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ABSTRACT: Antigen-presenting cells (APCs) orchestrate im-
mune responses and are therefore of interest for the targeted
delivery of therapeutic vaccines. Dendritic cells (DCs) are
professional APCs that excel in presentation of exogenous antigens
toward CD4+ T helper cells, as well as cytotoxic CD8+ T cells. DCs
are highly heterogeneous and can be divided into subpopulations
that differ in abundance, function, and phenotype, such as
differential expression of endocytic receptor molecules. It is firmly
established that targeting antigens to DC receptors enhances the
efficacy of therapeutic vaccines. While most studies emphasize the
importance of targeting a specific DC subset, we argue that the
differential intracellular routing downstream of the targeted
receptors within the DC subset should also be considered. Here,
we review the mouse and human receptors studied as target for therapeutic vaccines, focusing on antibody and ligand conjugates and
how their targeting affects antigen presentation. We aim to delineate how targeting distinct receptors affects antigen presentation and
vaccine efficacy, which will guide target selection for future therapeutic vaccine development.
KEYWORDS: cancer vaccine, immunotherapy, cross-presentation, dendritic cells, endocytic receptor

1. INTRODUCTION TO VACCINES
Vaccines are immunological tools to boost the immune system
of the recipient. The aim of prophylactic vaccination is to
generate immunological memory after exposure to an antigenic
challenge. Vaccines drastically improved global healthcare
playing a crucial role in the eradication of smallpox and
rinderpest, and controlling many other pathogenic diseases.1,2

In principle, a vaccine contains two fundamental components:
antigens to confer specificity and adjuvants to induce antigen-
presenting cell (APC) maturation and immunity.
APCs are key regulators of adaptive immunity. APCs take up

and process antigens into epitopes that are presented via major
histocompatibility complexes (MHCs). They express pathogen
recognition receptors (PRRs) to discriminate between
harmless and hazardous antigens.3 Engagement of PRRs such
as toll-like receptors (TLRs), by damage associated molecular
patterns (DAMPs) or pathogen associated molecular patterns
(PAMPs) leads to APC maturation. Mature APCs down-
regulate antigen uptake, while enhancing antigen preservation
and presentation on MHC.4 Moreover, APC maturation causes
an increase in the expression levels of costimulatory molecules
such as CD40, CD80 (B7−1), or CD86 (B7−2) and an
inflammatory cytokine profile characterized by IL-2, IL-12, and
IFN-γ.5−7 In this state, APCs license B cells, CD4+ T cells, and
CD8+ T cells to induce an immune response against the

presented antigen. Antigen uptake without engagement of
PRRs causes the APC to present the antigen in an immature
state, which can induce anergy in reactive CD4+ or CD8+ T
cells or activate peripherally induced regulatory T cells
(iTregs).8 Among APCs, dendritic cells (DCs) are considered
the most specialized in antigen processing and presentation.
Researchers are investigating therapeutic vaccination strat-

egies with the goal to replicate the success of prophylactic
vaccines.9−11 Therapeutic cancer vaccines aim to induce or
reactivate adaptive immune responses toward an established
tumor. They are highly promising in the field of cancer
immunotherapy, because they can induce antigen-specific
memory responses that could prevent cancer relapse by
maintaining long-term immune surveillance against cancer
cells. The initial response of cancer vaccines is directed against
a restricted set of antigens present in the vaccine. This can be
either tumor-associated antigens (TAAs) or tumor-specific
antigens (TSAs). TAAs are commonly overexpressed or
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aberrantly expressed proteins on tumors, for instance,
glycoprotein 100 (gp100) or tyrosine related protein-2
(TRP-2). As TAAs are often shared across patients and cancer
types, their incorporation in vaccines could benefit a larger
group of patients and ease the manufacturing process.
However, their efficacy is threatened by pre-existing central
and peripheral tolerance, which could limit their immunoge-
nicity. In contrast, TSAs originating from, for example, point or
frame shift mutations are highly immunogenic. Since TSAs are
unique to each patient, a personalized approach is necessary
for their identification and production of the vaccine. This
presents a manufacturing challenge. Second, tumors develop
an immunosuppressive microenvironment, which could induce
peripheral tolerance toward TSAs in the absence of strong
immunostimulatory agents to drive the immune response.
After the initial tumor cell killing by effector immune cells,
other tumor antigens are released to induce epitope spreading.
This can expand the range of tumor antigens recognized by the
immune system and improves responses against the tumor.12

Two main strategies exist in therapeutic vaccination focused
on antigen presentation by DCs: 1) Ex vivo DC therapy
consists of activating and loading patient-derived DCs ex vivo
and the subsequent transfusion of the matured DCs into the
patient. 2) In vivo cancer vaccination depends on targeted
delivery of antigens and immunostimulatory adjuvants to DCs
in vivo. Subsequently, the trained DCs will activate antigen-
specific responses via CD8+ cytotoxic and CD4+ helper T cells
to elicit antitumoral immunity.13 The following paragraphs
introduce these vaccination strategies and their associated
advantages.
Ex vivo DC therapy relies on differentiating and maturing

patient-derived DCs or DC progenitors ex vivo while pulsing
them with tumor lysate or antigens. Tumor-primed DCs are

transfused back in the patient and can migrate to the lymph
nodes where they prime tumor-specific T cells.14 Most studies
have relied on monocyte-derived DCs (moDCs), which are
easily generated in large numbers. After over two decades of
evaluation, it is evident that patients almost always respond to
the cell therapy by generating vaccine-specific T cells but only
show modest clinical benefits.15−17 A recent murine study
demonstrated that host DCs are essential for T cell priming
after vaccination with ex vivo loaded moDCs. It is theorized
that most transfused moDCs cannot migrate to lymph nodes
and die upon injection. Upon cell death, they release their
tumor antigens to host DCs instead of priming T cells
themselves. This suggests that moDCs are not the optimal
choice for ex vivo DC therapies.18,19 Clinical studies have
recently shown that the use of naturally present DCs
outperforms moDCs.20 Additionally, it was demonstrated
that ex vivo loaded type 1 conventional DCs (DC1s), but
not type 2 conventional DCs (cDC2s) or moDCs, can drive
tumor rejection in mice independently of host DCs.21 As such,
DC1-based ex vivo DC therapy has an increased potential to
function as cancer therapy.22,23 While DC1s are scarce in
peripheral blood (<0.05% of PBMCs), technical advances such
as cell reprogramming or differentiation from stem cells to
generate larger numbers of functional DC1s will allow clinical
studies utilizing autologous DC1s.24−26

In vivo cancer vaccines deliver antigenic epitopes to APCs to
elicit antitumor immunity (Figure 1a). This can be promoted
by targeting APC surface molecules. TAAs or TSAs can be
delivered as full proteins, peptides, or antigen-encoding
nucleotides.13 Immunostimulatory adjuvants can be adminis-
tered systemically or incorporated into the vaccine.27−29

Moreover, the antigen itself can be intrinsically immunosti-
mulatory, such as antigen-encoding DNA or mRNA, that can

Figure 1. A) Schematic representation of mechanism of action from targeted antigen delivery to T cell mediated tumor killing. B) Schematic
representation of DC-targeted cancer vaccines and the influence of receptor targeting on antigen fate. This review covers antibody-, antibody
fragments, and nanobody and ligand conjugates. For image clarity only an antibody is depicted as a targeting moiety.
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bind to TLRs 3, 7, 8 or 9.30 The manufacturing of in vivo
vaccines is relatively affordable and scalable and does not
require the isolation and culturing of DCs from the patient.
This could result in readily available off-the-shelf therapies and
is a major advantage in comparison to ex vivo DC therapy.31

Several in vivo cancer vaccines are currently in clinical trials.
NEO-PV-1 is a neoantigen peptide-based vaccine adjuvanted
with poly-ICLC, which was demonstrated to be safe in a phase
I study.32 Combination of NEO-PV-1 with nivolumab, an anti-
PD-L1 immune checkpoint inhibitor, increased T cell
reactivity and epitope spreading in a phase Ib study.33 Lipo-
MERIT (BNT111, FixVac) and mRNA-4157 are mRNA-
formulated tumor antigens encapsulated in liposomes. These
mRNA/liposomes assemblies have demonstrated an acceptable
safety profile, with promising immunological and clinical
responses in phase I/II trials.34−36 Human papillomavirus-16
(HPV-16)-derived synthetic long peptides conjugated to
Amplivant, a synthetic TLR2 agonist, were administered
intradermally in a phase I study. This vaccine was capable of
inducing T cell responses as measured by IFN-γ ELISpot
assays.29 In this trial, most patients developed CD4+ T cell
responses, while CD8+ T cell responses were observed less
frequently. These recent trials showed promising results, yet
none of these vaccines actively target APCs. This while the
nonspecific uptake of these vaccines by other cells could
decrease their effectiveness and could potentially cause harmful
off-target responses.

