the 

increase in TB case notifications (all forms and smear-positive TB) between 2001 and 2006 

coincides with increases in the number of TB diagnostic units, general health units, TB 

suspects examination rates, and staffing levels. Their analysis leads them to conclude that the 

case detection rate had probably increased from approximately 57% in 1996 to around 70% 

in 2006 (Mansoer et al., in press). In comparison, new smear-positive TB cases increased 

from around 90 cases per 100,000 persons to around 140 cases per 100,000 persons between 
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2000 and 2006, and total (smear-positive and smear-negative) notifications increased from 

around 200 to around 300 per 100,000 persons between 2000 and 2004 (Fig. 1). Given 

the respective magnitude of these changes, even though an increase in the detection rate 

can certainly explain some of the trend, it is unlikely to be the sole cause of the TB–HIV 

mismatch.

HIV trends

An alternative, simple explanation for the mismatch is that HIV prevalence has not 

decreased as reported, and instead the decreasing trend reflects the change in HIV 

surveillance methodology. Garnett et al. (2006b) note that the strong decline in HIV 

prevalence is not predicted by reported changes in risk behavior in Kenya. When using 

a different modeling formulation, Currie et al. (2003) also obtained the critical result where 

declining HIV trends trigger a decline in TB trends. Most significantly, UNAIDS is at 

present evaluating new data from a population based survey together with data from other 

sources to provide updated HIV estimates for Kenya. Even though at the moment only 

provisional ranges are provided by UNAIDS, preliminary analyses do indicate HIV numbers 

in Kenya could be higher than those reported in previous years (UNAIDS, 2008).

In order to reproduce reported TB trends in Kenya, our model required a monotonically 

increasing HIV epidemic as the driver. Moreover, while notification rates for the years 2005 

and 2006 for smear-positive TB patients have declined in Kenya, those of smear-negative 

and extra-pulmonary patients have continued rising, and the proportion of pulmonary TB 

patients that are smear-positive is declining steadily since 1995 (Mansoer et al., in press). 

Because HIV-uninfected persons are more likely to be smear-positive as compared to 

HIV-infected persons (Supporting document) this rate of decrease in the smear-positive 

fraction does not support a decrease in HIV prevalence among the TB-infected in Kenya. 

However, these trends may reflect a recent improved diagnosis of TB in HIV-infected 

patients as compared to previous years (see above). In any case, present day limitations 

to estimating HIV prevalence (Morgan et al., 2006; and Dye et al., 2005) are not likely 

to generate an underestimation of the magnitude that our model required to match the 

TB case notification rates in Kenya, (i.e., 6.7% HIV prevalence reported in 2004 vs. 

22.7% estimated). Furthermore, because of the inherent difficulties in disease monitoring 

and the uncertainties regarding the parameter values characterizing TB–HIV interactions, 

our calibration process is not sufficiently refined to permit us to estimate the true HIV 

prevalence in Kenya even if reported TB trends are accurate. Note that we did not conduct 

this fit as a means to estimate HIV prevalence in Kenya. Rather this fit was intended to show 

there is no inherent problem with the model that made it incapable of tracking the TB trends 

officially reported for Kenya. By altering inputs to the calibration process, the TB numbers 

could be reconciled with HIV epidemics that increase to prevalence levels <20%, but these 

changes will require further assumptions regarding recent changes in TB and HIV dynamics 

in Kenya. HIV prevalence in Kenya is therefore likely to be considerably <22.7%, and other 

causes besides the underestimation of HIV trends are responsible, or must be contributing, to 

the TB–HIV discordance.
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Spatial heterogeneity

Additional confounding factors could have contributed to the reported co-dynamics. Spatial 

heterogeneity in disease dynamics and surveillance is important in both HIV and TB 

epidemiology (Cheluget et al., 2006; UNAIDS, 2006; Abu-Raddad et al., 2006; Dye et 

al., 2005; Hallett et al., 2006; Glynn et al., 2006; and Gagneux et al., 2006a,b), and may 

greatly affect the interpretation of temporal patterns (Brown et al., 2006). Averaging across 

a country can lead to biases not only in our understanding of the trends of the individual 

diseases, but also in our interpretation of their co-epidemiology; HIV and TB numbers may 

predominantly reflect trends from distinct parts of the country, such as rural and urban 

areas. As such, important differences in TB–HIV trends exist across districts in Kenya. 

For example, during 1990–2004 Kisumu had a much higher average HIV prevalence than 

Nairobi (the former attained 35% in 2000, while the latter never reached 18% (Cheluget et 

al., 2006). However, the TB case notification rates of these two districts were very similar 

(Mansoer et al., in press): in 1996 both had close to 300 new TB cases per 100,000 persons, 

and this proportion rose to approximately 700 per 100,000 persons in 2004–2005. Moreover, 

important demographic changes have recently occurred in Kenya that could have contributed 

to the spatial heterogeneity in disease dynamics. A rapid urbanization rate, particularly in 

Nairobi, led to a dramatic increase in the number of people living in urban slums, and 

overcrowded unsanitary conditions are prime TB habitat. These factors can generate a 

positive feedback loop for TB, which may further facilitate the spread of bacterial strains 

that are at a transmission disadvantage with respect to the wild type strain, such as drug 

resistant strains, see below (Gagneux et al., 2006a, c). Further investigations may clarify 

the existence of frequency- and density-threshold effects acting in synergy with HIV and/or 

human demography to alter TB dynamics.

