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ABSTRACT
The role of diet and the gut microbiome in the etiopathogenesis of irritable bowel syndrome (IBS) is 
not fully understood. Therefore, we investigated the interplay between dietary risk factors and gut 
microbiota in IBS subtypes using a food frequency questionnaire and stool metagenome data from 
969 participants aged 18–65 years in the ZOE PREDICT 1 study, an intervention study designed to 
predict postprandial metabolic responses. We identified individuals with IBS subtype according to 
the Rome III criteria based on predominant bowel habits during symptom onset: diarrhea (i.e. looser), 
constipation (i.e. harder), and mixed. Participants with IBS-D (n = 59) consumed more healthy plant- 
based foods (e.g. whole grains, leafy vegetables) and fiber, while those with IBS-C (n = 49) tended to 
consume more unhealthy plant-based foods (e.g. refined grains, fruit juice) than participants without 
IBS (n = 797). Microbial diversity was nominally lower in patients with IBS-D than in participants 
without IBS or with IBS-C. Using multivariable-adjusted linear regression, we identified specific 
microbiota variations in IBS subtypes, including slight increases in pro-inflammatory taxa in IBS-C 
(e.g. Escherichia coli) and loss of strict anaerobes in IBS-D (e.g. Faecalibacterium prausnitzii). Our 
analysis also revealed intriguing evidence of interactions between diet and Faecalibacterium praus
nitzii. The positive associations between fiber and iron intake and IBS-diarrhea were stronger among 
individuals with a higher relative abundance of Faecalibacterium prausnitzii, potentially driven by 
carbohydrate metabolic pathways, including the superpathway of β-D-glucuronide and 
D-glucuronate degradation. In conclusion, our findings suggest subtype-specific variations in dietary 
habits, gut microbial composition and function, and diet-microbiota interactions in IBS, providing 
insights into potential microbiome-informed dietary interventions.

ARTICLE HISTORY 
Received 30 June 2023  
Revised 6 September 2023  
Accepted 15 September 2023 

KEYWORDS 
Fiber; functional bowel 
disorder; diarrhea; microbial 
enzymes; glycan metabolism

Introduction

Irritable bowel syndrome (IBS) is a prevalent chronic 
disorder affecting approximately 1 in 10 people 
globally.1 IBS is characterized by recurrent abdominal 
pain and changes in stool frequency and form. The 
impact of IBS extends beyond its symptoms, leading 
to increased healthcare resource utilization and 
impairment of the overall quality of life among indi
viduals with IBS.

IBS can be classified into subtypes based on the 
predominant bowel habits during symptom onset: 

constipation (IBS-C), diarrhea (IBS-D), mixed (IBS- 
M), and unclassified (IBS-U). These subtypes are 
associated with distinct symptom profiles, treatment 
targets, and inflammatory biomarkers,2,3 suggesting 
a heterogeneous etiology. Although the exact patho
physiology of IBS is largely unknown, abnormalities 
in intestinal motility, permeability, and visceral hyper
sensitivity are potential contributors. Moreover, evi
dence for patient-preferred treatment approaches, 
such as dietary modification remains limited.4 While 
a diet high in fructose and other short-chain 
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fermentable carbohydrates may worsen IBS 
symptoms,5,6 soluble fiber may represent an effective 
treatment option.7

Recently, the gut microbiome, which reflects the 
host genetics, diet, and health, has been suggested to 
play a potential role in IBS.8–11 Studies transplanting 
the fecal microbiota from IBS patients into gnotobio
tic murine models showed that IBS microbiota drove 
increased pain sensation, innate immune activation, 
and altered transit time.10,11 Additionally, probiotic 
supplementation has been shown to have small 
effects on managing IBS symptoms in randomized 
controlled trials.12 However, the gut microbiota var
iations in IBS subtypes remain underexplored, and 
findings from human gut microbiome studies in IBS 
have been inconsistent,8,9,13,14 likely due to modest 
sample sizes, lack of dietary information, differences 
in microbial profiling techniques, and differentiation 
of IBS subtypes.

To address these limitations, we utilized gut meta
genomic data and extensive dietary data from the 
ZOE PREDICT 1 study to examine the associations 
between habitual diet, gut microbiota, and IBS 
subtypes.

Resutls

Among the 969 participants, we identified 172 
(17.8%; IBS-C: n = 49, IBS-D: n = 59, IBS-M: n =  
64) participants who had IBS symptoms, which is 
comparable to the prevalence of IBS reported in the 
general UK population (12%).15 We did not iden
tify significant differences in BMI, education, 
smoking status, antibiotic use, and probiotic use 
among participants with and without IBS, whereas 
those with IBS tended to be younger and more 
likely to be women (Table 1).