DCs are ideal candidates for targeted vaccine delivery.
Pioneering studies by Steinman and colleagues showed that
selective delivery of antigens to DCs improves T cell
priming.37,38 These results have been confirmed by a myriad
of follow-up studies, which reinforces that targeting antigens
toward DCs improves antigen presentation, adaptive immune
responses and tumor rejection.38,39 DCs can engage CD4+ T
helper cells as well as cytotoxic CD8+ T cells, both of which are
required to induce long lasting antitumor immune re-
sponses.40,41

DCs display a large array of specialized surface receptors
functioning as pathogen sensors. Downstream signaling of
these receptors culminates in an immune response mechanis-
tically biased to the elimination of the given pathogen. Sensing
of viruses results in type I interferon release, which promotes
cross-presentation and induces a CD8+ T cell-bias.42 Detection
of bacteria or helminths induces a Th1- or Th2-bias,
respectively. It may be possible to exploit these biases by
selecting specific DC surface receptors to control the immune
responses generated by vaccination. In line with this,
preclinical studies have reported different immunological and
clinical outcomes when comparing DC surface markers as
vaccine target. This holds true for receptors expressed by
distinct DC subpopulations and also for receptors expressed by
the same DC subpopulation.43−46

Selecting specific cell surface targets can enhance the
effectiveness of therapeutic vaccines by determining the
subpopulation of DCs targeted, affecting the endosomal

Table 1. Receptor Expression on Human and Mouse APCs of the Main Vaccine Targets Discussed in This Reviewa

aThe relative expression is indicated by −, +, ++, and +++. bReceptor expression on DC3s is not yet studied for cancer vaccine targets but expected
to be comparable to DC2s. cMurine equivalent of moDCs are poorly defined; thus, no receptor expression could be determined. dReceptor
expression is determined by the protein atlas.57 Tissue specificity index (τ) of receptor expression in human immune cells as determined by the
protein atlas. τ ranges between 0 and 1, where 0 indicates broad expression of the receptor on different immune cells and 1 indicates highly specific
immune cell type expression.58 No such database exists for receptor expression in mouse. eMain off-target on nonmyeloid cells are Schwann cells.
fCD169 is expressed on the pre-DC progenitor of cDCs. gCD206 is downregulated upon APC maturation. hConflicting results have been
published. iLangerin expression is mouse strain-dependent. jMHC II is upregulated upon DC maturation. kMultiple genes exist for the different
MHC types in human: CIITA is used as representative gene for MHC II expression, because expression of all MHC types is under control by
CIITA. lExpression of CD40 is upregulated on mature APCs.
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routing and antigen fate, and ultimately steering the immune
response (Figure 1b).47,48 Decoupling the influence of the DC
subset from that of the cell surface receptor is difficult, and few
comparative studies have set out to investigate this issue. In
this Review, we aim to delineate the impact of target receptor
choice on the efficacy of DC-targeted therapeutic vaccines, in a
perspective focused on endosomal routing inherent to the
receptor. We set out to compare the effects of antibody and
ligand conjugates on antigen presentation and immune
response, particularly in the context of cancer vaccines.
Ultimately, we aim to guide the target selection for the
development of therapeutic cancer vaccines.

2. GENERAL CONSIDERATIONS ON IMMUNE CELLS
INVOLVED IN THERAPEUTIC VACCINES AND
ANTIGEN PROCESSING PATHWAYS
2.1. Types of Immune Cells Induced by Therapeutic

Vaccines. 2.1.1. Dendritic Cells. DCs can be divided into
several subpopulations: plasmacytoid DCs (pDCs) are
involved in antiviral immunity via secretion of type I and
type III interferons;49 DC1s are known to preferentially induce
CD8+ T cell mediated immune responses but also can induce
CD4+ T cells, such as T helper type 1 (Th1);50,51 DC2s
represent 90% of the conventional DCs (cDCs) and excel in
the induction of CD4+ T cells;52,53 DC3s, macrophages, and

Langerhans cells can also scavenge antigens.54 DC3s have only
recently been described as separate subset and are mainly
considered to be immunosuppressive.55 In such, they might
hamper the efficacy of vaccines that target DC subsets with an
overlapping receptor expression.56 As discussed above, moDCs
are DC-like cells often used as in vitro models in DC biology,
but they are also present in circulation during the course of
inflammation. The unique expression profile of receptors on
DC subpopulations enables targeting of specific subtypes with
specialized properties and determines the encountered
endocytic pathway (Table 1). This offers an opportunity to
steer the immune system toward the desired response.

2.1.2. CD8+ T Cells. MHC I restricted T cell responses have
received the most attention in cancer vaccine design. CD8+ T
cells can lyse tumor cells directly by releasing cytotoxic
granules or by inducing apoptosis via the Fas/FasL pathway.59

Incorporation of CD8+ T cell-specific epitopes in cancer
vaccines is feasible. Epitopes are well described for the most
common TAAs in multiple MHC subclasses, and algorithms
have been developed to predict putative MHC I epitopes
originating from TSAs. Either a too strong or too weak
antigenic stimulation during the initial priming can drive CD8+

T cell dysfunction and lack of tumor control.60 The potential
impact of the strength of TCR stimuli on CD8+ T cell
responses is currently not understood fully.

Figure 2. Overview of the XP pathways. Endosome-to-cytosol pathway: 1) Antigen uptake by endocytosis or phagocytosis. 2) Endosomal escape is
mediated by active transport through ETPs as HRD1, Derlin-1, and Sec66b or through lipid peroxidation mediated by NOX2.75−78 3) Cytosolic
cleavage of antigen by proteasome. 4) TAP-mediated uptake of antigen into the ER (a) or endosomes (b). 5) Loading of antigen onto MHC I. 6)
Transport of MHC I to the cell surface for antigen presentation. (i) Transport of ETPs originating in the ER to endosomes is most likely mediated
by Sec22b.79 (ii) MHC I originating in ER are transported to endosomes. Vacuolar pathway: 1) Antigen uptake by endocytosis or phagocytosis. 2)
Proteolytic processing of antigen in early endosomes is presumably mediated by cathepsin S.83 3) Loading of antigen onto MHC I. 4) Transport of
MHC class I to the cell surface for antigen presentation. (ii) MHC I is transported to endosomal recycling compartments (ERC) from cell surface
mediated by Rab11a and subsequently SNAP23 to fuse with endosomes, or MHC I is transported to endosomes from the ER mediated by
CD74.84,85

Molecular Pharmaceutics pubs.acs.org/molecularpharmaceutics Review

https://doi.org/10.1021/acs.molpharmaceut.3c00330
Mol. Pharmaceutics 2023, 20, 4826−4847

4829

https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00330?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00330?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00330?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00330?fig=fig2&ref=pdf
pubs.acs.org/molecularpharmaceutics?ref=pdf
https://doi.org/10.1021/acs.molpharmaceut.3c00330?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.1.3. CD4+ T Cells. CD4+ T helper cells provide support to
other immune cells during priming and activation by
producing large amounts of immunostimulatory cytokines. In
the context of antitumor responses, CD4+ T cells license DCs
and improve priming of CD8+ T cells,40 whereas CD8+ T cell
priming in absence of CD4+ T cells leads to T cell
exhaustion.61 Moreover, CD4+ T cells support B cell
development and affinity maturation. CD4+ T cells have
repeatedly been shown to be crucial for antitumor
responses.62,40 Results of a trial using peptides selected to
encompass MHC I TSAs adjuvanted with poly-ICLC noted
that most patients mounted TSA-specific CD4+ T cells
responses instead of the expected CD8+ T cell responses.63,64

We suggest that the predisposition of CD4+ T cells to respond
to tumors should be harnessed by including MHC II epitopes
in vaccination strategies.40 However, MHC II epitopes are
often insufficiently characterized for TAAs. Algorithms to
identify TSA-derived MHC II epitopes are not as accurate due
to less stringent factors determining the binding of MHC II
epitopes in comparison with MHC I epitopes. To bypass the
need to identify MHC II epitopes, Sahin and colleagues have
postulated that point mutations are intrinsically immunogenic
and aimed to generate a diverse pool of epitope variants by
placing mutations strategically within epitopes.65,66 Yet, the
elimination of MHC II-deficient tumors is still dependent on
CD4+ T cells.62 These findings indicate that CD4+ T cells may
not necessarily need to recognize tumor-specific antigens.67

Instead, pre-existing memory CD4+ T cells directed against
universal epitopes, such as those found in diphtheria and
tetanus, might provide the necessary support to the immune
system. Therefore, the inclusion of universal epitopes in cancer
vaccines could enhance antitumoral effectiveness while
simplifying the manufacturing process.

