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Abstract 

Background:  Despite constantly improving genome sequencing methods, error-free 
eukaryotic genome assembly has not yet been achieved. Among other kinds of prob-
lems of eukaryotic genome assembly are so-called "haplotypic duplications", which 
may manifest themselves as cases of alleles being mistakenly assembled as paralogues. 
Haplotypic duplications are dangerous because they create illusions of gene fam-
ily expansions and, thus, may lead scientists to incorrect conclusions about genome 
evolution and functioning.

Results:  Here, I present Mabs, a suite of tools that serve as parameter optimizers 
of the popular genome assemblers Hifiasm and Flye. By optimizing the parameters 
of Hifiasm and Flye, Mabs tries to create genome assemblies with the genes assembled 
as accurately as possible. Tests on 6 eukaryotic genomes showed that in 6 out of 6 
cases, Mabs created assemblies with more accurately assembled genes than those 
generated by Hifiasm and Flye when they were run with default parameters. When 
assemblies of Mabs, Hifiasm and Flye were postprocessed by a popular tool for hap-
lotypic duplication removal, Purge_dups, genes were better assembled by Mabs in 5 
out of 6 cases.

Conclusions:  Mabs is useful for making high-quality genome assemblies. It is available 
at https://​github.​com/​shelk​mike/​Mabs

Keywords:  Genome assembler, Genome assembly, Genome misassembly, Haplotypic 
duplications

Background
In recent years, sequencing technologies have improved significantly. Reads of Oxford 
Nanopore Technologies have become longer and more accurate [1], as have HiFi reads 
of PacBio [2, 3]. Despite this progress, genome assemblies still suffer from a number of 
problems, among the major of which are:

1.	 Fragmentation owing to long repeats with similar copies [4, 5].
2.	 Contamination [6, 7].
3.	 Haplotypic duplications [8, 9].
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The latter problem is a case where, during assembly of a diploid or polyploid genome, 
a genome assembler mistakes corresponding regions of two homologous chromosomes 
with regions that originated from segmental duplications. For example, two alleles of 
the same gene may be mistaken for paralogues. Haplotypic duplications are dangerous 
because they may lead to incorrect scientific conclusions about the gene content of a 
genome. When two alleles are assembled separately as paralogues, an illusion of a gene 
duplication event is created. In highly heterozygous genomes, haplotypic duplications 
are so frequent that they can result in such false duplicates for thousands of genes [8, 9].

One way to address haplotypic duplications is to minimize them during the process of 
genome assembly. For example, authors of the genome assembler Hifiasm endowed it 
with a special algorithm that distinguishes corresponding regions of homologous chro-
mosomes and segmental duplications [10]. An alternative method is to try to remove 
haplotypic duplications after assembly. This method is implemented in specialized pro-
grams, such as Purge_dups [8], Purge_haplotigs [11] and HapSolo [12]. However, there 
are no methods or combinations of methods that are 100% effective in the removal of 
haplotypic duplications.

To address the problem of haplotypic duplications, I created a suite of tools called 
"Mabs" that I describe in this article. The main two components of Mabs are Mabs-hifi-
asm and Mabs-flye, which serve as parameter optimizers of the popular genome assem-
blers Hifiasm [10] and Flye [13]. Mabs-hifiasm is intended for assembly using PacBio 
HiFi (also known as PacBio CCS) reads, while Mabs-flye is intended for assembly using 
reads of more error-prone technologies, namely, Oxford Nanopore Technologies and 
PacBio CLR. By optimizing the parameters of Hifiasm or Flye, Mabs reduces the number 
of haplotypic duplications.

Implementation
The metric of assembly quality used by Mabs

General considerations

When optimizing the parameters of a genome assembler, it is important to reasonably 
select a metric of assembly quality that will be maximized during optimization. Many 
methods for evaluating the quality of a genome assembly exist, the most popular of 
which are probably calculating the N50 value and performing BUSCO analyses.

N50

N50 is calculated as the length of the largest contig (or scaffold) such that it and all con-
tigs (or scaffolds) longer than it constitute at least half of the sum of the lengths of all 
contigs (or scaffolds). Basically, N50 is a metric of contig length. The downside of N50 is 
that genome assemblers sometimes make improper junctions, joining sequences when 
they should not be joined, thus inflating N50. A parameter optimizer that maximizes 
N50 will favour such improper junctions.

BUSCO results

BUSCO is a program that is provided with many taxon-specific datasets [14]. Each of 
these datasets contains information about orthogroups (I refer to them as "BUSCO 
orthogroups") that have only one gene (I refer to them as "BUSCO genes") in genomes 
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of at least 90% of species from a reference set of species of this taxon. An assumption on 
which a BUSCO analysis of the quality of a newly studied genome is based is that most 
BUSCO orthogroups will likely have a single gene. Thus, the number of BUSCO genes 
found in a genome may serve as a metric of assembly quality.

For example, the BUSCO dataset for land plants (embryophyta_odb10.2020–09-10) 
consists of 1614 orthogroups and was made based on a reference set of genomes of 50 
species from this taxon.

BUSCO classifies orthogroups into 5 categories (see Table 1).
Below, I use a designation of N("S") for the number of orthogroups in category "S", and 

designations for the other four categories follow the same naming structure. The number 
of orthogroups in each of the five categories can serve as a separate metric of genome 
assembly accuracy. Of these five metrics, the metric most often used for genome assem-
bly assessment is probably N("C").

However, the existence of haplotypic duplications does not decrease N("C"), since cat-
egory "D" is part of category "C". When dealing with the problem of haplotypic dupli-
cations, a better method is to maximize N("S") rather than N("C"), since haplotypic 
duplications move orthogroups from "S" to "D", thus decreasing N("S").

The maximization of N("S") has a disadvantage because it favours assemblies where 
paralogues are merged. Indeed, if a genome assembler improperly merges paralogues 
into a single gene, this will lead to an increase in N("S"), while N("D") decreases and 
N("C") does not change. To address this problem, I created a novel metric that I call AG, 
which is an abbreviation for "the number of Accurately assembled Genes".

AG

Hereafter, "multicopy orthogroups" refers to what authors of BUSCO call "duplicated 
orthogroups". In my opinion, "multicopy orthogroups" is a better term since ortho-
groups in the BUSCO category "D" sometimes contain more than two genes.