Habitual dietary intakes

Compared to those without IBS, participants with 
IBS-D tended to have a higher intake of healthy 
plant-based foods (e.g., whole grains, leafy vegeta
bles, legumes, nuts, and seeds) and iron, and 
a lower intake of maltose and lactose (Figure 1a, 
Supplementary Table S1). In contrast, participants 
with IBS-C tended to consume unhealthy plant- 
based foods (e.g., refined grains, fruit juice, and 
potato) than those without IBS.

Table 1. Participants characteristics.
IBS subtype

Constipation Diarrhea Mixed No IBS q-value

(N = 49) (N = 59) (N = 64) (N = 797)

Age (year) 44.5 (13.7) 42.9 (12.3) 41.3 (11.3) 46.1 (11.9) 0.03
Female, N (%) 45 (91.8%) 55 (93.2%) 54 (84.4%) 547 (68.6%) 0.003
BMI (kg/m2 25.8 (6.82) 26.9 (6.08) 26.3 (5.47) 25.5 (4.82) 0.48
Education, N (%) 0.45
Low (level 1–2) 6 (12.2%) 5 (8.5%) 8 (12.5%) 97 (12.2%)
Middle (level 3–4) 8 (16.3%) 10 (16.9%) 15 (23.4%) 225 (28.2%)
High (university or postgraduate) 34 (69.4%) 44 (74.6%) 41 (64.1%) 466 (58.5%)
Missing 1 (2.0%) 0 (0%) 0 (0%) 9 (1.1%)
Menopausal status among women, N (%) 0.003
Pre-menopausal 24 (49.0%) 36 (61.0%) 39 (60.9%) 260 (32.6%)
Current 2 (4.1%) 7 (11.9%) 3 (4.7%) 43 (5.4%)
Post-menopausal 14 (28.6%) 8 (13.6%) 10 (15.6%) 173 (21.7%)
Missing 5 (1.2%) 4 (6.8%) 2 (3.1%) 71 (8.9%)
Menopausal Hormone Therapy, N (%) 6 (12.2%) 6 (10.2%) 10 (15.6%) 62 (7.8%) 0.24
Smoking status 0.15
Never 31 (63.3%) 47 (79.7%) 29 (45.3%) 478 (60.0%)
Past 15 (3.6%) 8 (13.6%) 29 (45.3%) 277 (34.8%)
Current 3 (6.1%) 4 (6.8%) 5 (7.8%) 40 (5.0%)
Missing 0 (0%) 0 (0%) 1 (1.6%) 2 (0.3%)
Antibiotic use in past 3 months 0 (0%) 1 (1.7%) 3 (4.7%) 28 (3.5%) 0.60
Regular probiotic use 5 (1.2%) 2 (3.4%) 6 (9.4%) 49 (6.1%) 0.52
Healthy eating index 59.6 (8.88) 60.2 (10.4) 60.2 (9.47) 57.7 (10.7) 0.17
Total energy intake 1690 (524) 1600 (459) 1630 (475) 1740 (516) 0.17
Bristol stool chart, N (%) 0.003
Hard (type 1–2) 16 (32.7%) 0 (0%) 5 (7.8%) 54 (6.8%)
Loose (type 6–7) 1 (2.0%) 11 (18.6%) 2 (3.1%) 42 (5.3%)
Normal (type 3–5) 31 (63.3%) 48 (81.4%) 55 (85.9%) 677 (84.9%)
Missing 1 (2.0%) 0 (0%) 2 (3.1%) 24 (3.0%)

Values are shown as mean (SD) unless otherwise indicated. We used the Kruskal-Wallis test and Chi-square test to assess differences in IBS subtypes 
for continuous and categorical variables, respectively. P-values were adjusted for multiple testing using the Benjamini-Hochberg method to obtain 
q-values.
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Gut microbial taxonomic and functional features

According to the permutational multivariate ana
lysis of variance (PERMANOVA), the overall gut 
microbial community differed slightly across IBS 
subtypes (Figure 1b, p-value = .01), although IBS 
subtype only explained a small portion of the var
iation in the overall gut microbiota composition 
(R2 = 0.5%). The gut microbiome alpha-diversity 
was different across IBS subtype (Figure 1c, 

Kruskal-Wallis test: p-value = .0016), with 
a slightly lower alpha-diversity in IBS-D as com
pared to IBS-C subtype and non-IBS. Other diver
sity metrics showed similar differences across IBS 
subtype (Supplementary Figure S1).