2.1.4. B Cells. It remains elusive whether humoral immunity
to cancer antigens is important for antitumor responses. In
principle, antibodies can recognize antigens aberrantly ex-
pressed by tumor cells and mediate antibody-dependent
cytotoxicity by natural killer (NK) cells or phagocytosis by
macrophages. Tumor-reactive antibodies also promote antigen
uptake by DCs via immune complexes and broaden the tumor-
reactive T cell repertoire.68,69 Nevertheless, humoral immunity
is often overlooked in cancer vaccination strategies as well as
the antigen-presenting capacity of B cells.
2.2. Antigen Cross-Presentation. Antigenic epitopes are

present to T cells on DC surfaces via MHC molecules. In
principle, exogenous antigens are presented via MHC II to
CD4+ T cells, whereas endogenous antigens are presented via
MHC I to CD8+ T cells.70 Yet, exogenous antigens can be
presented on MHC I, a process referred to as cross-
presentation (XP).71−73 XP is crucial to inducing a cytotoxic
immune response against virally infected or malignant cells. In
particular DC1s excel at XP and subsequent induction of
cytotoxic immune responses.74 The current paradigm proposes
two main pathways for XP (Figure 2).

2.2.1. Endosome-to-Cytosol Cross-Presentation. The
endosome-to-cytosol pathway describes the escape of antigens
from endocytic compartments to the cytosol, their processing
by the proteasome, and the transport to the endoplasmic
reticulum (ER) or endosomes, where epitopes are loaded onto
MHC I. Antigen escape can be passive, following membrane
lipid peroxidation induced by NOX2;75 or active, via
endosome transporter proteins (ETPs) such as Sec61,
Derlin-1, and HRD1.76−78 Sec22b likely regulates antigen

transport by ETPs.79 After they escape the endocytic
compartment, antigens are processed by the ubiquitin-
proteasome system (UPS), an elaborate catalytic machinery
able to efficiently hydrolyze cytosolic and nuclear proteins.
Antigenic peptides released by the proteasome are translocated
to the ER or endosomes by the transporter associated with
antigen processing (TAP). The endosome-to-cytosol pathway
strictly requires TAP activity.80,81 In the ER or endosomes,
antigenic epitopes are loaded onto MHC I and transported via
the Golgi apparatus to the cell surface.

2.2.2. Vacuolar Cross-Presentation. The vacuolar pathway
is TAP- and proteasome-independent.82 In this second main
XP pathway, antigen processing and epitope loading take place
directly inside early endosomes. Cathepsin S is presumably
largely responsible for the antigen processing, as its inhibition
leads to major deficiencies in the vacuolar pathway.83 MHC I is
transported to endosomes in vesicles originating from the ER
under regulation of CD74, or via endosomal recycling
compartments (ERCs) under control of Rab11a and
SNAP23.84,85 The recruitment of MHC I from the ERCs is
TLR-dependent, and promoted by the simultaneous presence
of TLR stimulating signals and antigens inside individual
phagosomes.86−88 This is thought to be a mechanism to
transiently enhance XP in response to an antigenic threat.

3. PROMOTING ANTIGEN PRESENTATION ON MHC I
TO INDUCE CYTOTOXIC IMMUNITY

In the next sections, we introduce receptors described to target
therapeutic vaccines to DCs. For each receptor, we highlight
what has been reported in murine and human studies and
briefly summarize the influence of targeting this receptor on
the downstream response.
3.1. DEC205. DEC205 (CD205, LY75, Clec13b) binds

keratin at slightly acidic pH to recognize apoptotic or necrotic
cell debris.89−91 DEC205 can mediate the internalization and
trafficking to late endosomes/lysosomes of CpG oligonucleo-
tides promoting TLR9 signaling.92 In the mouse, DEC205 is
expressed mainly by CD8+ DCs (DC1s). In humans, besides
its expression on DC1s, DEC205 is also expressed at low levels
on DC2s and pDCs, and in high levels on epithelial cells
(Table 1).93,94 In a pioneering work, Steinman and colleagues
targeted antigens to DEC205 and established that delivering
antigens specifically to DCs could enhance antigen-specific T
cell responses and improve the therapeutic window.38,39

3.1.1. DEC205−Mouse. Targeting of mouse DEC205 is
extensively described in literature. In Steinman’s initial studies,
ovalbumin (OVA) protein was chemically conjugated to the
anti-DEC205 monoclonal antibody (mAb). Conjugation of
OVA to anti-DEC205 increased CD8+ T cell responses over
1000-fold, and CD4+ T cell responses are over 50-fold
compared to soluble OVA.39 Co-administration of immunos-
timulatory anti-CD40 mAb was shown to be crucial for tumor
rejection and prevented the induction of tolerance.38 These
promising results encouraged further study of the DEC205
receptor: Many studies have reported enhanced XP of TAAs
(gp100, HER2/neu, mesothelin) and strong CD8+ T cell
responses upon targeting DEC205.95−97 Antigens targeted to
DEC205 mainly accumulated in late endosomes, which should
bias antigen processing toward proteolysis, MHC II
presentation, and CD4+ T cell activation.98 MHC II antigen
presentation was not increased as much as XP. We attribute
the enhanced CD8+ T cell activation to the combination of
DEC205-mediated intracellular trafficking with an increased
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antigen uptake by DC1s, which upregulate Tap1/2 and Sec61
thereby promoting the endosome-to-cytosol XP pathway.45,81

3.1.2. DEC205−Human. The broad expression profile of
DEC205 in human cells complicates interspecies compar-
ison.93 The first in-human targeted cancer vaccine consisted of
an anti-DEC205 mAb fused to the cancer testis antigen NY-
ESO-1 adjuvanted with coadministered poly-I:C (CDX-1401).
Its clinical evaluation in phase I and II trials demonstrated a
favorable safety profile and moderate CD4+ and CD8+ T cell
responses without induction of Tregs.99,100 Pretreatment with
systemic fms-like tyrosine kinase 3 ligand (Flt3l) 1 week before
CDX-1401 administration increased the abundance of DCs
prior to vaccination and improved T cell responses to CDX-
1401.101 This preliminary study did not examine the specific
contribution of different DC subsets to T cell activation. In a
different study, PBMCs isolated from NY-ESO-1-expressing
cancer patients were treated with anti-DEC205 or anti-CD206
mAbs fused to NY-ESO-1.102 While receptor targeting
improved expansion of antigen specific CD4+ and CD8+ T
cells in vitro, no significant differences in targeting DEC205 or
CD206 were observed. Targeting influenza peptide to isolated
human DC1s in vitro via DEC205 resulted in lower levels of
XP in comparison with targeting to CD40 and CD11c, both
known to direct antigens to early endosomes. Strikingly, early
endosomal targeting resulted in comparable levels of XP in
DC1s and DC2s. This emphasizes the importance of taking
into account antigen routing to optimize processing in cancer
vaccines.47 In total, ten clinical trials using CDX-1401 have

been initiated (Table 2). These pioneering trials in DEC205-
targeted antigen delivery could provide valuable insight into
the translation of targeted vaccines. Yet, targeting human
DEC205 might not be as effective at inducing antigen XP and
subsequent CD8+ T cell activation due to routing to late
endosomes. Moreover, the broad expression profile of
DEC205 in myeloid and nonmyeloid human cells may result
in undesirable off-targeting and could decrease the efficacy of
DEC205 targeted vaccines in vivo.
3.2. Clec9a. Clec9a (DNGR-1, CD370) recognizes actin

exposed to damaged cells. It binds filamentous actin in
complex with cytoskeletal proteins and signals through the
Syk-cascade.103 Clec9a is selectively expressed on DC1s in
mouse and human (Table 1).104 Clec9a and DEC205 differ in
their intracellular routing. In an in vitro study, fluorescently
labeled anti-DEC205 mAbs but not anti-Clec9a mAbs
colocalized with lysotracker. Instead, anti-Clec9a colocalized
with necrotic cell material away from lysosomes.105 In
addition, engagement of Clec9a signals for phagosomal
rupture, resulting in antigen escape into the cytosol, which,
in turn, enhances XP. These features make Clec9a a
compelling target to promote XP.