Antiretroviral therapy, TB genetics, and disease progression

Increases in antiretroviral therapy (ARVT) coverage in Kenya—from 3% in 2003 to 19.7% 

in 2005 (UNAIDS, 2006)—could also have contributed to the reported increase in TB 

case notifications in recent years, because patients starting ARVT undergo a process of 

immune reconstitution that can lead to the development of TB symptoms. Additionally, 

the Beijing/W Mycobacterium tuberculosis genotype, which has been increasing globally 

(Glynn et al., 2006), was recently identified in Nairobi (Githui et al., 2004). If this genotype 

has higher virulence and transmissibility than previous Kenyan strains, we expect to see a 

corresponding increase in TB cases (Glynn et al., 2006; Gagneux et al., 2006b,c; Lan et al., 

2003; Marais et al., 2006; López et al., 2003; Malik and Godfrey-Faussett, 2005; and Lawn 

and Wilkinson, 2006).

The temporal dynamics of the TB–HIV co-epidemic, and as such of our model results, 

will be directly impacted by the time of progression to active TB upon infection with HIV. 

We would like to point out that a recent study (Wandel et al., 2008) indicates these could 

potentially be slower than the estimates we used in our model formulation (Morgan et al., 

2002) (see Supporting document), thus delaying the onset of the predicted drop in TB rates 

as a consequence of the decrease in HIV prevalence. In any case, the studies discussed 

above, together with Fig. 3, indicate that other sites have undergone a more rapid response of 

the TB epidemic to decreasing trends in the HIV epidemic than what Kenya is showing.
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Sensitivity analysis: TB processes across HIV stages with greatest impact on TB

It is imperative to establish priorities for control of the twin epidemics, and a sensitivity 

analysis can help us determine which TB life history and control processes could cause 

a greater reduction in TB incidence if intervened, and at what HIV stage(s) we can 

intervene to maximize TB control benefits. In turn, these processes should represent those 

measures most crucial to determine accurately from the data. Our sensitivity analysis yields 

remarkably consistent results for the two model calibrations (the pre-1997 and the full 

dataset, Fig. 4), indicating the robustness of these conclusions to the model formulation and 

specified parameter values. The high-impact parameters corresponded mostly to the HIV 

uninfected and to HIV stage III, and to a lesser extent to HIV stage I. This pattern is likely 

due to HIV uninfected people comprising the majority of the population, as well as to the 

relative durations and degrees of immunocompetence of the HIV stages. The longest lasting 

HIV stage is III followed by I (5.5 and 2 years, respectively). The relative importance of 

stage I may also be influenced by the fact that all infected patients in the simulation will 

have passed (or be in) the first stage—whereas only part of them will already have reached 

later stages. Additional insights are provided in the Supporting document.

Conclusion

Our study represents the first comparative analysis exposing anomalies in the temporal 

trends of HIV and TB in sub-Saharan Africa, thus identifying key issues for public health 

planners to resolve. Because HIV is such a strong driver of TB dynamics, it cannot have 

had such a dramatic country-level decrease in Kenya without triggering a change in TB. 

Therefore, there should be a continued emphasis on understanding past and present HIV–TB 

co-epidemiology. One or a combination of the explanations presented above could explain 

the mismatch between empirical data and model output. If HIV has not decreased, this 

conveys bad news regarding the HIV epidemic. On the other hand, this would make TB 

trends less worrisome because if HIV is decreasing, and if not all the increase in TB is due 

to an increase in case detection and/or spatial heterogeneity in HIV and TB surveillance, 

then some other unidentified phenomenon is responsible for the increase in TB trends. In 

this regard, recent re-evaluations of the TB case detection rate cannot fully account for the 

mismatch.

Unraveling what role these various factors may have played in shaping the reported TB 

and HIV trends will require increased coordination and exchange of information among 

organizations and institutions managing each disease (Nunn et al., 2005). Our study 

highlights the need for a long-term interplay between data collection at the individual 

and population levels at multiple spatial scales, and for the methodical integration of TB, 

HIV, and other co-infection data. Results further support the importance of integrating 

information from closely interacting epidemics within a theoretical modeling framework, 

which provides critical insights unobtainable when components of generalized epidemics are 

considered individually.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Reported TB case notifications per 100,000 persons in Kenya, and model output following 

reported HIV prevalence trends calibrated to various TB and joint TB–HIV measures for 

two different frames: 1980–1997, and 1980–2004. Note: we present the uncertainty bounds, 

as determined by the 1000 runs with the best goodness-of-fit (GF), for the calibration to data 

points up to 1997. We show TB case notifications because it is the measure with the longest 

time series, but similarly incongruent results were obtained for incidence and mortality.
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Fig. 2. 
Ratio of relative annual changes in TB case notifications per 100,000 (1998–2004) and HIV 

prevalence (2003–2005) in Africa. Note: positive values indicate TB increases relative to 

HIV, zero suggests both diseases change at comparable rates, and negative values imply TB 

declines relative to HIV.
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Fig. 3. 
Yearly TB case notification rates per 100,000 in Kenya and Uganda for 1980–2004. Most 

relevant years in HIV prevalence are indicated by triangles for Uganda, and by crosses for 

Kenya (Uganda peaked at 15% in the early 1990s, Kenya at 10% in the late 1990s).
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Fig. 4. 
Parameters of greatest impact with regard to changes inTB incidence over a 25 year 

projection period (2006–2030) at a stable 6.7% HIV prevalence, according to the partial 

rank correlation coefficient analysis (PRCC). Solid bars represent the calibration to the full 

time series (1980–2004), and hatched bars represent the calibration to values reported up to, 

and including, 1997. HIV−: HIV uninfected; SM+: smear-positive TB case.
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