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Abstract

The stiffness of biological membranes determines the work required by cellular machinery to form 

and dismantle vesicles and other lipidic shapes. Model membrane stiffness can be determined 

from the equilibrium distribution of giant unilamellar vesicle surface undulations observable by 

phase contrast microscopy. With two or more components, lateral fluctuations of composition will 

couple to surface undulations depending on the curvature sensitivity of the constituent lipids. The 

result is a broader distribution of undulations whose complete relaxation is partially determined by 

lipid diffusion. In this work, kinetic anaysis of the undulations of giant unilamellar vesicles made 

of phospatidylcholine-phosphatidylethanolamine mixtures validates the molecular mechanism by 

which the membrane is made 25% softer than a single-component one. The mechanism is relevant 

to biological membranes, which have diverse and curvature-sensitive lipids.

I. INTRODUCTION

The cellular membrane is a complex mixture of many lipids and proteins, which may 

be attached peripherally, reside in one leaflet, or cross both. Membrane shape is highly 

influenced by a complicated cytoskeletal network. To isolate the mechanical effect of 

individual lipid components in such a system is currently infeasible. Giant unilamellar 

vesicles (GUVs) are an excellent membrane model system to which complexity can be 

introduced gradually [1]. Rather than attempting to visualize the distributions and motions 

of individual membrane components spectroscopically, with GUVs the influence of those 

components on the projected bilayer shape can be directly observed.

GUV mechanics are typically described using the Helfrich/Canham [2, 3] (HC) energy 

density, H:

HHC = κ
2 c1 + c2 − c0

2 + κc1c2 (1)

where κ is the membrane bending rigidity, c1 + c2 is the total curvature where HHC is being 

evaluated, c1c2 is the Gaussian curvature, and c0 is the bilayer spontaneous curvature.
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We refer to the range of the magnitude of undulations of the GUV as the dynamic ensemble 

and to the relaxation times of the undulations as GUV kinetics. GUV mechanics are 

typically analyzed in terms of the dynamic ensemble. The bending stiffness is typically 

inferred from the range of the dynamic ensemble; larger fluctuations indicate a softer bilayer 

susceptible to thermal agitation. The stiffness also impacts kinetics; with a stronger restoring 

force, stiffer bilayers relax more quickly. The undulation of a GUV is visible to both phase 

contrast and confocal microscopy [4].

Some membrane mechanical parameters can also be inferred from static structures under 

external stress. An estimate of the stiffness of the red blood cell [5] as well as simple model 

membranes [6] can be obtained from analysis of the shape of membranes under micropipette 

aspiration. Even the challenging modulus of Gaussian curvature can be deduced from the 

analysis of the shapes of GUVs composed from a ternary mixture that phase separate into 

microscopic ordered and disordered domains [7]. In this case, the external stress is the 

line tension between domains, to which the shape of the surrounding vesicle adapts. The 

spontaneous curvature of lipid constituents can also be inferred by pulling nanoscale tubes 

using optically-trapped beads. The force required for inward or outward tubulation will 

depend on the spontaneous curvature of the whole bilayer [8–10].

Setting aside the extreme case of macroscopic phase separation, lipid mixtures of complex 

molecular composition raise the possibility of lipid-lipid interactions giving rise to 

inhomogeneity invisible to microscopy. When nanometer-scale heterogeneity is a strong 

determinant of mechanical properties, the variation of lipid concentrations will modify the 

fluctuation spectrum of GUVs non-linearly. The characterization of the effect of complex 

lipid heterogeneity by GUV fluctuations is closely related to the main target of interest: a 

model of the mechanics of cellular membranes.

This work examines a simple mechanism of softening in complex membranes, what we term 

diffusional softening [11]. Diffusional softening results from the dynamic coupling between 

the lateral distribution of lipids and the membrane undulations. It has been proposed as 

a method for determining lipid or protein diffusion constants [12–14]. The mechanism 

only applies for leaflets with a mixture of lipids with varied spontaneous curvature. It is 

independent of the asymmetry of composition between leaflets. The effect was originally 

described by Leibler in 1986 for general inclusions [15], likely applicable to inclusions like 

alamethicin [16], fusion peptides [17] and other proteins [14], but the theory applies equally 

well to lipids [12, 18–20]. The width and relaxation time of nanotubes of lipid mixtures 

pulled from black lipid membranes strongly imply that lipid sorting leads to constriction 

of the tube, implying softness [21]. Non-linear variation of κ has been observed in simple 

simulations of two component mixtures, in which the mixture of a stiff and soft lipid appears 

softer than even a pure bilayer of the soft lipid (see Fig. 3a of Ref. [22] and Fig. 8 of 