3.2.1. Clec9a−Mouse. In B6 mice, delivery of CD8+ and
CD4+ T cell epitopes to DC1s using anti-Clec9a mAb results
in enhanced XP and MHC II presentation, respectively, in
comparison with untargeted controls.104,106 In CB6.F1 mice,
HIV gag-p24 peptide targeted to either Clec9a or DEC205
resulted in similar CD8+ T cell proliferation and comparable

Table 2. Comprehensive Overview of the Receptors Discussed in This
Review38,39,45−47,95−102,104−112,118−122,126−132,135−139,142,144,145,151−158,162−167,174−180,185−190,196−199,201−204,207−211,217−224

aClinical trial identifiers: CDX1401: NCT03358719, NCT01834248, NCT01522820, NCT02661100, NCT02129075, NCT03206047,
NCT02413827, NCT02495636, NCT02166905, NCT00948961; DCVax-001: NCT01127464; CDX-1307: NCT00648102, NCT01094496,
NCT00709462. bThe relative propensity of antigen presentation is indicated by −, + , ++, or +++, based on the studies described in this review.
cCross-presentation by targeting CD169 occurs indirectly through antigen transfer to DCs.
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IFN-γ levels in an restimulation assay.46 Targeting antigens
with CBP12, a 12-mer peptide specific to Clec9a, also
demonstrated enhanced XP and increased specific T cell
responses.107,108 CBP12-mediated delivery of the peptides of
the peptides of the OVA257−264 and gp100 under adjuvant-free
conditions demonstrated potent antitumor responses in anti-
PD1-resistant B16-OVA and B16 melanoma, respectively.
Mechanistically, the authors demonstrated that CBP12 binding
triggered IL-21 signaling, which was crucial for vaccine activity.
Targeting Clec9a with mAb-OVA fusion constructs increased
XP in comparison with Clec12a targeting. Targeting Clec9a
significantly enhanced humoral responses compared to
DEC205 and Clec12a, even in adjuvant-free conditions.109

Altogether, this indicates that Clec9a is a promising target for
the delivery of antigen to murine DC1s.

3.2.2. Clec9a−Human. CLEC9a has restricted expression
on human DC1s, unlike DEC205. Viral antigen (pp65), NY-
ESO-1 polypeptide, or Wilms’ tumor 1 antigen delivery to
Clec9a or DEC205 was compared using human
PBMCs.110−112 Naiv̈e and memory CD8+ T cell activation
was enhanced upon antigen delivery to Clec9a compared with
DEC205. Yet, in humanized NSG-A2 mice, equally potent XP
of pp65 was observed for both targets.110 Unlike humans, NSG
mice express do not express DEC205 on nonlymphatic
endothelial cells. The authors speculate that this leads to a
higher persistence of anti-hDEC205 mAb in NSG mice than is
expected in humans, effectively increasing the specificity of
anti-hDEC205 to DC1s. Due to the highly specific expression
profile of Clec9a on human DC1s, it is expected that a Clec9a-
targeted vaccine will demonstrate an increased activity
compared to DEC205 in a clinical setting.113

3.3. XCR1. X-C motif chemokine receptor 1 (XCR1,
GPR5) mediates chemoattraction toward lymphotactin
(XCL1), a chemokine secreted by activated T cells and NK
cells.114,115 This interaction promotes antigen uptake in
inflammation sites and interaction with CD8+ T cells.116

Similar to Clec9a, XCR1 expression is restricted to DC1s
(Table 1).114,116,117 Because of the lack of publicly available
mAbs against human XCR1, studies on XCR1 have been
limited to XCL1-mediated targeting.

3.3.1. XCR1−Mouse. XCL1 fused to OVA or influenza
antigens induces strong CD8+ T cell cytotoxicity in B6
mice.118,119 Fossum and colleagues performed a thorough
comparative study of XCR1, Clec9a and DEC205 as potential
DC1 vaccine targets.118 Immunization with plasmid DNA
encoding XCR1 or Clec9a targeted hemagglutinin (HA)
protected mice in a lethal viral challenge, whereas DEC205
targeted HA did not. Clec9a and DEC205 were targeted by
nanobodies, whereas XCR1 was targeted via XCL1. The
strongest immune responses were noted for XCR1, irrespective
of the antigen or the mouse strain. This study is one of the few
that compared the activities of vaccines targeting receptors
specifically expressed by the same DC subpopulation. Future
studies should confirm whether this also holds true for protein-
based immunization and investigate the influence of the
adjuvant. Taken together, these results emphasize that intrinsic
factors of receptors, such as expression levels and endosomal
routing, influence antigen presentation and subsequent T cell
activation.

3.3.2. XCR1−Human. XCL1−antigen fusions induced
stronger antigen XP in comparison with free antigen or vehicle
control in human PBMCs.120−122 Human XCL1−antigen
fusions conserved its targeting ability in vivo, as confirmed in

transgenic mice expressing human XCR1, and induces potent
CD8+ T cell activation.120 Moreover, XCL1-NY-ESO-1-
peptide-PEG5k constructs retained their activity as DC1
chemoattractant, which could potentiate DC1 activation and
XP by attracting DC1s toward the injection site.121 In
summary, XCL1 has chemotactic properties and retains its
DC1-specific targeting capability upon C-terminal modifica-
tion. Further engineering of XCL1 constructs to increase its
affinity, stability and agonistic activity could yield optimized
targeting agents to explore in a therapeutic setting.119,123

3.4. CD169. The sialic acid binding immunoglobulin-type
lectin 1 (SIGLEC-1, Sn, CD169) is involved in uptake and
presentation of dead cell-associated antigens, including tumor
antigens.124 CD169 is expressed on a subpopulation of
macrophages located in the marginal zone of the spleen and
the lymphatic sinuses of secondary lymph nodes. This strategic
location allows CD169+ macrophages to filter and capture
circulating antigens, pathogens or cellular debris.125 CD169+
macrophages act as an antigen reservoir for the splenic and
sinusoidal resident lymphohematopoietic systems by retaining
and releasing these antigens gradually. CD169 itself mediates
antigen transfer to DCs, and especially DC1s, by binding to
sialic acid containing glycans on the surface of DCs.126

3.4.1. CD169−Mouse. Targeted delivery using anti-CD169
or CD169-specific ligands conjugated to TAA peptides
resulted in antitumor responses in B6 mice.127,128 Mice that
lack DCs but not CD169+ macrophages were as capable as WT
mice at priming CD8+ T cells upon CD169-mediated delivery
of OVA peptide.129 In a more physiological setup, CD169+
macrophages transferred antigens to DC1s to promote cross-
priming of CD8+ T cells in vivo.126 This plausible mechanism
may be exploited to improve the XP in targeted therapeutic
vaccines.

3.4.2. CD169−Human. Antigen delivery to CD169 resulted
in a slower uptake compared to antigen delivery to DC-SIGN
in moDCs.128 This correlated with murine data and hints
toward a pathway favoring antigen retention for transfer to
DC1s.130 Delivery of the tumor antigens gp100 and WT1 using
anti-CD169 resulted in specific CD8+ T cell expansion possibly
mediated through cross-talk between CD169+ macrophages
and DC1s.131 Sialic acid covered liposomes were shown to
induce antigen-specific CD8+ T cell activation and prolifer-
ation in human PBMCs.132 Targeting CD169+ macrophages
could be an efficient way of indirectly targeting the relatively
low number of DC1s by harnessing the higher prevalence of
CD169+ macrophages and their capacity to retain antigens.
3.5. CD206. CD206 (MR, MCR1, MMR) is involved in

numerous processes such as cellular activation, clearance of
glycosylated molecules, promotion of antigen presentation, cell
trafficking and collagen internalization.133 CD206 binds to
mannose, fucose, and N-acetylglucosamine, but it is especially
known for its high affinity for multivalent oligosaccharides.134

In DCs, soluble antigen uptake by CD206 leads to transport to
early endosomes, which increases XP via the vacuolar
pathway.135,136

3.5.1. CD206−Mouse. CD206 appears to be involved in the
uptake of soluble antigens by DCs. Mannan, an inhibitor of
CD206-mediated endocytosis, completely blocked uptake of
soluble OVA in mouse bone marrow-derived DCs (BMDCs)
but not of cell-associated OVA. In line with this, OVA-specific
CD8+ OT-I cells activation upon vaccination with OVA was
hampered in CD206−/− B6 mice.135 This finding prompted a
study on trafficking and processing of OVA in BMDCs of WT
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or CD206−/− B6 mice.136 MHC II antigen presentation of the
CD4-epitope was unaltered in CD206−/− BMDCs, whereas XP
of the CD8-epitope was strongly reduced in CD206−/−

BMDCs, as measured by OT-II and OT-I cell proliferation,
respectively. Microscopy revealed that CD206-mediated
uptake delivered antigens toward early endosomes and away
from lysosomes, thus facilitating antigen preservation and XP.
Mannosylation of antigenic peptides enhanced XP in B6 mice
and resulted in stronger T cell proliferation compared to
nonmannosylated peptides.137 This was not observed in
CD206−/− B6 mice, indicating a functional dependency on
CD206.