The idea behind AG is that multicopy orthogroups (orthogroups from the BUSCO 
category "D") may be classified into true multicopy (I designate them "TM") and false 

Table 1  Orthogroup categories used by BUSCO

Category One-letter 
abbreviation

Meaning

Single-copy S Orthogroups that have a single completely assembled gene in the studied 
genome. A gene is considered completely assembled if its protein passed two 
criteria:
(a) The criterion for sequence similarity to reference BUSCO proteins
(b) The criterion for minimum length

Duplicated D Orthogroups that have more than one completely assembled gene in the studied 
genome. Criteria for completeness are the same as for "S"

Fragmented F Orthogroups that contain only genes that do not pass the criterion "(b)" but pass 
the criterion "(a)". Presence of such genes may be indicative of misassemblies that 
have led to gene fragmentation. Genes that were assembled correctly (i.e. were 
not fragmented) but are much shorter than reference genes also belong to this 
category

Missing M Orthogroups for which no genes passing the criterion "a)" were found

Complete C A compound category that is composed of orthogroups from the category "S" 
and orthogroups from the category "D" together
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multicopy (I designate them "FM") based on their coverage. Genome assemblers are usu-
ally made in such a way that they collapse two alleles into a single sequence during the 
process of genome assembly. If an allele is uncollapsed (i.e., a haplotypic duplication has 
occurred), then the read coverage of genes of this multicopy orthogroup will be twice as 
low as expected. This allows differentiating true multicopy (i.e., composed of paralogues) 
and false multicopy (i.e., composed of uncollapsed alleles) orthogroups, see Fig. 1. AG is 
calculated as a sum of the following two values:

1.	 The number of genes in single-copy ("S") orthogroups.
2.	 The number of genes in true multicopy ("TM") orthogroups.

AG is not a sum of the numbers of orthogroups but a sum of the numbers of genes in 
them. This is because if only one gene is assembled in an orthogroup that has two paral-
ogues, the number of orthogroups will not change (one orthogroup moves from "TM" to 
"S"), but the number of accurately assembled genes decreases by 1 (the number of "TM" 
genes decreases by 2 and the number of "S" genes increases by 1). Thus, basing AG on 
the number of genes in correctly assembled orthogroups is better than basing AG on the 
number of correctly assembled orthogroups itself.

For a comparison of AG and BUSCO statistics, see Fig. 2.

How AG is calculated

Given a set of reads and a genome assembly, AG is calculated follows:

1.	 BUSCO genes in a genome are predicted using a method that is, basically, a simpli-
fied version of the method used by BUSCO. I intentionally simplified the technique 
of BUSCO to increase the speed of prediction at the cost of slightly decreased accu-
racy. The prediction is performed as follows:

a.	 Potential BUSCO genes are predicted in the assembly by MetaEuk [16] using 
"ancestral" BUSCO proteins as a reference. The ancestral BUSCO proteins are 
reconstructed proteins of the last common ancestor of the species used to form 
the BUSCO dataset (for example, the last common ancestor of the 50 plant spe-
cies of the dataset for land plants mentioned above). Sequences of the ancestral 

Fig. 1  Example of a sinaplot [15] demonstrating separation of multicopy genes into true multicopy genes 
and false multicopy genes based on sequencing coverage
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proteins are provided with each BUSCO dataset. The use of ancestral proteins as 
a reference to search for genes in modern species is beneficial because they are 
approximately equidistant to all modern species if the mutation accumulation 
rate did not differ greatly among lineages during evolution. In contrast, proteins 
of some modern genomes may be less suitable as a reference, since the phyloge-
netic distance to the genome under analysis may be larger and, thus, sequence 
similarity may be lower, making protein-to-genome alignment more difficult.

b.	 Proteins of potential BUSCO genes predicted by MetaEuk are compared with 
profile Markov models of reference proteins from BUSCO orthogroups. This 
comparison is performed by the program "hmmsearch" from the HMMER suite 
of programs [17].

c.	 To discriminate genes of BUSCO orthogroups from distant homologues, Mabs 
uses the same two criteria with the same threshold values as BUSCO: a) the cri-
terion for sequence similarity to reference BUSCO proteins based on bit scores 
calculated by HMMER as described above and b) the criterion for minimum 
length.

2.	 Long reads are aligned to the genome by Minimap 2 [18].
3.	 Sequencing coverage in exons of all identified BUSCO genes is calculated. Mabs does 

not calculate coverage in introns because introns may contain transposable elements. 

Fig. 2  Several types of gene misassembly and their effect on AG and on BUSCO results. In this simplified 
diagram three BUSCO genes are depicted, two of them are paralogues. Misassemblies are marked by red 
dashed lines. BUSCO completeness ("C") is equal in the first four assemblies; however, only one of these 
assemblies is correct. At the same time, the largest AG clearly defines the best assembly. Other variants of 
gene misassembly are also possible, but not shown
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Copies of transposable elements may be assembled incorrectly in other regions of the 
genome, which may lead to distorted read coverage in introns. Distorted read cover-
age, in turn, may decrease the accuracy of classification of multicopy orthogroups 
into true multicopy and false multicopy.

4.	 The median coverage is calculated for all single-copy orthogroups. I denote it as 
Cov(S).

5.	 For each multicopy BUSCO orthogroup, an average value between median exonic 
coverages of all its genes is calculated. Since true multicopy orthogroups are likely to 
have coverage approximately equal to Cov(S) and false multicopy orthogroups (origi-
nating from haplotypic duplications) are likely to have coverage approximately equal 
to Cov(S)/2, Mabs uses a threshold of (3/4) × Cov(S) to discriminate true multicopy 
orthogroups from false multicopy orthogroups.

	 Actually, the coverage distribution of genes with average coverage Cov(S)/2 may be 
narrower than the coverage distribution of genes with average coverage Cov(S) if the 
distribution behaves similarly to the Poisson distribution, where variance increases 
with increasing average. Hence, the threshold should probably be somewhat lower 
than (3/4) × Cov(S). The threshold was set to (3/4) × Cov(S) for simplicity.

6.	 AG is calculated as the sum of the number of genes in single-copy orthogroups and 
the number of genes in true multicopy orthogroups.

Some BUSCO datasets are composed of a very large number of orthogroups. For 
example, the dataset for primates (primates_odb10.2021–02-19) contains 13,780 ortho-
groups. Searching for genes of all these orthogroups in an assembly is time-consuming. 
At the same time, to estimate the quality of a genome assembly, a smaller number of 
orthogroups is probably sufficient. Hence, to save time, for any dataset that contains 
more than 1000 orthogroups, Mabs by default uses only 1000 orthogroups with the most 
conserved sequences. Orthogroups with the most conserved sequences are determined 
as orthogroups with the least mean positional relative entropy, as calculated by the pro-
gram "hmmstat" from the HMMER suite of programs. The use of orthogroups with 
conserved sequences is preferential for genome assembly quality evaluation because it 
decreases the chance of genes not being identified because of too diverged sequences. 
Mabs has an option "–number_of_busco_orthogroups" that allows a user to set the 
number of BUSCO orthogroups to a value other than 1000.

