Table 2.
CI 95% | |||||||
---|---|---|---|---|---|---|---|
Estimator |
Confusion effect percentage (%) (Eq. 10) |
Standard error estimation | Lower limit | Upper limit | Comparison of the standard error of the models with MH (Eq. 11) | BIC | |
Lifetime cocaine consumption prevalence (prevalence = 1.8%) | |||||||
PR MH (age adjusted) | 2.913 | 13.08 | 0.7570 | 0.786 | 12.845 | ||
PR Negative Log-Binomial model | 2.931 | 12.38 | 0.7185 | 0.717 | 11.985 | 5.358 | |
PR Robust Negative Log-Binomial model | 2.931 | 12.38 | 0.7144 | 0.723 | 11.889 | 5.963 | -43,857.1 |
PR Cox/Poisson model | 2.928 | 12.50 | 0.7161 | 0.720 | 11.918 | 5.711 | |
PR Cox/ Poisson Robust model | 2.928 | 12.50 | 0.7152 | 0.721 | 11.896 | 5.845 | -43,787.03 |
PR Binomial regression | 2.925 | 12.62 | 0.7128 | 0.722 | 11.851 | 6.201 | |
PR Robust binomial regression | 2.925 | 12.62 | 0.7160 | 0.719 | 11.903 | 5.726 | -43,602.83 |
OR Age adjusted – logistic regression | 2.965 | 0.7184 | 0.725 | 12.121 | |||
OR Age adjusted – Robust logistic regression | 2.965 | 0.7198 | 0.723 | 12.155 | |||
Marijuana consumption prevalence (prevalence = 9.6%) | |||||||
PR MH (age adjusted) | 3.407 | 2.52 | 0.3121 | 1.848 | 6.281 | ||
PR Negative Log-Binomial model | 3.444 | 1.42 | 0.3245 | 1.823 | 6.506 | 3.821 | |
PR Robust Negative Log-Binomial model | 3.444 | 1.42 | 0.3154 | 1.856 | 6.391 | 1.046 | -45,899.8 |
PR Cox/Poisson model | 3.440 | 1.54 | 0.3198 | 1.838 | 6.438 | 2.408 | |
PR Cox/ Poisson Robust model | 3.440 | 1.54 | 0.3159 | 1.852 | 6.389 | 1.203 | -45,541.37 |
PR Binomial regression | 3.435 | 1.69 | 0.3151 | 1.852 | 6.370 | 0.952 | |
PR Robust binomial regression | 3.435 | 1.69 | 0.3164 | 1.847 | 6.387 | 1.359 | -44,534.91 |
OR Age adjusted – logistic regression | 3.702 | 0.3246 | 1.959 | 6.995 | |||
OR Age adjusted – Robust logistic regression | 3.702 | 0.3255 | 1.956 | 7.007 | |||
Cigarette consumption prevalence (prevalence = 21.3%) | |||||||
PR MH (age adjusted) | 2.209 | 17.38 | 0.1913 | 1.518 | 3.214 | ||
PR Negative Log-Binomial model | 2.175 | 19.22 | 0.2091 | 1.443 | 3.276 | 8.513 | |
PR Robust Negative Log-Binomial model | 2.175 | 19.22 | 0.1919 | 1.493 | 3.167 | 0.313 | -36,500.12 |
PR Cox/Poisson model | 2.197 | 18.02 | 0.1991 | 1.487 | 3.247 | 3.918 | |
Cox/Poisson Robust model | 2.197 | 18.02 | 0.1901 | 1.863 | 3.190 | 0.631 | -35,956.34 |
Binomial regression | 2.225 | 16.54 | 0.1885 | 1.538 | 3.220 | 1.485 | |
Robust binomial regression | 2.225 | 16.54 | 0.1878 | 1.540 | 3.215 | 1.864 | -34,252.81 |
OR Age adjusted – logistic regression | 2.536 | 0.2105 | 1.679 | 3.831 | |||
OR Age adjusted – Robust logistic regression | 2.536 | 0.2127 | 1.671 | 3.848 | |||
Lifetime alcohol consumption prevalence (prevalence = 85.7%) | |||||||
PR MH (age adjusted) | 1.241 | 1.13 | 0.0361 | 1.157 | 1.332 | ||
PR Negative Log-Binomial model | 1.243 | 0.97 | 0.0872 | 1.048 | 1.475 | 58.601 | |
PR Robust Negative Log-Binomial model | 1.243 | 0.97 | 0.0360 | 1.158 | 1.334 | 0.278 | -45,293.58 |
Cox/ Poisson model | 1.242 | 1.05 | 0.0668 | 1.089 | 1.416 | 45.958 | |
Cox/Poisson Robust model | 1.242 | 1.05 | 0.0359 | 1.157 | 1.333 | 0.557 | -44,885.75 |
Binomial regression | 1.238 | 1.37 | 0.0449 | 1.153 | 1.329 | 19.599 | |
Robust binomial regression | 1.238 | 1.37 | 0.0450 | 1.153 | 1.329 | 19.778 | -41,961.72 |
Age adjusted OR – logistic regression | 2.810 | 0.1260 | 2.194 | 3.597 | |||
Age adjusted OR – Robust logistic regression | 2.810 | 0.1248 | 2.199 | 3.589 | |||
Risk of consumption of psychoactive substances (prevalence = 96.1%) | |||||||
PR MH (age adjusted) | 1.086 | 0 | 0.0185 | 1.047 | 1.126 | ||
PR Negative Log-Binomial model | 1.086 | 0 | 0.0793 | 0.930 | 1.269 | 76.671 | |
PR Robust Negative Log-Binomial model | 1.086 | 0 | 0.0186 | 1.047 | 1.127 | 0.538 | -47,709.15 |
PR Cox/Poisson mode | 1.086 | 0 | 0.0576 | 0.970 | 1.216 | 67.882 | |
Cox/Poisson Robust model | 1.086 | 0 | 0.0186 | 1.047 | 1.127 | 0.538 | -47,583.75 |
PR Binomial regression | No converge | ||||||
PR Robust binomial regression | No converge | ||||||
OR Age adjusted OR – logistic regression | 3.462 | 0.1857 | 2.406 | 4.982 | |||
OR Age adjusted – Robust logistic regression | 3.462 | 0.1825 | 2.421 | 4.951 |
Models were controlled by grouped age for all cases. Results are shown for the models of negative log-binomial, Cox regression with constant time, log-Poisson, log-binomial compared with MH, and unconditional binary logistic regression model – OR value