Ref. [23]). As shown below, the softening of κ is quadratic in the spontaneous curvature 

difference between lipids, and goes as χ 1 − χ , where χ is the mixed mole fraction for a 

binary mixture, consistent with the observations in Refs. [22, 23].
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Whereas the undulations of a single component bilayer relax with timescale 

r3η
κ

2l + 1 2l2 + 2l − 1

l − 1 l2(l + 1)2 l + 2
, for diffusional softening the timescale is perturbed by the relaxation 

of the lateral compositional fluctuation, which goes as r2
D0

1
l l + 1 . Here η is the solvent 

viscosity, l is the degree of the spherical harmonic (SH), r is the vesicle radius, and D0 is 

the diffusion constant. This mechanism can thus be distinguished by the l-dependence of the 

undulation relaxation time. The time-scales also differ in their dependence on the vesicle 

radius.

The bending modulus for gel-phase systems approaches zero near the phase transition (see 

Fig. 13 of Ref. [24] and Fig. 6 of Ref. [25]). Thermal fluctuations of many mechanical 

properties are sufficient to explain this, including the area-per-lipid, which differs greatly 

between the gel and fluid phases. Differing curvature preference of gel and fluid phases 

would also contribute to bilayer softening. This is a clear indication of how dynamically 

fluctuating material properties lead to profound changes in softness. Moreover, the kinetics 

of the gel-fluid transition should influence the relaxation time of visible undulations.

This work uses analysis of the kinetics of GUV relaxation, supported by simulation, to 

distinguish the intrinsic bending modulus from the diffusionally-softened bending modulus.

The dynamic fluctuations of GUVs composed either completely of POPC or of 40% DOPE 

and 60% POPC are first presented. The reduced softness of the mixed system 22kBT
compared to pure POPC 28kBT  is shown to be consistent with diffusional softening on the 

basis of a kinetic fit to the autocorrelation function of the GUV undulation amplitude.

To validate the model, the kinetics of the relaxing GUV are compared to continuum 

simulations that incorporate the HC energy, as well as the experimentally-validated 

relaxation times of the undulation and lateral-compositional fluctuations. Fitting the time-

dependence of auto-correlation functions is not straightforward. Choices of how to compare 

fits to the experimental data impact the accuracy and precision of the extracted model 

parameters. To account for this ambiguity in an evenhanded way, the expected error and 

optimal fitting strategy is derived from the simulations, rather than the experiments. Then, 

the fitting scheme is applied to the time auto-correlation function of GUV undulations, as 

measured by phase-contrast microscopy.

II. METHODS

The theory is first developed to describe the mechanism of diffusional softening, including 

the kinetics necessary for modeling. The experimental and simulation protocols for 

characterizing GUV fluctuations are then provided, as well as how a framework was 

developed to most precisely fit the experiment as well as to anticipate stochastic error.

A. Theory

The HC energy density is modified by the presence of PE by subtracting the homogeneous 

(background) HC energy and adding in the contribution from the PE lipid:
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HHC r = HHC r + ΔHPE r (2)

where

HHC r = κ
2 c1 r + c2 r − c0

2
(3)

and

ΔHPE r = ∫
A

dS′ρ r′ w r − r′ κm

2 c1 + c2 − c0, PE
2 − c1 + c2 − c0

2 . (4)

Here w r  is the spatial extent of a single lipid [26] and ρ r′  is the number of PE lipids per 

unit area in the outer leaflet of the GUV (a trivial extension to both leaflets is made below). 

Note that the bending modulus is assumed to be homogeneous; the change in energy density 

only reflects changes in c0. Assuming perfectly local spatial extent for a lipid,

wlocal (r) = Apδ(r) (5)

where Ap is the area of a PE lipid, yields

ΔHPE r =  Apρ r κm

2 c1 + c2 − c0, PE
2 − c1 + c2 − c0

2 . (6)

= Apρ(r)κm

2 c1 + c2 ΔcPE + ΔHconst., (7)

where here ΔHconst. is a constant term independent of vesicle curvature. The assumption of 

perfectly local extent is justified as long as the undulation wavelength considered is much 

greater than the mechanical extent of the lipid. According to the mechanical extent of 

simulated PE lipids [26], this is easily justified. arger lipidic patches requiring treatment at 

higher q could be described with finite spatial extent.