Which parameters to optimize?

General considerations

When making a parameter optimizer for a program, it is important to choose which 
parameters will be optimized.

From one perspective, optimizing too many parameters at the same time requires 
exploration of a multidimensional space of parameters, which demands considerable 
time. Exploration of a multidimensional space of parameters of a genome assembler is 
especially time-consuming because testing a single point in the space (i.e., performing 
one genome assembly) may take hours or days for a eukaryotic genome; see the assem-
bly time for Hifiasm and Flye in Tables 2 and 3 (these tables will be discussed in more 
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detail in Results and Discussion). For especially large genomes, assembly with a rela-
tively slow genome assembler may take months [19].

From another perspective, the more parameters are optimized, the greater the possible 
improvement in genome assembly.

Genome assemblers sometimes have dozens of parameters that affect their algorithm. 
The most prominent example that I have seen is Shasta [20], with Shasta 0.10.0 having 
116 parameters that may affect the produced assembly.

Hifiasm

For Hifiasm, the choice of a parameter for optimization is straightforward. It is the 
parameter "-s" that regulates the work of a special algorithm of Hifiasm made specifically 
to address haplotypic duplications. "-s" can have values in the range of 0 to 1. The default 
"-s" value in Hifiasm is 0.55, except when performing trio binning (usage of reads of both 
parents of the studied organism during assembly), where haplotypic duplication removal 
is not used. The algorithm behind "-s" is described in the work of Cheng et al. [10], but 
speaking simply, the closer the value of "-s" is to 0, the more aggressive Hifiasm is in the 
removal of similar sequences from the assembly.

The sole parameter of Hifiasm that Mabs-hifiasm optimizes is "-s".

Table 2  Characteristics of the assemblies made by Mabs-hifiasm and Hifiasm

a  Genomes were assembled using 50 threads of Intel Xeon E7-4830 CPUs

Species Method of 
assembly

BUSCO results N50 (bp) Sum of contigs’ 
lengths (bp)

AG Assembly 
timea

Peak 
RAM 
usagea

Trifolium 
pratense

Mabs-hifiasm C:98.0%[S:92.9%,D:5.1%],
F:1.3%,M:0.7%

20,490,459 460,521,547 1385 9h 50m 62 GB

Hifiasm C:98.1%[S:92.6%,D:5.5%],
F:1.3%,M:0.6%

18,371,892 472,503,778 1380 2h 55m 54 GB

Mabs-hifi-
asm + Purge_
dups

C:90.7%[S:86.3%,D:4.4%],
F:1.1%,M:8.2%

21,823,263 332,714,522 1279 9h 50m + 1h 
41m

62 GB

Hifi-
asm + Purge_
dups

C:90.6%[S:86.2%,D:4.4%],
F:1.4%,M:8.0%

21,823,263 317,658,493 1255 2h 55m + 1h 
45m

54 GB

Manihot 
esculenta

Mabs-hifiasm C:98.5%[S:91.0%,D:7.5%],
F:0.7%,M:0.8%

34,338,427 747,732,950 1590 10h 51m 102 GB

Hifiasm C:98.5%[S:90.0%,D:8.5%],
F:0.7%,M:0.8%

29,220,819 774,580,850 1579 4h 18m 94 GB

Mabs-hifi-
asm + Purge_
dups

C:46.0%[S:42.8%,D:3.2%],
F:1.0%,M:53.0%

33,797,513 208,140,594 658 10h 
51m + 5h 
7m

102 GB

Hifi-
asm + Purge_
dups

C:80.5%[S:74.8%,D:5.7%],
F:0.8%,M:18.7%

31,723,266 455,473,424 1250 4h 18m + 5h 
51m

94 GB

Heracleum 
sosnow-
skyi

Mabs-hifiasm C:98.0%[S:89.6%,D:8.4%],
F:0.4%,M:1.6%

22,232,970 1,631,972,638 1392 13h 45m 57 GB

Hifiasm C:98.3%[S:80.9%,D:17.4%],
F:0.5%,M:1.2%

13,468,048 1,814,805,347 1307 4h 8m 74 GB

Mabs-hifi-
asm + Purge_
dups

C:11.4%[S:10.8%,D:0.6%],
F:0.9%,M:87.7%

55,489,431 178,451,278 128 13h 
45m + 12h 
33m

57 GB

Hifi-
asm + Purge_
dups

C:35.7%[S:34.0%,D:1.7%],
F:0.8%,M:63.5%

12,038,317 460,607,932 453 4h 8m + 16h 
32m

74 GB
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Flye

Optimization of Flye to reduce the number of haplotypic duplications is not as 
straightforward as the optimization of Hifiasm, since Flye has no parameters dedi-
cated specifically for removal of haplotypic duplications, except for the parameter 
"–no-alt-contigs", which is boolean ("true" or "false"). My tests (data not provided) 
indicate that "–no-alt-contigs" is probably always beneficial for removal of haplotypic 
duplications, thus Mabs-flye always runs Flye with this option. Based on my under-
standing of the algorithm of Flye, I chose two parameters for optimization:

1.	 "assemble_ovlp_divergence". When used in combination with "assemble_divergence_
relative = 0", as in Mabs-flye, the parameter "assemble_ovlp_divergence" regulates 
how dissimilar sequencing reads are allowed to be during disjointig construction. For 
a description of the algorithm and the term "disjointig" see the work of Kolmogo-
rov et al. [13], but basically, higher values of "assemble_ovlp_divergence" may lead to 
more aggressive removal of similar sequences from the assembly.

2.	 "repeat_graph_ovlp_divergence". This parameter regulates how dissimilar sequences 
from disjointigs are allowed to be during merging of disjointigs into a repeat graph. 
As with "assemble_ovlp_divergence", larger values of this parameter may lead to 
more aggressive removal of similar sequences from the assembly.