3.5.2. CD206−Human. Human chorionic gonadotropin β
(hCG-β) is a TAA that is expressed in epithelial cancers. The
targeted cancer vaccine CDX-1307, anti-CD206 mAb fused to
hCG-β, demonstrated tolerable safety profiles in a phase I trial
of bladder cancer patients. Patients developed T and B cell
responses even if they presented hCG-β high serum levels
pretreatment. This was especially pronounced upon coad-
ministration of the TLR-agonists resiquimod and/or poly-
ICLC.138,139 These trials demonstrate the feasibility of
breaking tolerance against a self-antigen by targeting CD206.
Unfortunately, the subsequent phase II trial (NCT01094496)
was terminated due to portfolio prioritization. An in vitro
comparative study of NY-ESO-1 delivery via anti-CD206 or
anti-DEC205 was conducted using moDCs and patient-
derived T cells.102 Targeting to either DEC-205 or CD206
increased XP of NY-ESO-1 compared to untargeted protein,
but the MHC II presentation was comparable in all conditions.
This suggests that targeted delivery of NY-ESO-1 to late (via
DEC-205) or early (via CD206) endosomal compartments
increased XP. These findings should be confirmed using
isolated DC1s and DC2s in a similar setup. Of note, CD206 is
highly expressed on tumor-associated macrophages (TAMs),
which opens up the possibility to repolarize TAMs by targeting
TLR7/8 agonists toward CD206.140 Simultaneous antigen
delivery to TAMs is two-edged: If repolarization is successful,
then it could remodel the TME and harness the antigen-
presenting capacity of prevalent macrophages. However, if
repolarization is unsuccessful, then it could strengthen
peripheral tolerance.
3.6. Clec12a. Clec12a (MICL, CD371, DCAL-2) is an

inhibitory PRR that recognizes uric acid crystals formed upon
release of intracellular uric acid by dying cells.141 Clec12a
inhibits the Syk-cascade and hampers ROS production to limit
inflammatory responses. Clec12a is highly expressed on murine
pDCs and DC1s, but equally expressed among human DC
subpopulations (Table 1).142,143

3.6.1. Clec12a−Mouse. Murine splenic DCs targeted ex
vivo with anti-Clec12a mAb-OVA fusions displayed superior
cross-presenting capabilities in comparison with Clec9a-
targeting fusions as measured by proliferation of OT-I
cells.144,145 Yet, in a head-to-head comparison of OVA protein
fused to anti-Clec12a mAb, anti-Clec9a mAb, or anti-DEC205
mAb, Clec12a-targeting fusions induced lower proliferation of
CD8+ T cells in B6 mice compared to the latter two.109 This
emphasizes that in vitro studies of XP do not always accurately
predict in vivo efficacy. CD4+ T cell proliferation was not
observed for Clec12a-targeting fusions, whereas fusions
targeting Clec9a or DEC205 resulted in both CD8+ and
CD4+ T cell proliferation.109

3.6.2. Clec12a−Human. Both Clec12a and DEC205 direct
antigens to lysosomes via early endosomes. The retention of

antigen in early endosomes has been shown slightly longer
upon targeting Clec12a, thus promoting XP.142 Clec12a-
mediated delivery of keyhole limpet hemocyanin (KLH) to
moDCs, pDCs, DC2s, or DC1s led to enhanced XP, IFN-γ
production, and CD4+ T cell proliferation compared to
untargeted controls.142 These findings indicate a potential
use for Clec12a as a target in cancer vaccines. However, mouse
studies demonstrate no to little beneficial effects and challenge
these conclusions.109 In summary, conflicting results prevent
one from concluding on the potential of Clec12a as target to
enhance XP.

4. PROMOTING MHC II ANTIGEN PRESENTATION TO
IMPROVE CD4+ T HELPER RESPONSES
4.1. DECTIN-1. DECTIN-1 (Clec7a, CD369) initiates the

release of antifungal cytokines and chemokines upon
recognition of β-D-glucose polysaccharides, often present on
pathogens.146−148 Its signaling is inherently immunostimula-
tory and is synergistic with TLR2 signaling.149,150 DECTIN-1
can be used to target DC2s (Table 1).

4.1.2. DECTIN-1−Mouse. Notable differences in T cell
activation were observed upon delivery of the OVA using anti-
DECTIN 1 and anti-DEC205. Targeting DECTIN-1 increased
CD4+ T cell proliferation and antibody production, whereas
targeting DEC205 increased CD8+ T cell proliferation.151 β-
glucan functionalization of nanoparticles increased CD4+ T cell
proliferation compared to untargeted controls, and reduced
tumor growth by elicitation of CD4+ Th1 cells, and to a lesser
extent, of CD4+ Th9 cells.152−155 However, the dependency on
DECTIN-1 remains to be demonstrated as particle function-
alization can alter charge, uptake properties, and pharmacoki-
netics.

4.1.3. DECTIN-1−Human. In humans, targeting DECTIN-1
via β-glucans or mAbs was shown to be immunostimula-
tory.156,157 This finding has been used to target moDCs with
MART-1 peptide without extra adjuvant to activate T cells in
vitro.156 The selective expansion of CD4+ Th17 cells in vitro
may be explained by the involvement of DECTIN-1 in
antifungal immunity.158 The intrinsic immunostimulatory
capacity of β-glucans is being explored in phase I clinical
trials to enhance the efficacy of anti-GD2 immunotherapy
against neuroblastoma.157 The dual use of β-glucans as both
DECTIN-1-targeting and immunostimulatory adjuvants
should be further explored in cancer vaccine formulations.
4.2. DCIR(2). DCIR (Clec4a, CD367) regulates inflamma-

tion and T cell immunity.159 The mouse homologue DCIR2 is
uniquely expressed on DC2s, whereas DCIR is expressed less
restrictively in humans (Table 1).45 DCIR(2) binds mannose,
glucose, N-acetylglucosamine, fucose, and asialo-N-glycan(s).
The latter is crucial in DC regulation processes.160 A single
glycosylation site in its carbohydrate binding pocket controls
the specificity of DCIR for its ligand.161

4.2.1. DCIR2−Mouse. Dudziak and colleagues compared
DCIR2 and DEC205 as vaccine targets.45 In vivo delivery of
the OVA protein to DCIR2 resulted in a faster class switching
to IgG2b/c, indicating a Th1-oriented response in B6 mice,
whereas delivery to DEC205 increased antigen presentation on
MHC I. Both vaccines elicited similar CD4+ T cell responses.
Even though DEC205 targeting formulations led to increased
CD8+ T cell responses, both formulations were capable of
protection in a tumor challenge.162 In contrast, in BALB/c
mice, immunization with viral NS1 protein delivered to DCIR2
did not provide protection in a lethal challenge, whereas
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delivery to DEC205 conferred partial protection.163 This
reflects a heavy dependence on CD8+ T responses during a
dengue challenge, while antitumor immunity benefits from the
combined action of CD4+ and CD8+ T cells.40,62 It is possible
that the strain in which these studies were made influenced the
nature of the immune response, as B6 mice are Th1 prone
while BALB/c are Th2-prone.164,165 Performing similar
experiments in CB6.F1 mice (B6 × BALB/c (H2Kb+/d+))
could help unify these findings. In addition, DCIR2 and
DEC205 are expressed on distinct DC subsets, and it is thus
not possible to dissect the effect of the receptor and routing
from the inherent physiological differences among the DC
subsets. Nevertheless, these studies demonstrate the possibility
of directing the immune response by targeting different DC
receptors.

4.2.2. DCIR−Human. The less restricted expression of
DCIR in humans enables a comparison of antigen delivery to
the same receptor on different subsets. Myeloid DCs, pDCs,
and Langerhans cells isolated from human PBMCs showed
similar CD8+ T cell priming ability when targeted with anti-
DCIR-MART-1 peptide or anti-DCIR-influenza matrix protein
fusions.166 DCIR had a different intracellular routing than
other C-type lectins and did not preferentially colocalize with
either early, late, or recycling endosomes, nor with the ER or
Golgi.167 In line with the poor association with the
endolysosomal system, low CD4+ T cell responses were
measured upon ligand internalization. These results should be
translated with caution, as DCs might act differently in an in
vivo setting.
4.3. MGL(2). MGL (Clec10a, DC-ASGPR, CD301) is a

galactose-binding lectin that is mainly targeted using its
ligands, α- or β-linked N-acetyl galactosamine (GalNAc) or
galactose.168−170 Activation of MGL leads to production of IL-
10 via Syk signaling.171 MGL is primarily expressed on DC2s
and downregulated upon DC activation.172

4.3.1. MGL2−Mouse. MGL1 and MGL2 homologues have
been identified in mice.173 Murine MGL2 can be specifically
targeted by modifying antigens with GalNAc, which has been
shown to enhance CD4+ T cell responses.174,175