The average elastic curvature energy, without coupling to PE, is then:

EHC = κ
2∫A

dSHHC r . (8)

For a vesicle, both the membrane shape R θ, ϕ  and lipid distribution ρ θ, ϕ  are expanded in 

SH:

R θ, ϕ = r 1 + ∑
l = 2

lmax

∑
m = − l

m = l
ulmY lm θ, ϕ (9)
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ρ θ, ϕ = ρ0 + ∑
l = 1

lmax

∑
m = − l

m = l
ρlmY lm θ, ϕ (10)

with coefficients ulm (unitless) and ρlm (units per area). With the curvature written as the 

divergence of the normal, the compositionally-averaged elastic energy EHC is evaluated from 

HHC r  (Eq. 3) as:

EHC = κ
2∫ dA(∇ ⋅ n)2 . (11)

Taking a second order approximation the curvature energy (Eq. 8) is:

EHC = κ
2 l − 1 l l + 1 l + 2 ulm

2
(12)

Given a bilayer with a mole fraction χ of one lipid (here DOPE) and 1 − χ background lipids 

(here, POPC), the energy of a density fluctuation is given by

Eρ = Apr2kBT
4χ 1 − χ ρlm

2 . (13)

This is a purely entropic factor.

The coupling of ρlm and ulm by ΔHPE r  is similarly evaluated in SH:

ΔEPE = κm∫ dAΔcPEApρlmY lm ∇ ⋅ n − 2
r (14)

= κmΔcPEApr l2 + l − 2 ulmρlm (15)

Note that in our model, ΔEPE for the inner leaflet of the bilayer requires only switching the 

sign of curvature; it is the negative of ΔEPE for the outer leaflet. As the coupling depends 

linearly on ρlm, it is irrelevant whether lipids are modeled to be in the outer leaflet (with ΔcPE ) 

or in the inner leaflet (with −ΔcPE). We therefore state, without loss of generality, that they 

are distributed symmetrically throughout the bilayer as in the experiment.

To further cast the model as the bilayer coupling, we reintroduce the bilayerκ, with κ = 2κm:

ΔEPE = 1
2κΔcPEApr l2 + l − 2 ulmρlm (16)

Combining Eqs. 12, 13, and 16, the total energy is

Etotal = EHC + Eρ + ΔEPE . (17)
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The expectation of ulm
2  is determined by

ulm
2 = Z−1∫ dulm∫ dρlmulm

2 e−Etotal/kBT , (18)

where

Z = ∫ dulm∫ dρlme−Etotal/kBT . (19)

For a single-component membrane χ = 0 or ΔcPE = 0 , integration leads to

ulm
2 = kBT

κ l − 1 l l + 1 l + 2 , (20)

from which the bending rigidity can be determined.

At higher q where diffusion is slower than the relaxation of undulations, the membrane auto-

correlation function reflects the time-scales of the two processes and how they are coupled 

through spontaneous curvature. We can derive a theoretical prediction of the autocorrelation 

function from the dynamics of the system.

The expectation of ulm
2 , ρlm

2 , and ulmρlm are:

ulm
2 = kBT

κ l − 1 l l + 1 l + 1 × 1 + α + O ΔcPE
3

(21)

ρlm
2 = 2χ 1 − χ

Apr2 × 1 + α + O ΔcPE
3

(22)

ulmρlm = ΔcPEχ 1 − χ
r l + 1 l (23)

Where the softening constant

α = ApΔcPE
2 κχ 1 − χ
2kBT

l − 1 l + 2
l + 1 l (24)

is defined for convenience, as it arises frequently.

A bilayer with a symmetric or asymmetric mixture of lipids (with unequal spontaneous 

curvatures) will experience apparent softening according to

κapparent = κ 1 − α (25)

Note that the fraction depending on l goes to one rapidly, giving the diffusional softening for 

a planar system [11, 20]. This assumes that both leaflets contain the mixture χ = ρAp.
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Langevin equations model the kinetic relaxation of coupled membrane undulations and lipid 

redistribution. They are:

∂ulm t
∂t = − Γ l κ l − 1 l + 2 l l + 1 ulm − 1

2ApΔcPEκ l2 + l − 2 rρlm

+ 2Γ lkBTξ t
(26)

∂ρlm t
∂t = − D

kBT
ApkBTr2ρlm

2χ 1 − χ − 1
2ApΔcPEκ l2 + l − 2 rulm + 2Dξ t (27)

where ξ t  describes a stochastic process:

ξ(t) = 0
ξ(t)ξ t′ = δ t − t′ (28)

Note that when ulm t  and ρlm t  are determined numerically below, ξ t  is simulated by 

drawing random numbers from a normal distribution with zero mean and variance Δt, where 

Δt is the time-step. In Eq. 26, Γ l describes the hydrodynamics associated with the membrane 

interacting with the solvent, and therefore depends on the solvent viscosity.

Γ l = 1
ηr2

l l + 1
2l + 1 2l2 + 2l − 1 (29)

In Eq. 27, D:

D = D0χ 1 − χ
Apr4 2l l + 1 (30)

is chosen to give the appropriate diffusion time-scale. The symbolically-simplified system of 

two over-damped harmonic oscillators, coupled together:

dulm

dt = − kℎℎulm + kℎpρlm

dρlm

dt = − kppρlm + kpℎulm .
(31)

Here kℎℎ and kℎp is proportional to η, while kpℎ and kpp are proportional to D. The sign of kℎp

is positive indicating that amplitude in ρlm amplifies ulm; this choice implies that curvature is 

measured in the sense of the upper leaflet; positive ρlm and positive c0 imply that ulm increases. 