Among the 170 gut taxa, 12 taxa were associated 
with IBS subtypes [Benjamini-Hochberg adjusted 
p-value < .10, Figure 1d, Supplementary Table S2], 
after adjusting for a wide range of host factors, 

Figure 1. Dietary intakes and gut microbial composition differed by IBS subtypes. (a) Individual nutrients and dietary patterns, 
standardized using z-score, were assessed using linear models adjusted for sex, age, education, smoking, menopausal status, 
menopausal hormone therapy, antibiotic use, probiotic use, BMI, and total energy intake. *Adjusted p-values <.10 using Benjamini- 
Hochberg method. (b) Between-person diversity was measured by Bray-Curtis dissimilarity and its difference by IBS subtype was 
assessed using PERMANOVA. Figure shows the first two axes of PCoA and numbers in parentheses represent the variance explained by 
each axis. (c) Within-person diversity was measured using Shannon index and its overall difference across IBS subtype was assessed 
using Kruskal-Wallis test. Pair-wise differences were tested using Wilcoxon rank sum test. **, p-value < .01; ***, p-value < .001. (d) 
Individual taxa were assessed using linear models adjusted for above covariates and diet quality. *Adjusted p-values < .10 using 
Benjamini-Hochberg method.
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including age, sex, education, and dietary quality. 
Compared to non-IBS, healthy commensal anae
robes were depleted in IBS-D, including 
Faecalibacterium prausnitzii and Firmicutes bacter
ium CAG 110. IBS-C was associated with an ele
vated relative abundance of opportunistic 
pathogens, such as Escherichia coli. The additional 
adjustment for the Bristol stool scale only slightly 
attenuated the results (Supplementary Table S3).

Among the 301 functional pathways, 30 path
ways were associated with IBS subtypes 
(Supplementary Figure S2, Supplementary Table 
S4). Compared to the non-IBS group, a few path
ways of amino acid biosynthesis, sulfur metabo
lism, and sugar degradation were depleted in IBS- 
D, including the superpathway of sulfate assimila
tion and cysteine biosynthesis and the fucose 
degradation pathway. In contrast, compared to 
non-IBS, a few energy metabolism pathways were 
enriched in IBS-C, including the superpathway of 
thiamine diphosphate biosynthesis II.

Strain-level analysis of gene families showed that 
some genomic regions of Alistipes putredinis (e.g., 
ABC-type multidrug transport system), Bacteroides 
vulgatus (transcriptional regulator), and 
F. praustnitzii (Class V aminotransferase) were 
negatively associated with IBS-D, and those of 
Clostridium comes (e.g., Class II aldolase/adducin 
family protein) were positively associated with IBS- 
C (Supplementary Figure S3–6). Many of the pro
teins containing these domains are part of carbo
hydrate metabolism, including glycogen 
phosphorylase from Class V aminotransferase16 

and L-fuculose phosphate aldolase from Class II 
aldolase/adducin family protein that is involved in 
fucose metabolism.17 The deoxyhexose sugar 
fucose is a common component of human gut 
mucosal surfaces and an important dietary nutrient 
in establishing healthy microbiota.18 Alterations in 
the fucosylation pattern are associated with infec
tion, intoxication, and inflammatory diseases, 
including Crohn’s diseases.19 There appeared to 
be no overall strain-level selective pressures that 
explain the variance in IBS subtypes, according to 
the phylogenetic logistic mixed model (data not 
shown).

Random forest classification showed that 
although outperformed by host factors, including 
diet, BMI, and probiotic use (Figure 2), gut 

microbial taxa and functional pathways showed 
moderate accuracy from machine learning models 
in differentiating IBS-D from IBS-C [Area under 
the curve (AUC): taxa = 0.71, pathway = 0.55, host 
factors = 0.57] or non-IBS (AUC: taxa = 0.67, path
way = 0.63, host factors = 0.80). The combination 
of host factors with taxa or pathway did not mate
rially improve the accuracy of prediction. Taxa and 
pathways identified in the random forest model 
overlapped with those identified in the linear 
regressions (Supplementary Figure S7, 
Supplementary Figure S8, Supplementary Figure 
S9), including the pathogenic E. coli in distinguish
ing IBS-C, and Firmicutes bacterium CAG 110 in 
distinguishing IBS-D.