Table 3  Characteristics of the assemblies made by Mabs-flye and Flye

a Genomes were assembled using 50 threads of Intel Xeon E7-4830 CPUs

Species Method of 
assembly

BUSCO results N50 (bp) Sum of 
contigs’ 
lengths (bp)

AG Assembly 
timea

Peak RAM 
usagea

Myripristis 
murdjan

Mabs-flye C:97.2%[S:95.7%,D:1.5%],
F:1.1%,M:1.7%

1,738,191 849,324,108 2454 53h 14m 18 GB

Flye C:97.9%[S:94.6%,D:3.3%],
F:1.0%,M:1.1%

1,831,223 913,966,709 2437 20h 15m 25 GB

Mabs-
flye + Purge_
dups

C:97.2%[S:96.1%,D:1.1%],
F:1.1%,M:1.7%

1,883,475 812,749,847 2457 53h 
14m + 24m

18 GB

Flye + Purge_
dups

C:97.8%[S:96.7%,D:1.1%],
F:1.0%,M:1.2%

2,177,694 834,985,181 2483 20h 
15m + 20m

25 GB

Adineta vaga Mabs-flye C:66.3%[S:57.0%,D:9.3%],
F:10.4%,M:23.3%

2,333,984 112,876,648 163 9h 50m 32 GB

Flye C:67.0%[S:57.5%,D:9.5%],
F:9.9%,M:23.1%

1,636,027 116,202,497 161 2h 43m 36 GB

Mabs-
flye + Purge_
dups

C:66.3%[S:57.3%,D:9.0%],
F:10.4%,M:23.3%

2,698,890 106,057,374 164 9h 50m + 6m 32 GB

Flye + Purge_
dups

C:66.6%[S:57.3%,D:9.3%],
F:9.9%,M:23.5%

2,339,515 105,961,627 162 2h 43m + 5m 36 GB

Mytilus 
coruscus

Mabs-flye C:85.0%[S:78.4%,D:6.6%],
F:4.2%,M:10.8%

308,470 2,165,590,554 2040 114h 46m 210 GB

Flye C:83.7%[S:66.6%,D:17.1%],
F:4.4%,M:11.9%

280,259 2,333,181,150 1726 70h 10m 216 GB

Mabs-
flye + Purge_
dups

C:84.3%[S:82.0%,D:2.3%],
F:4.2%,M:11.5%

343,029 1,951,757,051 2144 114h 
46m + 1h 
55m

210 GB

Flye + Purge_
dups

C:82.4%[S:79.8%,D:2.6%],
F:4.5%,M:13.1%

320,773 1,962,315,961 2107 70h 
10m + 1h 
49m

216 GB
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Default values of these parameters in Flye differ depending on the sequencing technol-
ogy used to produce the reads being assembled.

To accelerate the assembly, Mabs-flye assumes these two parameters to be equal, 
referring to them as a single parameter "max_divergence". Thus, the parameter opti-
mization is performed by Mabs-flye in a unidimensional space, just as in the case with 
Mabs-hifiasm.

The workflow of Mabs‑hifiasm and Mabs‑flye

General considerations

The workflow of Mabs-hifiasm is similar to the workflow of Mabs-flye. In Sect. "Hifiasm" 
I will describe the workflow of Mabs-hifiasm, and then, in Sect. "Flye", I will pinpoint the 
differences between Mabs-flye and Mabs-hifiasm.

Mabs‑hifiasm

The basic scheme of Mabs-hifiasm is provided in Fig. 3. Speaking simply, Mabs-hifi-
asm tries to find the value of the "-s" parameter of Hifiasm that provides as large an 

Fig. 3  The flowchart of Mabs-hifiasm
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AG value as possible. The maximization is performed using the method of the golden 
section [21]. The parameter "-s" can range from 0 to 1. In the golden section method, 
the first two values to be examined are middle points, (

√
5−1√
5+1

) and (1−
√
5−1√
5+1

) , while 

the next values are determined based on the AG values.
The basic steps in the workflow of Mabs-hifiasm are as follows:

1.	 Reads are aligned to ancestral BUSCO proteins by DIAMOND [22]. The purpose is 
to select reads that belong to BUSCO genes. Hereafter I refer to them as "BUSCO 
reads". They will be used in step 4 to calculate the coverage of exons of BUSCO genes. 
Of course, it is possible to use all reads for the calculation of coverage, but using only 
BUSCO reads saves time since they constitute only a portion of all reads. For large 
eukaryotic genomes, where most regions are intergenic or intronic, the time saved by 
aligning only BUSCO reads becomes especially prominent.

	 Since errors in long reads are often indels [23–26] and, thus, may lead to frameshifts, 
DIAMOND is run with the option "--frameshift", which allows for frameshifts in the 
alignment.

2.	 A genome is assembled by Hifiasm using the current value of "-s".
3–5.	 AG is calculated as described in the Sect. "How AG is calculated". This step is 

represented by three boxes (from "BUSCO genes..." to "Based on the coverage of 
exons...") in Fig. 3.

6.	 Based on the AG value, the next value of "-s" is selected using the golden section 
method.

Ten points (including the two starting middle points) are examined by Mabs-hifi-
asm during the golden section optimization. Including more points may provide more 
accuracy at the cost of increasing assembly time. My tests show that 10 points is suf-
ficient for determining the value of "-s" that provides the maximum or nearly maxi-
mum AG value (Additional file 1: Figs. S1 and S2).

Mabs‑flye

Mabs-flye uses basically the same workflow as Mabs-hifiasm, with the following 
differences:

1.	 Instead of Hifiasm, Mabs-flye uses Flye as the genome assembler. The need for two 
separate tools (Mabs-hifiasm and Mabs-flye) appeared because the algorithm of Hifi-
asm is intended foremost for very accurate (PacBio HiFi) reads, while the algorithm 
of Flye is intended mainly for considerably less accurate (PacBio CLR or Oxford 
Nanopore) reads. As of 2023, both PacBio HiFi and Oxford Nanopore technologies 
are widely used; thus, Mabs is split into Mabs-hifiasm and Mabs-flye. Although Flye 
has a dedicated option that allows it to assemble PacBio HiFi reads, "–pacbio-hifi", 
my tests on several genomes (data not provided) suggest that Hifiasm usually assem-
bles genomes from HiFi reads better than Flye does.
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	 Taking into account the currently increasing accuracy of Oxford Nanopore reads [1, 
27], it is possible that in the future, Hifiasm will also be suitable for Oxford Nanopore 
reads, thus reducing the necessity for Flye and, consequently, for Mabs-flye.

2.	 While Mabs-hifiasm optimizes the parameter "-s" of Hifiasm, Mabs-flye optimizes 
the parameter that I call "max_divergence"; see the Sect. "Which parameters to opti-
mize?".