This relationship is reversed in the lower leaflet (positive ρlm implies the lipid density is 

decreased in the lower leaflet).

Were curvature and diffusion independent, the two processes would have relaxation 

timescales:
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τm = r3η
κ

l2(l + 1)2(l − 1 l + 2
2l + 1) 2l2 + 2l − 1

τp = r2

D0

1
l l + 1

(32)

When diffusion is slower than shape fluctuations kpp ≪ kℎℎ and the impact of coupling to 

the density depends on kℎp × kpp as the density slowly impacts ulm. The time autocorrelation 

function is:

ulm t ulm 0 = A+e −k+t + A−e −k−t (33)

with decay constants

k± = 1
2 kℎℎ + kpp ± kℎℎ

2 − 2kℎℎkpp + kpp
2 + 4kℎpkpℎ (34)

and time-scales

τ±, l = k±
−1 . (35)

For the purpose of interpreting the different time-scales, consider τ+ as the fast membrane 

relaxation time-scale and τ− as the slower diffusion time-scale. A± are the amplitudes of each 

exponential.

With kpp ≪ kℎℎ and kpℎ small, to first order in the diffusion constant these rates are:

k+ = kℎℎ − kℎpkpℎ

kℎℎ
= κ

r3η
(l − 1)l2(l + 1)2(l + 2)
(2l + 1) 2l2 + 2l − 1 r3 − αD0l(l + 1)

r2 + O D0
2

k− = kpp − kℎpkpℎ

kℎℎ
= D0l(l + 1)

r2 (1 − α) + O D0
2

(36)

The rates are both decreased by the coupling. The amplitudes associated with each 

exponential decay are

A+ = 1 − α
A− = α (37)

where the autocorrelation function is normalized to be 1 at t = 0.

B. GUV microscopy

GUVs were prepared by the electroformation method as it is described previously [27, 

28]. Briefly, pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) (Avanti 

Polar Lipids, Germany) or a mixture of POPC and 40 mol% 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE) (Avanti Polar Lipids, Germany) were dissolved in chloroform 

to a final concentration of 4 mM. Then, 10μL of the lipid solution was spread as a 

thin film on a pair of indium-tin oxide (ITO)-coated glass plates (PGO-GmbH, Iserlohn, 
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Germany), which are electrically conductive. Afterwards, they were dried under a stream 

of Nitrogen and placed in a desiccator for 2 h to evaporate the organic solvent. A Teflon 

spacer with 2 mm thickness was sandwiched between the two ITO glasses (conducting 

sides facing each other) to form a chamber. The chamber was filled with 20 mM sucrose 

solution and connected to a function generator (Agilent, Waldbronn, Germany). To initiate 

the electroswelling process, a sinusoidal alternating current (AC) electric field at 10 Hz 

frequency with a 1.6 V (peak to peak) amplitude was applied for 1 hour. The obtained 

vesicles were harvested from the chamber and used freshly within 24 h after preparation. 

For fluctuation spectroscopy, the vesicle suspension was 4-fold diluted in 22 mM glucose. 

The osmolarity of the sugar solutions was adjusted with osmometer (Osmomat 3000, 

Gonotec, Germany). The vesicles were additionally deflated before imaging by leaving 

the observation chamber open for 5 min to let water evaporate. Membrane fluctuations 

were observed under a phase contrast mode of an inverted microscope, Axio Observer 

D1 (Zeiss, Germany), equipped with a Ph2 40 × (0.6 NA) objective. High speed video 

recordings were performed with a Pco.Edge camera (PCO AG, Kelheim, Germany). The 

image acquisition rate was set to 100 frames per second (fps) at exposure time of 200 ps. 

To prevent correlated images, statistics were averaged for every 4th frame. Only defect-free 

quasi-spherical vesicles, 8 − 21μm in radius and with low tension values 10−7 − 10−9 N m−1 

were analyzed. A set of 21000 images (3 × 7000 frames with 3 min gap between each 

recording sequence) were acquired for each vesicle. All experiments were performed at 

25°C. The vesicle contour was detected through the lab owned software [29]. This included 

software for the construction of spatial and temporal correlation functions to characterize 

the shape fluctuations of the membrane. Vesicle contours were detected through the Viterbi 

algorithm. The amplitudes were fit with the Levenberg-Marquardt algorithm for statistical 

analysis and characterization of κapparent. A χ2 test was applied to determine the range of 

modes included, with values in the range of 0.8–1.2.