4.3.2. MGL−Human. Abnormal O-glycosylation of mucins
is a trait often shared by tumors. The Thomsen-nouveau (Tn)
antigen, α-linked GalNAc carried on serine or threonine
residues, is often found on mucin-type glycoproteins such as
MUC1 at the surface of carcinoma cells.176 Because MUC1 is a
tumor antigen, the capacity of Tn to bind human MGL has
been used to increase TAA delivery to DCs.177−179 Tn-MUC1
glycoprotein was detected only in MHC II compartments,
while a short Tn-MUC1 glycopeptide was found in both MHC
I and MHC II compartments. This suggests that antigen size or
physicochemical properties can influence intracellular routing
and that using short peptide antigens could favor XP. This
remains to be confirmed with an increased sample size.178 As
Tn-glycosylation can negatively impair antigen processing, it
should be carefully studied to what degree Tn-glycosylation
can be introduced to increase uptake via MGL without
interfering with antigen presentation.179 Rhesus macaques
vaccinated with Tn-MUC1 showed significantly higher IFN-γ+
T cell responses by ELISpot than those vaccinated with Tn-
negative MUC1. Unfortunately, the authors did not investigate
whether these were CD4+ or CD8+ T cells.180 In a different
study, Tn-MUC6 glycoprotein was found to induce lower IFN-
γ but higher IL-17 secretion by CD4+ T cells compared to

nonglycosylated MUC6. This suggests that targeting of Tn via
MGL can promote a Th17 phenotype.179

4.4. Langerin. Langerin (Clec4k, CD207) is specifically
expressed on Langerhans cells (LCs), a skin resident cell
population of monocytic origin that displays DC-like proper-
ties. LCs patrol dermal tissue, take up antigens and migrate to
lymph nodes upon activation.54,181 LCs can be targeted by
transdermal vaccines through simple application on the skin,
which has the advantage to be noninvasive.182 Langerin is also
expressed at low levels on a subset of murine DC1s and human
DC2s. Antigens taken up via Langerin are internalized into
Birbeck granules, which are unusual organelles involved in viral
degradation.183 Langerin has a high affinity for galactose-6-
sulfated oligosaccharides and recognizes sulfated and man-
nosylated glycans.184

4.4.1. Langerin−Mouse. In a comparative study, subcuta-
neous delivery of OVA conjugated to anti-Langerin, anti-
DEC205, or anti-DCIR2 revealed that LCs can induce
systemic CD4+ and CD8+ T cell responses.185 Anti-Langerin
fusions induced fewer CD8+ T cells but more CD4+ T cells
compared to anti-DEC205 fusions upon subcutaneous
vaccination, while anti-DCIR2 delivery induced even more
pronounced CD4+ T cell responses. Moreover, anti-Langerin
targeting resulted in a prolonged antigen presentation for
several days. Taken together, this indicates that Langerin
mediates efficient OVA antigen presentation on both MHC I
and MHC II, however this should be confirmed in more
clinically relevant settings.185 In a different setup, HIV gag-p24
protein was delivered intraperitoneally via anti-Langerin, anti-
Clec9a, anti-DCIR2, or anti-DEC205 in combination with
anti-CD40 and polyI:C. In comparison with Langerin-targeting
vaccines, DC1-targeting vaccines (anti-Clec9a, anti-DEC205)
induced comparable IFN-γ-producing CD4+ Th1 and CD8+ T
cells in CB6.F1 mice and outperformed DC2-targeted vaccines
(anti-DCIR2).46 This suggests that targeting Langerin can be
as potent as targeting Clec9a or DEC205. The authors
speculate that the evident contradiction between these studies
could be due to the model antigen, mouse strain, vaccination
route, or adjuvant used. The multitude of possible factors
emphasize the potential benefit of standardization of the
mouse model (CB6.F1 mice) and vaccine components for
comparative therapeutic vaccine studies.

4.4.2. Langerin−Human. Human skin is highly tolerogenic
compared with murine skin. Skin resident human LCs are thus
more prone to induced peripheral tolerance. Moreover, human
LCs have been shown incapable of XP.186,187 Langerin can be
targeted with glycomimetics of its ligand, which was shown to
improve immune responses in various studies when compared
to free cargo.188−190 However, it remains unclear whether
improved pharmacokinetic properties are responsible for this
increase or whether Langerin targeting itself played a role. In
summary, Langerin might not be an ideal target to induce
CD8+ T cell-oriented immunity in humans, but rather to direct
transdermal vaccines toward LCs in combination with
immunostimulatory adjuvants to improve classical antigen
presentation to CD4+ T cells.

5. PROMOTING PAN-APC ANTIGEN PRESENTATION
5.1. DC-SIGN. The main function of DC-SIGN (CD209,

Clec4L) is engagement of resting T cells via ICAM-3.191 DC-
SIGN’s natural ligands are high mannose- and fucose-
containing carbohydrates, such as Lewis X oligosaccharides.192

DC-SIGN has overlapping ligands with CD206, and displays a
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similar expression profile.133,193 Studying immunity induced by
targeting DC-SIGN is complex in mouse models, as mice have
eight homologues of human DC-SIGN.194,195

5.1.1. DC-SIGN−Human. Targeting antigens to DC-SIGN
was shown to induce both CD4+ and CD8+ immune responses
in humanized mice and in vitro models using moDCs.196−198

Targeting antigen with anti-DC-SIGN antibodies binding to
the carbohydrate recognition domain (CRD) of DC-SIGN
promoted routing toward late endosomes, whereas targeting
antigens using antibodies binding to the neck region of DC-
SIGN routed the antigen to early endosomes.199 The latter
enhanced T cell proliferation compared to untargeted control;
however, the CRD targeting mAb was not investigated for
antigen delivery. Still, this study demonstrates that the targeted
epitope can influence endosomal processing.
5.2. MHC II. MHC II is expressed by all professional APCs.

Recycling of MHC II on the cell membrane is rapid in
immature DCs but slower in mature DCs leading to a relative
higher expression of MHC II on mature DCs.200 Targeting
antigen to MHC II delivers the antigen to recycling
compartments where antigen can be loaded directly on
recycled MHC II complexes or cross-presented on MHC I.201

5.2.1. MHC II−Mouse. Nanobodies recognizing mouse
MHC II conjugated to MUC1 or T cell epitopes of OVA
were shown capable of inducing T cell proliferation in B6 mice
when administered with immunostimulatory anti-CD40 mAbs
and polyI:C.201,202 Targeting MHC II increased CD4+ T cell
activation compared to targeting DEC205. In addition, a MHC
II targeted vaccine induced potent humoral immune responses
against the SARS-CoV-2 spike protein.203 Due to its broad
expression on DCs, B cells and other APCs, MHC II might be
one of the best ways to reach a large population of immune
cells.204

5.3. CD11c. CD11c (integrin αx, ITGAX) recognizes a
variety of ligands, including bacterial lipopolysaccharide (LPS)
and several adhesion molecules.205,206 It is expressed on all
conventional DC subsets as well as several other immune cells
such as macrophages, neutrophils, and B cells (Table 1).
Conflicting reports have been published on the efficacy of
CD11c as vaccine target.207−211

5.3.1. CD11c−Mouse. In a comparative study, OVA was
targeted to CD11c, DEC205, MHC II, CD40, TLR2, and
FcγRII/III by chemical conjugation to the respective Fab′
fragments.207 Anti-CD11c conjugates outperformed all others
in inducing CD4+ and CD8+ T cell proliferation in B6 mice.
Humoral responses were induced without adjuvant upon
targeting CD11c in BALB/c mice.208 Furthermore, tumor-
reactive CD4+ and CD8+ T cells were observed in BALB/c
mice upon delivery of HER2/neu using anti-CD11c antibody
fragments.209 In contrast, plasmid DNA vaccination of B6 mice
with CD11c-targeted tuberculosis antigen did not increase T
cell activation compared to a nontargeting variant, whereas
DEC205 targeting did.210 It is hypothesized that the vaccine
format, as well as the mouse strain, can influence the outcome.
We emphasize again the importance of conducting major
comparative studies in H2Kb+/d+ CB6.F1 mice.
5.4. CD40. CD40 (Bp50, TNFRSF5) is part of the TNF-

receptor superfamily and an important regulator of antigen
processing.212 Interaction with its ligand CD154 (CD40L)
promotes the antigen presentation and maturation of APCs.
Agonistic anti-CD40 antibodies have been developed and can
be used to mimic the CD40-CD154 interaction. They are
utilized as immunostimulatory adjuvant or stand-alone cancer

immunotherapy.213,214 CD40 is expressed on all APCs and
upregulated during maturation.215 Similar to DEC205, CD40
is expressed on endothelial cells, which may lead to more off-
targeting in comparison with restrictedly expressed DC surface
markers.216

5.4.1. CD40−Mouse. Agonistic anti-CD40 mAb antigen
fusions could be an interesting avenue to combine antigens and
adjuvants into a single construct. Fusions of the T cell epitope
λ2315 of myeloma protein M315 with CD40-targeting single-
chain variable fragments (scFvs) induced stronger M315-
specific T cell proliferation compared to untargeted fusions.217

The agonistic capability of the CD40-targeting moiety was not
altered by the conjugation of the antigen in these in vitro
experiments. In BALB/c mice, strong IgG2a humoral
responses were induced by targeting CD40.218 High IgG2a
levels are associated with Th1-mediated immunity; thus,
targeting antigens to CD40 might have induced a Th1-biased
response. Nanoparticles targeted to CD40 induced stronger
CD8+ T cell responses in comparison with nanoparticles
targeted toward DEC205 or CD11c.219,220 However, as
nanoparticles have pharmacokinetic properties distinct from
those of antibody-based vaccines, it would be interesting to
repeat this comparative study using antibody-based formula-
tions. Special attention should be given to the intrinsic
immunostimulatory capacities of CD40-targeting, as this might
provide new opportunities for cancer vaccines without the
requirement of systemic adjuvants.

