Skip to main content
. 2023 Oct 4;23:219. doi: 10.1186/s12874-023-01999-1

Table 2.

Prevalence rates ratios and 95% confidence intervals of the consumption of cocaine, marijuana, cigarette, alcohol risk of consumption of psychoactive substances associated with depression adjusted for age groups of Colombian workers

CI 95%
Estimator Confusion effect percentage (%)
(Eq. 10)
Standard error estimation Lower limit Upper limit Comparison of the standard error of the models with MH (Eq. 11) BIC

Lifetime cocaine consumption prevalence

(prevalence = 1.8%)

 PR MH (age adjusted) 2.913 13.08 0.7570 0.786 12.845
 PR Negative Log-Binomial model 2.931 12.38 0.7185 0.717 11.985 5.358
 PR Robust Negative Log-Binomial model 2.931 12.38 0.7144 0.723 11.889 5.963 -43,857.1
 PR Cox/Poisson model 2.928 12.50 0.7161 0.720 11.918 5.711
 PR Cox/ Poisson Robust model 2.928 12.50 0.7152 0.721 11.896 5.845 -43,787.03
 PR Binomial regression 2.925 12.62 0.7128 0.722 11.851 6.201
 PR Robust binomial regression 2.925 12.62 0.7160 0.719 11.903 5.726 -43,602.83
 OR Age adjusted – logistic regression 2.965 0.7184 0.725 12.121
 OR Age adjusted – Robust logistic regression 2.965 0.7198 0.723 12.155

Marijuana consumption prevalence

(prevalence = 9.6%)

 PR MH (age adjusted) 3.407 2.52 0.3121 1.848 6.281
 PR Negative Log-Binomial model 3.444 1.42 0.3245 1.823 6.506 3.821
 PR Robust Negative Log-Binomial model 3.444 1.42 0.3154 1.856 6.391 1.046 -45,899.8
 PR Cox/Poisson model 3.440 1.54 0.3198 1.838 6.438 2.408
 PR Cox/ Poisson Robust model 3.440 1.54 0.3159 1.852 6.389 1.203 -45,541.37
 PR Binomial regression 3.435 1.69 0.3151 1.852 6.370 0.952
 PR Robust binomial regression 3.435 1.69 0.3164 1.847 6.387 1.359 -44,534.91
 OR Age adjusted – logistic regression 3.702 0.3246 1.959 6.995
 OR Age adjusted – Robust logistic regression 3.702 0.3255 1.956 7.007

Cigarette consumption prevalence

(prevalence = 21.3%)

 PR MH (age adjusted) 2.209 17.38 0.1913 1.518 3.214
 PR Negative Log-Binomial model 2.175 19.22 0.2091 1.443 3.276 8.513
 PR Robust Negative Log-Binomial model 2.175 19.22 0.1919 1.493 3.167 0.313 -36,500.12
 PR Cox/Poisson model 2.197 18.02 0.1991 1.487 3.247 3.918
 Cox/Poisson Robust model 2.197 18.02 0.1901 1.863 3.190 0.631 -35,956.34
 Binomial regression 2.225 16.54 0.1885 1.538 3.220 1.485
 Robust binomial regression 2.225 16.54 0.1878 1.540 3.215 1.864 -34,252.81
 OR Age adjusted – logistic regression 2.536 0.2105 1.679 3.831
 OR Age adjusted – Robust logistic regression 2.536 0.2127 1.671 3.848

Lifetime alcohol consumption prevalence

(prevalence = 85.7%)

 PR MH (age adjusted) 1.241 1.13 0.0361 1.157 1.332
 PR Negative Log-Binomial model 1.243 0.97 0.0872 1.048 1.475 58.601
 PR Robust Negative Log-Binomial model 1.243 0.97 0.0360 1.158 1.334 0.278 -45,293.58
 Cox/ Poisson model 1.242 1.05 0.0668 1.089 1.416 45.958
 Cox/Poisson Robust model 1.242 1.05 0.0359 1.157 1.333 0.557 -44,885.75
 Binomial regression 1.238 1.37 0.0449 1.153 1.329 19.599
 Robust binomial regression 1.238 1.37 0.0450 1.153 1.329 19.778 -41,961.72
 Age adjusted OR – logistic regression 2.810 0.1260 2.194 3.597
 Age adjusted OR – Robust logistic regression 2.810 0.1248 2.199 3.589
Risk of consumption of psychoactive substances (prevalence = 96.1%)
 PR MH (age adjusted) 1.086 0 0.0185 1.047 1.126
 PR Negative Log-Binomial model 1.086 0 0.0793 0.930 1.269 76.671
 PR Robust Negative Log-Binomial model 1.086 0 0.0186 1.047 1.127 0.538 -47,709.15
 PR Cox/Poisson mode 1.086 0 0.0576 0.970 1.216 67.882
 Cox/Poisson Robust model 1.086 0 0.0186 1.047 1.127 0.538 -47,583.75
 PR Binomial regression No converge
 PR Robust binomial regression No converge
 OR Age adjusted OR – logistic regression 3.462 0.1857 2.406 4.982
 OR Age adjusted – Robust logistic regression 3.462 0.1825 2.421 4.951

Models were controlled by grouped age for all cases. Results are shown for the models of negative log-binomial, Cox regression with constant time, log-Poisson, log-binomial compared with MH, and unconditional binary logistic regression model – OR value