C. Simulation

Solving Eqs. 26 and 27 numerically for small discrete time increments leads to a time-series 

for the membrane and distribution modes. The amplitudes of undulations are projected into 

the equatorial plane

νn = ∑
l = n

lmax

ulnP ln cos π/2 Nln (38)

where, P ln are the associated Lengendre polynomials and Nln = 2l + 1 l − n !/4π l + n ! is 

a normalization factor. Four sets of simulations using parameters to reflect the experiments 

performed were done, values are in Table I. The time-step is determined by the fastest 

membrane undulation mode Δt ≪ τm,min .

The undulation time autocorrelation function νn t νn 0  is calculated from the time-series 

of membrane undulations. This is related to the autocorrelation function of the vesicle 

through the projection of the average amplitudes
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νn t νn 0 = ∑
l = n

lmax

uln t uln 0 P ln cos π/2 Nln
2

(39)

= ∑
l = n

lmax

uln
2 P ln cos π/2 Nln

2e−t/τl (40)

This can be fit with the analytical expression derived above in order to extract the softening 

factor.

An example correlation function is shown in Fig. 2, where a single short time simulation 

spectrum (dashed lines) is compared to the average of three simulations (solid lines). 

Obviously, the single simulation spectrum contains a lot of noise. The experimental spectra 

are also overlaid with noise. For this reason, we average over three simulations to decrease 

the noise in the simulation spectrum. This allows for the determination of fitting parameters 

that can be used with experiment.

D. Fitting experimental and simulation auto-correlation functions

Auto-correlation functions are fit using a functional form that replicates the theoretical 

dynamics implied by Eqs. 36 and 37. These relations govern the dynamics of the complete 

SH, yet the functional form must be for the projection into the plane, just as the simulations 

replicate the observable of the GUV microscopy.

Auto-correlation functions for each vesicle projection are fit by a function

fn t = wfast δ t + Nauto, n ∑
l = n

lmax

∣ P ln cos(π/2)Nln
2 × w+exp − t

τ+, l
+ w−exp − t

τ−, l
, (41)

where δ t  accounts for fast stochastic experimental noise, τ+, l and τ−, l are the membrane-

dominated and diffusion-dominated relaxation times, respectively (Eqs. 35 and 36) while the 

w constants are weights:

w+ = A+ 1 − wfast (42)

w− = A− 1 − wfast (43)

such that (with A+ + A− = 1) the weights sum to one. The constant

Nauto , n = ∑
l = n

lmax

∣ P ln cos π/2 Nln
2 −1

(44)

normalizes the auto-correlation function. The diffusion constant D, bending modulus κ, 

difference in spontaneous curvature ΔcPE are shared parameters for the set of autocorrelation 
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functions. Additionally, a constant modeling the magnitude of unresolvable fast (below 0.01 

seconds) noise wfast is introduced for each correlation function.

Note that n denotes the integer mode of the projected spherical harmonic, which does not 

decay with a single timescale even absent particle coupling. Instead, it reflects the relaxation 

of spherical harmonics with l ≥ n. However, the majority of the amplitude will be dominated 

by the lowest mode spherical harmonic with l = n. Therefore, we attach the wavenumber 

q = n
R  to describe autocorrelations of νn, expecting the dynamics of modes with similar q but 

with varied n on vesicles of varied R to have similar kinetics. We use q to define the range 

of modes appropriate for fitting with the above theoretical kinetics, as well as to shift the 

weight bye wq of autocorrelation functions in χ2 to higher q. With their fast relaxation times, 

autocorrelation functions at higher q have compressed time domains and thus contribute 

weakly to χ2.

Optimal parameters are found by minimizing

χ2 = ∑
i

wq ∑
t = 0

t < tmax, q

fn, i t − νn, i t 2
(45)

where the sum is over all autocorrelation functions for a vesicle set with q such that 

qmin < q < qmax. Here tmax, q depends on q. The time-domain is chosen in terms of n multiples of 

the membrane relaxation time, tmax, q = nτm.

We use a sum of exponentials, one with τm and one with τp. The difference between these 

mechanisms is their q dependence (q−3 vs. q−2). Practically, we fit the data with the bending 

modulus and diffusion constants as two adjustable parameters. In the two-parameter fit each 

mode has an additional parameter: the weight of auto-correlation that is assigned to the 

diffusion mechanism.

III. RESULTS AND DISCUSSION

The diffusional softening mechanism derived is tested on both simulation and GUV 

fluctuation data by fitting fluctuation autocorrelation functions to the model (Eq. 41). Fitting 

yields the apparent spontaneous curvature difference ΔcPE , intrinsic bending rigidity κ , 

and lipid diffusion constant D , extracted purely from kinetics. Typically, κapparent (equal to 

1 − α κ) would be determined from the average fluctuations νn
2 . In addition to the kinetic 

analysis that determines κ and ΔcPE and thus implies κapparent, fluctuation analysis applied to 

determine κapparent is shown below.