5.4.2. CD40−Human. Enhancement of T cell proliferation
and humoral responses by targeting CD40 has been shown for
distinct types of antigens (FluM1, HIV, HPV) in vitro.221−223

Careful dissection of endosomal routing revealed that targeting
CD40 directed antigen to early endosomes, resulting in equally
potent XP in comparison with targeting DEC205 on primary
DC1s.47 Yin et al. performed an extensive comparative study
on targeted delivery of MART-1 peptide conjugated to mAb in
moDCs.224 They observed enhanced MART-1 specific CD4+
and CD8+ T cell proliferation upon targeting CD40 in
comparison to LOX-1 and DECTIN-1. MoDCs were cultured
with IL-2 and IL-7 during the T cell activation assay, but no
adjuvant was provided. Therefore, it cannot be concluded
whether antigen fate or DC maturation induced by CD40
targeting was the main determinant for the enhanced T cell
proliferation. Of note, an exciting prospect in the context of
CD40 targeting are bispecific antibodies recognizing CD40
and a TAA.225,226 These constructs bring tumor debris in
proximity to CD40+ cells, which can take up, process, and
present the tumor antigens, while simultaneously being
stimulated via CD40. This results in antitumor responses
surpassing immune reactivity toward the initial targeted
epitope.226

5.5. Fc Receptors. Fc receptors (FcRs) are expressed in a
variety of immune cells. FcRs recognize specific glycosylation
patterns on the Fc-region of mAbs and notably mediate the
uptake of opsonized antigens.227 They can be actively targeted
using anti-CD16, anti-CD32 or anti-CD64 mAbs, or FcR
specific ligands. Moreover, FcRs are also passively targeted
when mAbs containing functional Fc regions. FcRs are usually
specific for a set of isotypes and can trigger inflammatory (e.g.,
FcγRI, FcγRIIa) or tolerogenic (FcγRIIb) responses.228 FcR
biology is complex because of their varying affinity for different
isotypes and expression patterns on different APCs, and it
remains difficult to identify general intracellular pathways.
Furthermore, interspecies differences between mouse and
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human complicate comparison, although signaling cascades
and effector function are reasonably conserved.229 Unlike most
endocytic receptors mentioned in this review, FcRs generally
do not release their ligand upon internalization, which has
been suggested to target antigens toward lysosomes.230

5.5.1. Fc Receptors−Mouse. Formyl peptide receptor-like 1
inhibitor (FLIPr) is secreted by bacteria to evade opsonization
by binding antagonistically to FcRs.231 Fusions of FLIPr with
OVA conferred a significant survival benefit in tumor-bearing
B6 mice, even in the absence of an adjuvant.232,233 These
effects were not observed in TAP−/− B6 mice highlighting the
necessity for XP to obtain antitumor effects.233

5.5.2. Fc Receptors−Human. Active targeting of FcγRII on
moDCs with a peptide derived from human cytomegalovirus
enhanced XP compared to nontargeting variants in vitro,
demonstrating the possibilities of actively targeting FcRs.234 In
contrast, antigen delivery via FcεRI-bound IgE targets antigens
to a cathepsin S-dependent MHC class II pathway is expected
to favor CD4+ T cell responses.235 The diverse physiological
functions of FcRs are reflected in the various types of vaccines
targeting them.236−238 Examples include vaccines targeting
FcγRI for protection against dengue, vaccines recruiting
intracellular FcR TRIM21 to induce XP in moDCs, and
vaccines targeting multiple FcRs (CD16, CD32, CD64) to
dampen autoimmunity. FcRs can be targeted to promote
classical antigen presentation or XP, but the specific pathways
activated by targeting different FcRs require further inves-
tigation for the therapeutic vaccine development.

6. FUTURE PERSPECTIVES AND
RECOMMENDATIONS FOR THERAPEUTIC
VACCINE DESIGN
6.1. Controlling the Immune Response by Targeting

Specific DC Receptors. Therapeutic vaccines have yet to
achieve the same impact on modern healthcare as prophylactic
vaccines. While it is firmly established that targeting vaccines to
DC receptors enhances therapeutic efficacy, the optimal target
remains elusive. Here, we reviewed the literature regarding
distinct receptors for their effect on antigen presentation and
immune response (Table 2).
Targeting therapeutic vaccines to DC1-specific receptors

harnesses the superior ability of DC1s at XP and improves
CD8+ T cell responses.50 The first-in-human DC-targeted
vaccine CDX-1401 demonstrated a reasonable safety profile
and a proof-of-concept for feasibility. It elicited NY-ESO-1-
specific T cell responses in patients, but yielded only modest
clinical benefits.99,101 The observed T cell responses are likely
not a result of increased XP directly but rather increased
uptake by DCs in general. The broad expression pattern of
DEC205 on myeloid and nonmyeloid cells may have hindered
efficient delivery of NY-ESO-1 to DC1s. Targeting of the DC1-
specific receptors Clec9a or XCR1 induced stronger XP in
preclinical studies in comparison with human DEC205, which
we hypothesize is due to fundamental differences in intra-
cellular routing.44,106,111,112 We envision that targeting Clec9a
or XCR1, both exclusively expressed on cross-presenting
DC1s, could strongly improve the efficacy of therapeutic
cancer vaccines through the promotion of potent XP of the
delivered antigen. Importantly, CDX-1401 efficacy was
potentiated by pretreatment with Flt3l, which increased the
abundance of peripheral conventional DCs and monocytes.101

Other studies including Flt3l have shown its ability to induce
differentiation and recruitment of DC1s.239 Therefore,

pretreatment with Flt3l could be especially beneficial to
vaccines designed to improve XP by targeting of DC1s. Yet,
the low numbers of circulating DC1s (<0.05% of PBMCs)
could restrict the absolute antigen uptake, and therefore
targeting a larger fraction of APCs may overall be more
beneficial. Antigen retention and transfer to DC1s by CD169+
macrophages is a promising strategy to improve antigen
XP.126,128 Finally, targeting CD206 was shown to promote XP
by delivering antigens to early endosomes.135,136 Because
CD206 is also expressed on TAMs, antigens should only be
targeted to CD206 in combination with TAM repolarization
agents such as TLR7/8-agonists.140 Clinical studies exploring
antigen targeting to CD206 (e.g., CDX-1307) may especially
benefit from codelivery of adjuvants.138,139

Antigen routing toward late endosomes or direct delivery in
the MHC II loading compartment improves CD4+ Th
responses and humoral immunity. This can be promoted by
targeting DC receptors such as DCIR(2), MGL(2), or MHC
II. Incorporating CD4+ T cell epitopes in vaccine design is
expected to support cytotoxic immune responses by means of
CD4+ T cell help.40,62 Finally, the immunostimulatory
signaling inherent by receptors as DECTIN-1 or CD40
could be advantageous when trying to break tolerance to
self-antigens and should be further explored in the context of
therapeutic cancer vaccines.138,156,158

6.2. Specific Targeting of DC Subpopulations or
Broad Targeting of pAPCs? Targeting FcRs or MHC II
allows for the targeting of a broad range of APCs, and this
approach has been shown to significantly enhance immune
responses.202,203,234 Targeting a larger pool of APCs could
potentially elicit an immune response of greater magnitude
compared to targeting less abundant DC subpopulations.24

Yet, broad targeting approaches could be more prone to induce
Tregs if antigens are delivered to immune suppressive APCs
such as TAMs. So far, there have been no reports of a direct
comparison between therapeutic cancer vaccines that target
broadly expressed receptors, such as MHC II or FcR and
vaccines that target receptors with restricted expression, such
as XCR1 or Clec9a. Such comparative studies would help
define whether strict targeting or broader targeting induces
optimal antitumor immune responses to explore for clinical
translation. Lastly, combined targeting of CD8 epitopes to XP-
enhancing receptors and CD4 epitopes to receptors specialized
in class II antigen presentation may be of interest to pursue in
the field of therapeutic cancer vaccines.
6.3. Extensive Characterization of Adjuvants, Im-

mune Responses, and Formulation. Immunostimulatory
adjuvants are essential in therapeutic cancer vaccines to induce
immune responses toward the presented epitope. Antigen
presentation, in absence of immunostimulatory adjuvants, by
immature DCs induces tolerance and tumor progression.240,241