3.	 While the optimization of "-s" by Mabs-hifiasm is performed directly, Mabs-flye 
log-transforms "max_divergence" and performs the golden section optimization 
for log10("max_divergence") due to the nature of "max_divergence". Basically, if a 
user provides Mabs-flye with very accurate reads (for example, with an error rate 
of approximately 1%), then fine-tuning of "max_divergence" may be beneficial. On 
the other hand, if a user provides Mabs-flye with highly inaccurate reads (for exam-
ple, with an error rate of approximately 15%), then the parameter tuning should be 
more "coarse-grained". This is achieved by logarithmically transforming "max_diver-
gence". While the interval of "-s" is [0; 1], the interval of "max_divergence" examined 
by Mabs is [0.0001; 0.5] or, in other words, [0.01%; 50%].

4.	 When optimizing "-s", Mabs-hifiasm assembles the whole genome, but Mabs-flye 
assembles only genes.

	 Hifiasm is a fast assembler, especially taking into account that it can reuse interme-
diate files to produce an assembly with another "-s". On the other hand, Flye needs 
to perform an assembly for each "max_divergence" from the very beginning, which 
makes it slow. To address this problem of Flye, Mabs-flye uses only "BUSCO reads" 
(for the definition, see above) during assembly. Thus, Mabs-flye assembles only genes 
and evaluates AG only for genes. When the optimal "max_divergence" is found, 
Mabs-flye performs the final assembly, this time using all reads.

	 Assembling only genes may have a potential downside since BUSCO reads are reads 
that align to ancestral BUSCO proteins; thus, if the genome being assembled has 
very long introns and reads used for assembly are relatively short, introns may not be 
fully covered. This will lead to fragmentation of genes in the assembly of Mabs-flye, 
which in turn leads to problems in properly calculating the number of BUSCO genes 
and, thus, detrimentally affects the calculation of AG. However, typical genomic 
Oxford Nanopore reads in 2023 have lengths about 10–100 kbp, which is probably 
more than the typical length of eukaryotic introns [28]. Thus, assembling only genes 
to find the optimal "max_divergence" is probably rational.

5.	 In contrast to Mabs-hifiasm, Mabs-flye polishes genes using Proovframe.
	 A problem with error-prone reads is that an assembly made from them will also have 

many errors. Such errors are usually insertions or deletions of several bases [29–31]. 
As they occur in CDSs, they likely lead to frameshifts, thus harming the ability of 
Mabs to find BUSCO genes and, thus, to calculate AG.

	 One way to address this problem is to polish the assembly with accurate short reads. 
Alignment-based polishers, such as Racon [32], Pilon [33] and POLCA [34], will con-
siderably increase the computational time of Mabs-flye since polishing is required for 
each of the 10 points tested by the golden section method, and read alignment is a 
time-consuming operation. An alternative is to use alignment-free polishers, such as 
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ntEdit [35], which are faster. However, alignment-free polishing is not as accurate as 
alignment-based polishing.

	 A simple alternative is to use pseudopolishing by Proovframe [36]. Proovframe is 
a tool that aligns reference proteins to a genome assembly and fixes in-frame stop-
codons and frameshifts that break open reading frames. The utilization of Proov-
frame allows to fix frameshifting assembly errors, thus making the detection of 
BUSCO genes possible. Mabs uses ancestral BUSCO proteins as the reference for 
Proovframe.

	 Polishing by Proovframe has a downside in that the actual genome sequence may be 
distorted since it is fixed based on sequences of ancestral proteins that likely differ 
from sequences of current proteins of this species. For example, a frameshift in an 
actual pseudogene in a studied genome will be removed by Proovframe. For this rea-
son, when the optimal "max_divergence" has been determined and Mabs-flye makes 
the final assembly using all reads, Proovframe is not used.

Approaches used to accelerate Mabs

A simple implementation of Mabs may have looked as follows:

1.	 Run a genome assembler many times with different values of its parameters.
2.	 If error-prone (Oxford Nanopore or PacBio CLR) reads were used, polish each 

assembly using short accurate reads.
3.	 Map all reads to each assembly and calculate the coverage of BUSCO genes.
4.	 Based on the coverage, calculate AG and determine the best assembly.

This approach may be inefficient because assembly and polishing of a large genome 
may take days. Here I outline the main techniques that Mabs uses to accelerate the 
process:

1.	 Re-use of intermediate Hifiasm files.

	 Hifiasm is able to use the same intermediate files to generate assemblies with differ-
ent values of "-s". Mabs-hifiasm re-uses some files generated during the first Hifi-
asm assembly in all subsequent Hifiasm assemblies, thus accelerating the subsequent 
assemblies.

2.	 When Mabs-flye optimizes "max_divergence", it assembles only genes.
	 When Mabs-flye starts, it finds sequencing reads that correspond to BUSCO genes 

("BUSCO reads"). When Mabs-flye optimizes "max_divergence", it performs assem-
blies using only BUSCO reads. This accelerates the assembly because large genomes 
mainly consist of non-coding regions. In contrast, Mabs-hifiasm assembles the 
genome using all reads, because the technique "1." makes individual assemblies 
(except for the first one) fast.

3.	 The coverage of BUSCO genes is calculated using only BUSCO reads.
	 When calculating the coverage of BUSCO genes, both Mabs-hifiasm and Mabs-flye 

map only BUSCO reads instead of mapping all reads.
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4.	 Mabs-flye uses pseudopolishing. As noted above, the traditional polishing by short 
accurate reads can be slow. To make detection of BUSCO genes possible despite 
assembly errors, Mabs-flye uses pseudopolishing by Proovframe. Mabs-hifiasm does 
not require this technique because assemblies made from PacBio HiFi reads are sig-
nificantly more accurate than assemblies made from Oxford Nanopore of PacBio 
CLR reads and do not require polishing.

Avoiding biases during the development and testing of Mabs

General considerations

A number of biases may lead to exaggeration of the quality of a bioinformatic program. 
Here, I describe how I addressed two relatively nonobvious biases.

Avoiding overfitting of Mabs to specific genomes

If, during its development, a genome assembler is tested on some genomes, the algo-
rithm of this assembler may become overfitted to produce good results for these par-
ticular genomes and these particular reads. If the assembler is then compared with other 
assemblers on the same genomes and reads, it may outperform them, but this will not 
mean that the studied assembler will outperform them for other genomes and reads.