A. Apparent bending rigidity from GUV fluctuations

The classic GUV fluctuation experiment extracts the bending modulus from equilibrium 

fluctuations νn
2  :
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κapparent

kBT =
∑l = n

lmax P ln cos π/2 Nln
2

l + 2 l − 1 l l + 1 + σ
νn

2
(46)

The bending modulus and tension are fit as in Ref. [29]. Following determination of 

each individual vesicle κapparent by fluctuation analysis, two sets of similar vesicles were 

determined, one for each composition. The range in κapparent for inclusion into the sets was 

determined by sorting the vesicles according to κapparent and selecting a range with minimal 

variation in κapparent. A set of GUVs with similar apparent bending modulus were selected 

for analysis, one for PE/PC (8 vesicles with κapparent  from 19.59 to 21.28 kBT  with mean 

20.27 ± 1.18 kBT ) and one for POPC (nine vesicles with κapparent from 26.01 to 28.21 kBT
with mean 26.69 ± 1.86 kBT ). The rationale is that variations in bending modulus, for 

whatever reason, would imply a variation in relaxation timescale — although the timescales 

would still be well separated. Averaging over all the GUVs, the κapparent  for PE/PC was 

21.74 ± 2.52 kBT  and for POPC was 28.24 ± 3.19 kBT , which is shown in 3.

B. Kinetic fits to simulation

Fitting the simulation data validates the fitting software and underlying approach. 

Four simulations were run, with ΔcPE = 0, 0.14, 0.28, 0.34 nm−1 , κ = 33.78 kBT , and 

D = 8 μm2/s. The bending modulus is overestimated slightly versus the input parameter 

33.78 − 36.49 kBT . The diffusion constant is 8 μm2/s within one standard error 

< 0.25 μm2/s . Extracted spontaneous curvatures are slightly overestimated: {0.02,0. 16, 

0.30, 0.36} ±0.003 nm−1, in each case 0.02 nm−1 too high.

The autocorrelation function for each in-plane projected mode is fit to its model kinetics 

(Eq. 41). Averaging multiple autocorrelation functions together (for modes with similar 

dynamics) illustrates the separate undulation and diffusion timescales better than noisy 

individual fits. Average autocorrelation functions for three q-ranges are shown in Fig. 4, as 

well as the averages for the fits. The fit curves shown are solved for the ΔcPE = 0.28 nm−1 data 

set, adjusting single values of κ, D, and c0 applicable to all fit curves for a data set. For the 

simulation, fast noise is set to zero as this term only models experimental noise. Error bars 

are computed by statistical analysis of the correlation functions, assuming the same kinetics.

The difference between the red (light gray) and black curves at long time illustrates the 

effect of curvature-coupled lipid diffusion on the undulation relaxation timescale. The 

agreement of the fits and input model parameters indicates that the fitting procedure is 

robust for simulation data with the same information content as the experiment.

C. Kinetic fits to GUV microscopy

Average autocorrelation functions for the same three q-ranges above are now shown in Fig. 5 

for the undulations recorded by GUV microscopy, as well as the averages for the fits. While 

like the simulations the single fit shares mechanical parameters between auto-correlation 

functions, now each auto-correlation function has its own parameterization of the the fast 
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noise. Before plotting, the fast noise was subtracted from the autocorrelation function, the 

average was computed, and, finally, renormalized.

Fitting the mechanical parameters of the PE/PC mixture yields κ = 29.90 ± 1.01 kBT , 

D = 8.2 ± 0.4μm2/s, and ΔcPE = 0.340 ± 0.01 nm−1. For the fit to POPC, κ = 26.35 ± 0.85 kBT , 

D = 1.1 ± 0.2 μm2/s, and ΔcPE = 0.16 ± 0.007 nm−1. Note that for the pure POPC GUVs, D
and ΔcPE should not be part of the mechanism, and therefore, ΔcPE should be zero with D
unresolvable. We believe that, for POPC, these values are indicative of “over-fitting”, that is, 

the use of nonsensical parameters that fit stochastic error in the experiment and systematic 

error in the model. The fits indicate that, in contrast to κapparent , κ is similar for the PE/PC and 

POPC samples. Furthermore, the difference in ΔcPE for the two samples compares well to the 

expected spontaneous curvature of DOPE (−0.34 nm−1 [30]) and POPC (−0.02 nm−1 [31]).

If the whole range of available GUVs were selected for analysis, the average κ for POPC 

would be 32.095 ± 1.18 kBT  and 30.07 ± 1.52 kBT  for PE/PC. Spontaneous curvatures were 

similar to the reduced set (0.18 ± 0.01 nm−1 and 0.30 ± 0.007 nm−1 for POPC and PE/PC, 

respectively).