Preferably, antigen and adjuvant should be delivered
simultaneously to DCs, as this increased antigen presentation
in multiple models.87,88 A premature maturation of DCs could
impair vaccine uptake and cause autoimmunity in response to
systemic adjuvant encounter.4 Covalent incorporation of
adjuvants into DC-targeted vaccines could improve the
therapeutic window, ensure simultaneous delivery of both
antigen and adjuvant and limit off-target effects.27,29,242,243

Much like interspecies differences in DC surface receptors,
variations in TLR expression patterns affect the clinical
translation of murine studies.3,244 For instance, murine DC1s
do not express TLR7, yet human DC1s are highly responsive
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to imidazoquinolines, a class of TLR7-agonists with promising
therapeutic potential.245 TLR3 is mainly expressed by DC1s,
which would indicate that TLR3-agonists as poly-I:C can be
more effective than other adjuvants to promote XP and CD8+
T cell activation by DC1s. A combination therapy of TLR3-
agonist, Flt3l, and radiotherapy recruited cross-presenting DCs
in the tumor, resulting in cytotoxic T cell responses and tumor
clearance in lymphoma patients.239 These promising results
emphasize the potential of Flt3l to stimulate DCs, which could
also be used in combination with therapeutic vaccines.
The significant role of CD4+ T cells in driving antitumor

responses is increasingly evident.40,41,62,246 While most
mechanistic studies focus on individual pathways, we
recommend including the characterization of T helper
responses and humoral responses along with cytotoxic T cell
responses. Such studies will be crucial to delineate whether a
single receptor on DCs can optimally induce XP as well as
classical presentation or whether combination therapies should
be investigated as an ideal targeting strategy. In mouse studies,
the strain should be considered carefully.164,165 We recom-
mend the use of CB6.F1 mice to unify previous findings, as this
hybrid mouse strain neutralizes the difference between the
commonly used B6 and BALB/c mice. While moDCs are easy
to generate at moderate costs and well-suited for initial studies,
they have inherent differences in antigen processing and
presentation capacity, and are therefore not fully reflective of
circulating primary DCs.21,22 Therefore, in vitro studies should
include naturally occurring DC subsets to confirm findings on
moDCs. Finally, the influence of the isotype in the case of a
targeting mAb should be studied to account for FcR-mediated
effects.227,228,247 We emphasize the importance of including
isotype controls in DC targeted vaccine studies. Improved
circulation time has been shown to positively affect targeting
and improve immunological outcome of targeted vaccines.110

Fc-isotype engineering could offer opportunities for improving
circulation time, for example through incorporation of Fc-silent
mutations or increasing affinity to neonatal FcR to promote
recycling of mAbs.248−250

This review focuses on targeted antigen delivery through
antibody and ligand conjugates. Targeting of DCs has also
been explored using other delivery vehicles, for instance,
nanoparticles or viral vectors. Nanoparticle encapsulation of
antigens is an attractive strategy to extend half-life and allow
codelivery of antigens and adjuvants. The particulate nature
renders them especially susceptible to phagocytosis by APCs.
However, this nature also promotes clearance via neutrophils
or macrophages, reducing antigen presentation. Although DC
targeting of nanoparticles can be improved by conjugation of
antibodies or ligands recognized by DC receptors, skewing the
biodistribution of nanoparticles is difficult, as it is mostly
dictated by particle size and surface composition.251 Larger
nanoparticles (>150 nm in diameter) are cleared by the
reticuloendothelial system and taken up by phagocytic cells in
proximity of the injection site or in the liver. In contrast,
smaller nanoparticles (<150 nm in diameter) can evade
clearance by the reticuloendothelial system and reach lymph
nodes.252 A positive surface charge has been reported to
improve the uptake of nanoparticles in vivo.253,254 For more in-
depth reading on nanoparticles vaccination strategies, we refer
to reviews covering this subject.255−258

An approach different from nanoparticles or antibody or
ligand conjugates is viral vectors. Lentiviral vectors are a
commonly used type of vector to deliver antigens to DCs,

which are inherently immunogenic, thereby also serving as
adjuvant. Engineering of the Sindbis viral vector by removing
the heparan sulfate recognition site, while preserving the
glycoprotein recognized by DC-SIGN, enables targeting of
these vectors toward DCs.259 Phase I/II clinical trials for the
DC-SIGN targeted lentiviral vector LV305 containing a NY-
ESO-1 TAA demonstrated the feasibility of this approach, as
no undesired mutagenesis and viral persistence were
noted.260,261 Direct comparisons between delivery vehicles
are seldom performed. This is an interesting avenue to explore
and could provide new insights into the field of targeted
antigen delivery.
6.4. Recommendations for Designing Targeted

Therapeutic Cancer Vaccines. In this Review, we suggest
that selecting the appropriate target may surpass selecting a
specific DC subset. Distinct receptors on a single DC subset
engage specific endosomal pathways, resulting in different
levels of antigen presentation. An ideal therapeutic cancer
vaccine achieves sufficient XP to prime CD8+ T cells, while
maintaining adequate CD4+ T helper activation. The next step
in targeted therapeutic vaccination is the translation of
preclinical studies into the clinic. We recommend the use of
Clec9a or XCR1 as target for therapeutic vaccines in
combination with Flt3l to boost DC1 abundance.101 Targeting
Clec9a or XCR1 results in superior CD8+ T cell mediated
antitumor immunity over targeting DEC205, while sustaining
CD4+ T helper cell responses in preclinical models.44,46,110−112

Moreover, Clec9a and XCR1 are specifically expressed on
DC1s, thereby limiting off-target engagement. Flt3l coadminis-
tration could augment DC1-targeted therapies by increasing
the natural low abundance of DC1s (<0.05% of PBMCs), as
demonstrated by clinical trials administering CDX-1401 in
combination with Flt3l.101 To further enhance vaccine efficacy,
we would recommend incorporation of immunostimulatory
adjuvants, for example through encapsulation in nanoparticles,
antigen-adjuvant conjugates, or self-adjuvating mRNA vac-
cines.29,242 This will ensure simultaneous delivery of adjuvant
and antigen to DCs, which strongly improves antigen
presentation, reduces tolerance induction, and may improve
the therapeutic window of the adjuvant by reducing systemic
immune activation.87,88

Results of clinical trials have shown the safety and feasibility
of in vivo cancer vaccination (Table 2). Thorough preclinical
evaluation and comparison of different vaccines and targets is
required to move toward clinical translation. It will require
head-to-head comparisons of different vaccine targets and
experimental standardization, for example, in terms of the use
of mouse strain, adjuvant, and isotype controls. Studies on
human targets should be performed on primary DCs as much
as possible to aid the clinical translation of the vaccine
formulation. It is recommended that future studies focus on a
broad readout of the immune response including phenotypic
characterization of CD4+ and CD8+ T cell responses.62,246 An
interesting comparative study would be to investigate side-by-
side targeting of broadly expressed receptors, such as MHC II
or FcRs, and restrictedly expressed receptors, such as Clec9a or
XCR1. This will help to establish the most optimal target to
pursue in therapeutic cancer vaccines. It is well established that
targeting MHC I epitopes toward receptors promoting XP
enhances CD8 T cell responses in a preclinical setting.
However, analyzing this in a clinical setting remains
challenging. Humanized mouse models offer an opportunity
to assess the rationale of steering the immune system through

Molecular Pharmaceutics pubs.acs.org/molecularpharmaceutics Review

https://doi.org/10.1021/acs.molpharmaceut.3c00330
Mol. Pharmaceutics 2023, 20, 4826−4847

4837

pubs.acs.org/molecularpharmaceutics?ref=pdf
https://doi.org/10.1021/acs.molpharmaceut.3c00330?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


receptor targeting, yet capturing the full complexity of the
human immune system will be difficult. Therefore, the true
benefits of novel targeted antigen delivery strategies ought to
be assessed in clinical trials, which is an exciting prospect. To
conclude, ample suitable surface markers on DCs exist for
targeted therapeutic cancer vaccines, and proper selection will
undoubtedly enhance future vaccine efficacy.
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compartment; pDC, plasmacytoid dendritic cell; Th1, T
helper type 1; Th2, T helper type 2; cDC, conventional
dendritic cell; OVA, ovalbumin; mAb, monoclonal antibody;
Flt3L, fms-like tyrosine kinase 3 ligand; HA, hemagglutinin;
BMDC, bone marrow-derived dendritic cell; hCG-β, Human
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amine; Tn, Thomsen nouveau; LC, Langerhans cell; CRD,
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