To address this problem, during the development of Mabs-hifiasm and Mabs-flye, 
I tested their ability to assemble genomes other than those used for comparison with 
Hifiasm and Flye in this article. Namely, during the development, I used genomes of 
Arabidopsis thaliana (PacBio HiFi and Oxford Nanopore reads), Caenorhabditis elegans 
(PacBio CLR reads) and the Fagopyrum esculentum cultivar Dasha (PacBio HiFi and 
Oxford Nanopore reads).

The first two genomes are small (approximately 100 Mbp) and allow for quick test-
ing of Mabs, although their assemblies usually had no haplotypic duplications at all. On 
the other hand, the genome of Fagopyrum esculentum represents an ideal case to test a 
genome assembler. During the last million years, Fagopyrum esculentum experienced a 
fast expansion of 10 kbp-long transposable elements that tripled its genome, increasing 
the genome size from approximately 500 Mbp to approximately 1.5 Gbp [37]. Consid-
ering the recentness of this transposable element explosion, their copies are similar to 
each other, thus increasing the difficulty of genome assembly. Additionally, samples of 
the cultivar Dasha that were used for production of PacBio HiFi and Oxford Nanop-
ore reads had relatively high heterozygosity (approximately 4%, to be published), which 
also increases the complexity of the assembly. Thus, the Fagopyrum esculentum cultivar 
Dasha represents a difficult case for genome assembly and, consequently, is highly suita-
ble for tuning genome assemblers. The creation of a high-quality assembly of Fagopyrum 
esculentum is underway.

Avoiding circular reasoning

Mabs uses the detection of BUSCO genes during assembly. The quality of assembly of 
BUSCO genes (i.e., "AG") is maximized by both Mabs-hifiasm and Mabs-flye. On the 
other hand, in Figs. 4 and 5 and in Tables 2 and 3, AG is reported as the metric of assem-
bly quality. This may create a bias in that the same metric is used to assess the assembly 
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as is maximized during the assembly. To address this, I split all BUSCO datasets into two 
parts: the first part was used by Mabs-hifiasm or Mabs-flye to calculate AG during the 
assembly, while the second part was used to calculate AG for Figs. 4 and 5 and perform 
BUSCO analyses for Tables 2 and 3 (see Table 4).

Genomes used for comparison of Mabs with Hifiasm and Flye

To test Mabs, I performed a literature analysis and compiled a set of 5 species for 
which authors reported a high number of haplotypic duplications: Trifolium prat-
ense [38], Manihot esculenta [39], Myripristis murdjan [8, 40], Adineta vaga [41], 

Fig. 4  Sinaplots of gene coverage in assemblies made by Mabs-hifiasm and Hifiasm. A for Trifolium pratense, 
B for Manihot esculenta, C for Heracleum sosnowskyi. Each dot is a BUSCO gene
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and Mytilus coruscus [42, 43]. In addition, I included Heracleum sosnowskyi, which 
I studied personally and which also had many haplotypic duplications [44]. For 
detailed information about the genomes and their sequencing reads, see Table  5. 
The genomes of Trifolium pratense, Manihot esculenta and Heracleum sosnowskyi 
were sequenced using PacBio HiFi technology and were thus used to compare Mabs-
hifiasm and Hifiasm. The other three genomes were sequenced using error-prone 
technologies and were thus used to compare Mabs-flye and Flye. All six genomes are 
diploid.

Fig. 5  Sinaplots of gene coverage in assemblies made by Mabs-flye and Flye. Each dot is a BUSCO gene
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Table 4  Subdivision of BUSCO datasets into parts used for assembly and testing

Species BUSCO dataset Total number of 
orthogroups in the 
BUSCO dataset

Number of 
orthogroups 
used during the 
assembly

Number of 
orthogroups used 
to test the final 
assembly quality

Trifolium pratense eudicots_odb10 2326 1000 1326

Manihot esculenta eudicots_odb10 2326 1000 1326

Heracleum sosnow-
skyi

eudicots_odb10 2326 1000 1326

Myripristis murdjan actinopterygii_
odb10

3640 1000 2640

Adineta vaga metazoa_odb10 954 500 454

Mytilus coruscus mollusca_odb10 5295 1000 4295

Table 5  Information on the genomes and sequencing reads used in this article

a The approximate genome coverage was calculated based on the following genome sizes: Trifolium pratense 450 Mbp, 
Manihot esculenta 750 Mbp, Heracleum sosnowskyi 1700 Mbp, Myripristis murdjan 850 Mbp, Adineta vaga 100 Mbp, Mytilis 
coruscus 1600 Mbp
b Used only for polishing, after the assembly
c The cause of the discrepancy between genome size estimates for Adineta vaga is unknown

Species Genome size, 
estimated 
without 
sequencing 
(Mbp)

Genome size, 
estimated as 
the size of 
the assembly 
with the 
largest N50 
among 
published 
assemblies 
(Mbp)

Sequencing 
technology

Sequence 
Read Archive 
identifiers of 
reads

N50 of reads 
(bp)

Approximate 
genome 
coverage by 
readsa

Trifolium 
pratense

636 [45], 474 
[46], 418 [47], 
557 [48]

423 [49] PacBio HiFi SRR15433789 20,082 50

Manihot 
esculenta

817 [50] 706 [39] PacBio HiFi ERR5485301 20,363 42

Heracleum 
sosnowskyi

1751 [48] 1629 [44] PacBio HiFi SRR23251371, 
SRR23251372

14,679 22

Illumina Hi-C, 
paired-end

SRR23251383, 
SRR23251384

76 34

Myripristis 
murdjan

no estimates 835 [51] PacBio CLR ERR3449630, 
ERR3449634, 
ERR3449635, 
ERR3453872, 
ERR3453873, 
ERR3453874, 
ERR3453875, 
ERR3453876

24,966 50

Illumina 
shotgun, 
paired-end b

ERR3655549 151 155

Adineta vaga 362c [52] 101c [53] Oxford Nano-
pore

SRR13348928 38,562 50

Illumina 
shotgun, 
paired-end b

SRR13348929 251 331

Mytilus cor-
uscus

1858 [54] 1567 [55] Oxford Nano-
pore

ERR3415816 24,641 50

Illumina 
shotgun, 
paired-end b

ERR3431204 150 53
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Used programs and their parameters

Preprocessing of reads

To accelerate the assembly, long reads that provided genome coverage above 50 were 
downsampled to coverage 50 by Filtlong 0.2.1 [56]. It has been demonstrated previously 
that increasing read coverage above 50 does not improve the assembly quality of diploid 
genomes substantially [41, 57–64]. Quality trimming and adapter trimming of Illumina 
reads were performed by Fastp 0.21.0 [65] with the following criteria:

1.	 Adapters were trimmed using the default method of Fastp, which does not require 
knowledge of adapter sequences.

2.	 Bases with Phred quality scores below 3 were removed from the 3’-ends.
3.	 If a 5 bp window in a read had an average Phred score below 15, this window and 

everything towards the 3’-end of the read were removed.
4.	 If the average Phred quality score of a read remained below 20 after the abovemen-

tioned procedures, the read and its pair were removed.
5.	 If after the abovementioned procedures the length of a read became less than 30 bp, 

the read and its pair were removed.