The fit results converge for the experiment when tmax, q is sufficiently large (above 30 times τp), 

and for qmax greater than 1 μm−1. Sensitivity of c0 to tmax, q and qmax are shown in Figs. S3 and S2 

of the Supplemental Material [32].

The fit to the pure POPC shows slow timescale relaxations; yet these are inconsistent 

with diffusional softening. Foremost, the apparent diffusion constant extracted 1.1 μm2/s
is inconsistent with lipid diffusion, which is consistently measured to be much larger (ca. 

8 μm2/s and modestly reduced with cholesterol in disordered phases [33–36]). That is, the 

timescale is unlikely to be due to a contaminant or oxidated lipid. The timescale appears 

too small to be a result of lipid flipflop, whose characteristic timescale is on the order of 

hours [37]. Although the mechanism for the small amplitude slow relaxation in pure POPC 

is unknown, the effect is larger in PE/PC. While ΔcPE for PE/PC and POPC (0.340 nm−1 and 

0.16 nm−1) appear comparable, the strength of the effect goes as ΔcPE
2 , and thus is over four 

times larger for PE/PC.

D. Implication of diffusional softening

Fitting the distribution of undulation magnitudes is sensitive to κapparent. extracts κ, D and ΔcPE
2 . 

As presented here, κ only accounts for diffusional softening; structural dynamics that couple 

to curvature at faster timescales affect κ.

Kinetic fitting of GUVs demonstrates that the PE/PC mixture has κ, D and ΔcPE consistent 

with previous measurements of spontaneous curvature [30] and diffusion [34], as well as a 

minimal difference if any, for κ relative to POPC. That is, the larger and somewhat slower 

undulations of the PE/PC mixture are consistent not with a change in the underlying softness 

of the bilayer, but rather through the coupling of the spontaneous curvature of DOPE to 

dynamic undulations.
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Separating mechanistic contributions to κapparent is critical for developing a complete model 

of the membrane, including its equilibrium and non-equilibrium relaxation behavior. In the 

absence of the model of diffusional softening, extrapolating κapparent to 100% DOPE yields, 

relative to pure POPC, an extremely small value for pure DOPE, ca. 10.64 kBT . In contrast, in 

the diffusional softening model, κ depends weakly on DOPE fraction. Note that while pure 

DOPE does not readily form lamellar phases at this temperature, its bending modulus in 

the hexagonal phase is 22 − 26 kBT , depending on the incorporation of interstitial tetradecane 

[30].

The principal indication of diffusional softening is the long-timescale auto-correlation of 

the undulation amplitude. The initial fast undulation kinetics cannot be used reliably to 

determine κ; the undulation rate k+ is reduced by coupling to diffusion (by ατp
−1). The impact 

of this “friction” is reduced at high q as τp grows relative to τm.

E. GUV relaxation kinetics as a probe for structural heterogeneity

Any structure with curvature coupling different from the bulk will influence the magnitude 

and kinetics of GUV fluctuations. Thus, in theory, kinetics can be used to infer the dynamics 

and coupling strength of complex structures such as nanodomains and lipid multimers. 

Coupling of GM1 to curvature is a plausible explanation for the dramatic softening of 

POPC/GM1 mixtures [38], where at mol fractions less than 10% GM1 the bending modulus 

is less than 25% of that of pure POPC. Such softening could indicate that size Ap  and/or 

coupling strength ΔcPE  of the GM1-enriched structural unit exceeds that of a typical lipid. 

The proximity of the gel/fluid transition suggests the possibility of curvature-sensitive GM1 

multimers.

Experiments clearly indicate liquid ordered domains have increased κ compared with 

disordered phases [7]. The magnitude of the effect is likely sufficiently large that the 

linearized treatment of the coupling α is inadequate. For stiff domains that couple strongly to 

curvature, α quickly becomes larger than one, indicating a breakdown in the theory. Indeed 

softening is non-linear above 5 mol% GM1 in POPC.

IV. CONCLUSION

The dynamic coupling of the lateral distribution of curvature sensitive lipids to membrane 

undulations leads to diffusional softening of the membrane [12, 15, 18, 21]. The undulation 

autocorrelation function implies the intrinsic bending rigidity of the membrane, the diffusion 

constant of the underlying lipids, and the magnitude of the spontaneous curvature difference 

(through the timescale). The intrinsic bending rigidity of the membrane determined from the 

kinetics is related to the apparent bending rigidity determined from the fluctuation spectrum 

through the softening factor. The experiment and model corroborate a similar experiment on 

membrane nanotubes by Bashkirov et al [21], in which DOPE also softened a majority PC 

bilayer according to Eq. 25.