Genome assembly

Genomes were assembled with Mabs 2.11, Hifiasm 0.16.1, and Flye 2.9.1.
Hifiasm was run with default parameters. All assemblies performed by Hifiasm were 

made with PacBio HiFi reads, except the assembly of the genome of Heracleum sosnow-
skyi, where Hi-C reads were also used.

During assembly with Flye, PacBio CLR reads of Myripristis murdjan were provided 
with the option "–pacbio-raw", while Oxford Nanopore reads of Adineta vaga and Myt-
ilus coruscus were provided with the option "nano-raw". The option "–no-alt-contigs", 
which is a special option of Flye for removal of haplotypic duplication, was always used. 
Other parameters of Flye were default.

For Mabs-hifiasm and Mabs-flye, paths to BUSCO datasets specified in Table 4 were 
provided via the option "–local_busco_dataset". By default, Mabs uses 1000 orthogroups 
during the assembly. The database metazoa_odb10, used for Adineta vaga, contains only 
954 orthogroups, and a portion of them had to be used for assessing the assembly quality 
(see "Avoiding circular reasoning"). Hence, for Adineta vaga, the value of the parameter 
"–number_of_busco_orthogroups" was set to 500 instead of the default 1000. Similar to 
the Hifiasm assembly of Heracleum sosnowskyi, in the Mabs-hifiasm assembly of Hera-
cleum sosnowskyi, Hi-C reads were used along with HiFi reads.

Postprocessing of assemblies

For Flye assemblies, polishing was performed by HyPo 1.0.3 [29], providing coverage val-
ues of Illumina reads (the option "–coverage-short") as indicated in Table 5. Assemblies 
made by Mabs-flye were polished in the same way. Hifiasm assemblies do not require pol-
ishing [10], and consequently, assemblies of Mabs-hifiasm do not require polishing either.

Deduplication was performed by Purge_dups with default parameters.
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Quality control of assemblies

BUSCO analysis of the assemblies was performed using BUSCO 5.3.2. Datasets for the 
BUSCO analysis were manually constructed by excluding the orthogroups that were 
used by Mabs during assembly (see "Avoiding circular reasoning") from the datasets 
described in Table 4.

The AG values of the assemblies were calculated by calculate_AG from Mabs 2.11 
using the same datasets as those used by BUSCO.

Results and discussion
Brief description of the algorithm of Mabs

The workflow of Mabs can be briefly described as follows:

1.	 Mabs makes a series of assemblies by Hifiasm or Flye, using different values of their 
parameters. Since the genome assembly process is time-consuming, Mabs imple-
ments several tricks to accelerate it.

2.	 The quality of each assembly is evaluated using a special metric that I call AG. AG 
is an abbreviation for "the number of Accurately assembled Genes". It is the number 
of assembled genes from single-copy BUSCO orthogroups plus the number of genes 
from true multicopy BUSCO orthogroups.

3.	 A distinctive feature of Mabs compared to BUSCO is that Mabs classifies multicopy 
(i.e. containing several genes) BUSCO orthogroups into true multicopy and false 
multicopy. True multicopy orthogroups consist of paralogues, while false multicopy 
orthogroups consist of haplotypic duplications. Mabs is able to distinguish true mul-
ticopy orthogroups from false multicopy orthogroups, because genes originating 
from haplotypic duplications have two times lower coverage than correctly assem-
bled genes (Fig.  1). The assembly with the largest AG is considered the best and 
reported to the user.

For a more detailed description of the algorithm of Mabs, see the section 
Implementation.

AG is, in my opinion, a very informative metric of the genome assembly quality. In 
addition to Mabs-hifiasm and Mabs-flye, the Mabs suite of tools includes the third tool 
called calculate_AG that allows a user to calculate AG for any genome assembly. This 
tool can be used to compare genome assemblies created by different genome assemblers 
to determine which of them has the most accurately assembled genes. In contrast to 
BUSCO, calculate_AG is able to determine which multicopy orthogroups are true, and 
which are assembly errors.

One disadvantage of AG is that it is poorly suited to compare two nearly perfect 
genome assemblies. For example, the recent telomere-to-telomere human genome 
assembly was made for the genome of a hydatidiform mole, which has an advantage for 
performing genome assembly in that it is nearly 100% homozygous [5]. With HiFi reads 
or ultralong Oxford Nanopore Technology reads, it is possible to obtain genome assem-
blies that are accurate to the level of all protein-coding genes being assembled perfectly. 
The main problem with such assemblies is the difficulty in assembling tandem repeats 
with long monomers, such as centromeres and rDNA clusters [5, 63, 66]. Thus, any 
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assembly quality metrics that are based on how well protein-coding genes are assem-
bled, be it AG or results of BUSCO, will usually be useless for comparing two nearly 
perfect assemblies.

The strategy of "gene-informed parameter optimization" utilized by Mabs may be 
applied to any genome assembler that has some parameters that affect its algorithm. 
Hifiasm and Flye were chosen because in multiple articles they were shown to be the 
best or among the best assemblers for accurate (PacBio HiFi) and error-prone (Oxford 
Nanopore Technologies and PacBio CLR) reads, respectively [4, 41, 63, 67–73]. Since 
Hifiasm and Flye were favourably compared with other genome assemblers many times, 
in this work I compare Mabs only with Hifiasm and Flye and do not make comparisons 
with other assemblers.

Comparison of Mabs‑hifiasm with Hifiasm

Mabs-hifiasm was compared with Hifiasm on three genomes that belonged to plants 
Trifolium pratense (the red clover), Manihot esculenta (cassava) Heracleum sosnowskyi 
(Sosnowsky’s hogweed). Genomes of these three plants were selected for the analysis 
because their assemblies were reported to suffer from a large number of haplotypic 
duplications [38, 39, 44].