A key factor of the diffusional softening mechanism is how coupling of undulations 

to diffusion acts as a “friction”. The impact of this force depends on q. The response 
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of membrane undulations to this frictional force is observed in the relaxation kinetics 

of membrane undulations. Membrane viscosity [39] and interleaflet friction [40, 41] 

also influence membrane undulation kinetics at shorter timescales. Understanding how 

undulation kinetics is modified by these terms has proved crucial for understanding the 

fine mechanisms of membrane shape dynamics [42].

It is critical to understand the extent of this mechanism when inferring the bending modulus 

of complex mixtures. For example, conflicting results have recently been published for the 

bending modulus of cholesterol in DOPC. Neutron spin-echo experiments, which probe 

relaxation times of bilayers below the timescale of diffusion, indicate the bilayer is stiffer 

[43]. Yet multiple techniques that probe equilibrium fluctuations have shown that κapparent

is unchanged [8, 19, 29, 44]. Hexagonal phase experiments indicate that cholesterol will 

have a high negative spontaneous curvature in fluid bilayers [30]. Accepting the diffusional 

softening mechanism, cholesterol is expected to soften a DOPC bilayer, in the absence of 

a stiffening effect. Note however, that to fully resolve the reported discrepancy, membrane 

viscosity contributions in time-correlation analysis should be interrogated; recent analysis 

indicates that viscosity affects a broader array of undulations of smaller liposomes than 

previously anticipated, suggesting another possible change in the interpretation of spin echo 

experiments [39].

GUV fluctuations suggest that cholesterol at 10 mol% reduces the κapparent of SOPC, while 

increasing κapparent at higher concentrations [45]. X-ray derived data contradicts this [44]. 

In either case the effect is sufficiently small as to be difficult to statistically distinguish. 

Hexagonal phase experiments with variable osmotic stress (a technique for which lateral 

redistribution is irrelevant) indicate cholesterol stiffens DOPC and DOPE somewhat. 

Considering diffusional softening, it is possible that cholesterol is both stiffening the 

underlying κ while lowering κapparent such that the change is minimal. Interpreting neutron spin 

echo experiments [46] is challenging [47]. Indeed other interpretations of the discrepancy 

between equilibrium and kinetic techniques are plausible, such as cholesterol-driven changes 

in the neutral surface of bending or the area compressibility independent of the bending 

modulus [48]. This case illustrates the importance of deducing the molecular mechanism of 

changes in bilayer stiffness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1: 
A phase contrast screenshot of a quasi spherical GUV composed of 40 mol% DOPE and 

60 mol% POPC. The vesicle was prepared in 20 mM sucrose and diluted in 22 mM 

glucose. The scale bar is 10 μm. Zooming in a patch on the vesicle can be considered planar. 

Consider the green (light gray) lipid to have more positive spontaneous curvature than the 

blue (darker gray). Stochastic co-localization of the green (light gray) lipid stimulates an 

undulation that adapts quickly (at the illustrated wavelength with relaxation time: τm). Over 

time, diffusion relaxes the lateral distribution τp . The net effect is that the bilayer is softer 

both in appearance and practice. These fluctuations can be seen in S1 of the Supplemental 

Material.
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FIG. 2: 
An example of autocorrelation functions from simulation (for q = 0.515 μm−1). Solid lines 

are averaged over three runs and dashed lines are for a single run. The shaded region is the 

standard deviation of the average. Here κ = 33.8 kBT  and D = 8 μm2/s.
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FIG. 3: 
Bending rigidity of membranes made of pure POPC (100 mol%) and DOPE:POPC 40:60 

mol%. Gray diamonds indicate measurements on individual GUVs. Mean and standard 

deviation values are shown to the right.
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FIG. 4: 
The average of the autocorrelation νq t νq 0  over similar modes for the simulation (solid) 

and fits (dashed). POPC is colored in black. The ΔcPE = 0.28 nm−1 is colored red. The shaded 

regions indicate two standard errors from the simulation obtained by averaging over similar 

modes. The label at t = 0.2 s on all three plots is shown in bold for a common reference. Here 

κ = 33.8 kBT  and D = 8 μm2/s.
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FIG. 5: 
The average of the autocorrelation νq t νq 0  over similar modes for the experiment (solid) 

and fits (dashed). POPC is colored in black. The DOPE/POPC mixture is colored red. Filled 

curves indicate two standard errors from the experiment obtained by averaging over similar 

modes.
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Table I:

Simulation parameters

Spontaneous Curvature, ΔcPE nm−1 0.0 0.140 0.280 0.340

Surface Coverage, χ N/A 0.4

Bending Rigidity, κ (units of kBT ) 33.78

Diffusion Constant, D μm2/s N/A 8.0

Viscosity, η Pa s 8.9 × 10−4

Area per Lipid, Ap nm2 0.634
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