As can be seen in Fig. 4 and Table 2, Mabs-hifiasm assembled genes of Trifolium prat-
ense better than Hifiasm. For the 1326 BUSCO orthogroups used for the analysis (see 
Table 4 and the paragraph "Avoiding circular reasoning" in the section Implementation), 
Mabs-hifiasm assembled 1010 genes in single-copy orthogroups and 375 genes in true 
multicopy orthogroups, while Hifiasm assembled 1006 genes in single-copy orthogroups 
and 374 genes in true multicopy orthogroups. At the same time, Mabs-hifiasm assem-
bled 44 genes in false multicopy orthogroups, while Hifiasm assembled 55 genes in 
false multicopy orthogroups. In other words, the number of correctly assembled genes 
was larger in the assembly of Mabs-hifiasm, while the number of incorrectly assembled 
genes was larger in the assembly of Hifiasm. BUSCO’s completeness ("C") was smaller in 
the assembly of Mabs-hifiasm compared to the assembly of Hifiasm. However, the num-
ber of haplotypic duplications in the assembly of Mabs-hifiasm was also smaller than 
in the assembly of Hifiasm, which resulted in the total number of accurately assembled 
genes ("AG") being larger in the assembly of Mabs-hifiasm. Thus, overall, the assembly 
of Mabs-hifiasm is more correct. N50 was also larger in the assembly made by Mabs-
hifiasm (Table 2). The use of Purge_dups had, for some unknown reason, a detrimen-
tal effect on the assemblies of both Mabs-hifiasm and Hifiasm. Though the assembly of 
Mabs-hifiasm was better, it required more time, taking approximately 10 h instead of 3 h 
for Hifiasm.

The assembly made by Mabs-hifiasm for the genome of Manihot esculenta also had 
better assembled genes than the assembly made by Hifiasm. As in the case of Trifolium 
pratense, it also had a larger N50, but required more time. Purge_dups decreased the 
assembly quality.

The Heracleum sosnowskyi genome assembly made by Mabs-hifiasm was also better 
than the assembly made by Hifiasm, both in terms of the gene assembly accuracy and in 
terms of N50. As can be observed in Fig. 4, Mabs-hifiasm incorrectly merged two pairs 
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of paralogues. The created chimeric genes can be seen as two points on the left part of 
the diagram that have coverage approximately two times higher than normal single-copy 
genes. However, the number of correctly assembled genes in single-copy orthogroups 
in the assembly of Mabs-hifiasm was higher than in the assembly of Hifiasm. Also, the 
number of genes in false multicopy orthogroups in the assembly of Mabs-hifiasm (86) 
was much smaller than in the assembly of Hifiasm (322). The number of genes in false 
multicopy orthogroups in the assembly of Hifiasm was so large that the coverage distri-
bution of multicopy orthogroups is noticeably bimodal. As with the genomes of Trifo-
lium pratense and Manihot esculenta, the usage of Purge_dups had a detrimental effect 
on the assemblies made by Hifiasm and Mabs-hifiasm.

Overall, for all three genomes Mabs-hifiasm made better assemblies than Hifiasm. The 
assemblies of Mabs-hifiasm were better both in terms of gene assembly accuracy and in 
terms of N50. However, on average, Mabs-hifiasm was approximately three times slower 
than Hifiasm.

Comparison of Mabs‑flye with Flye

Mabs-flye was compared with Flye on the genomes of Myripristis murdjan (a species 
of soldierfish), Adineta vaga (a species of rotifers) and Mytilus coruscus (the Korean 
mussel). These three genomes were selected because their assemblies were previously 
reported to suffer from a lot of haplotypic duplications [8, 40–43].

For Myripristis murdjan, Mabs-flye assembled genes more accurately than Flye (Fig. 5, 
Table  3). The number of genes in single-copy orthogroups in the assembly made by 
Mabs-flye was 2039, while in the assembly made by Flye it was 2026. The number of 
genes in true multicopy orthogroups in the assembly made by Mabs-flye was 415, while 
in the assembly made by Flye it was 411. The number of genes in false multicopy ortho-
groups in the assembly made by Mabs-flye was 31, while in the assembly made by Flye 
it was 113. Purge_dups improved both assemblies, which can be seen from the increase 
in AG. For the assembly of Flye this increase was larger, which lead to the assembly of 
Flye + Purge_dups being better than the assembly of Mabs-flye + Purge_dups. N50 was 
better in the assembly made by Flye than in the assembly made by Mabs-flye. Mabs 
took approximately 2.5 times longer than Mabs-flye. Overall, if taking into account the 
assembly improvement by Purge_dups, the genome of Myripristis murdjan was better 
assembled by Flye than by Mabs-flye.

For Adineta vaga, the assembly of Mabs-flye was better than the assembly made by 
Flye both before and after the usage of Purge_dups, both in terms of gene assembly 
accuracy and in terms of N50. The assembly by Mabs-flye took approximately 3.5 more 
time than the assembly by Flye. The low number of BUSCO genes found in the genome 
of Adineta vaga is partially explained by the low (454) number of orthogroups used for 
the analysis (Table 4) and partially by the high phylogenetic distance between the last 
common ancestor of animals and Adineta vaga, which results in low sensitivity of the 
detection of BUSCO genes because of the low sequence similarity.

For Mytilus coruscus Mabs-flye made a better assembly than Flye. However, the num-
ber of haplotypic duplications in the assembly made by Mabs-flye was large, though 
smaller than in the assembly made by Flye (Fig. 5). The application of Purge_dups signifi-
cantly improved both assemblies, but the assembly made by Mabs-flye was still better.
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Overall, for two of the three genomes (those of Adineta vaga and Mytilus coruscus) 
Mabs-flye made better assemblies than Flye. For the genome of Myripristis murdjan the 
assembly made by Flye became better than the assembly made by Mabs-flye after the use 
of Purge_dups. While Purge_dups had a detrimental effect on all assemblies made by 
Mabs-hifiasm and Hifiasm, its effect on the assemblies made by Mabs-flye and Flye was 
always positive. The cause of this is unclear.

Conclusions
In this article I described the suite of tools Mabs, which consists of Mabs-hifiasm 
and Mabs-flye. Mabs-hifiasm and Mabs-flye optimize parameters of genome assem-
blers Hifiasm and Flye, trying to make assemblies where genes are assembled better 
than when Hifiasm and Flye are run with default parameters. For five of the six tested 
genomes Mabs created better assemblies than Hifiasm and Flye at the cost of approxi-
mately threefold increase in assembly time.

I suppose that the method of automatic optimization of parameters that takes into 
account the gene assembly accuracy, implemented in Mabs, can also be applied to other 
genome, transcriptome and metagenome assemblers.
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