Our results are comparable to those of previous 
studies (Figure 3).8,9,13 Our taxonomic-level para
meter estimates for IBS-C and IBS-D were moder
ately correlated with those in prior studies, whereas 
there was little agreement for IBS-M. The more 
consistent correlation for IBS-D (r: 0.43 vs. 0.34, 
p < .001 in both comparisons) compared to IBS-C 
(r = 0.15, p = .19 vs. r = 0.45, p < .001) is likely to be 
partly attributed to the rapid transit time in IBS-D. 
However, only 10–50% of our IBS-associated taxa 
were found to be associated with IBS in prior 
studies,8,13 including F. prausnitzii, E. coli, and 
Clostridium symbiosum, which could be due to 
differences in patient populations and definitions 
of IBS (Rome IV vs. Rome III). Additionally, 
a random forest model trained based on our data 
showed moderate performance in classifying IBS- 
C, IBS-D, and healthy controls in Mars et al. (IBS-C 
vs. no IBS: AUC = 0.56; IBS-D vs. no IBS: 0.70; IBS- 
C vs. IBS-D: AUC = 0.62).

Diet-microbiota interaction

Most IBS-associated taxa were correlated with IBS- 
associated dietary factors (Supplementary Figure 
S10). Healthy dietary factors, such as healthful plant- 
based diet index, vegetables, and magnesium, were 
negatively correlated with pro-inflammatory taxa, 
such as E. coli and Clostridium innocuum, and were 
positively correlated with probiotic anaerobes, 
F. prausnitzii and Agathobaculum butyriciproducens.

Our interaction analysis indicated that the associa
tions between a couple key IBS dietary risk factors and 
IBS-D were dependent on the relative abundances of 
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F. prausnitzii (Supplementary Table S5). The positive 
associations of fiber and iron intake with IBS-D were 
stronger when the relative abundance of F. prausnitzii 
was higher (Figure 4a). Among the IBS-D-associated 
pathways that contributed from F. prausnitzii 
(Supplementary Table S6), the superpathway of β- 
D-glucuronide and D-glucuronate degradation 
(GLUCUROCAT-PWY), D-galacturonate degrada
tion I (GALACTUROCAT-PWY), starch degrada
tion V, and superpathway of N-acetylglucosamine, 
N-acetylmannosamine, and N-acetylneuraminate 
degradation (GLCMANNANAUT-PWY) drove the 

modifying role of F. prausnitzii in IBS-D response to 
dietary fiber and iron (Figure 4b–e, Supplementary 
Table S7).

Secondary analyses

Analyses in women (Supplementary Figure S11, 
Supplementary Table S8–9) and in participants with
out multiply imputed dietary intake (Supplementary 
Table S10–11), though slightly attenuated, produced 
similar association of individual dietary factors (100% 

Figure 2. Random forest model classifying IBS subtypes according to gut microbial taxa, functional pathways, and host factors. (a) IBS- 
C, (b) IBS-D, and (c) IBS-M were distinguished from non-IBS group and (d) IBS-C was distinguished from IBS-D. A 5-fold cross validation 
approach was implemented, and the area under the curve (AUC) and 95% confidence intervals were estimated based on a 75/25 
random split of training and testing datasets, with 9999 resampling for the bootstrap distribution. A total of 768 taxa, 445 pathways, 
and 11 host factors (sex, age, education, smoking, menopausal status, hormone therapy, antibiotic use, probiotic use, BMI, diet quality, 
and total energy intake) were included.
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and 31% overlap, respectively), the overall gut micro
bial composition, and individual taxa (25% and 75% 
overlap, respectively) with IBS subtypes. The overall 
gut microbial community and alpha diversity were 
slightly different between participants without and 
without IBS when analyzed without subtype stratifi
cation (Supplementary Figure S12), with only 5 and 4 
taxa associated with IBS (Rome III criteria) and self- 
reported IBS diagnoses (Supplementary Table S12), 
respectively. There was little differences in the taxo
nomic profiles between participants with (n = 26) and 
without IBS-C (n = 128) among participants with 
frequent constipation (Supplementary Table S13), 
and between participants with (n = 24) and without 
IBS-D (n = 99) among participants with frequent 
diarrhea (Supplementary Table S14).

Discussion

In a well-characterized cohort of adults with whole 
gut metagenome data and comprehensive dietary 
assessment, we observed distinct habitual dietary 
intakes and gut microbiota variations according to 
IBS subtype. Compared to participants without 
IBS, participants with IBS-D had higher intakes of 
healthy plant-based foods (e.g., whole grains, whole 
fruits, vegetables, legumes), magnesium, and iron, 
and lower intakes of maltose and lactose, which 
were common triggers for IBS symptoms such as 

bloating and diarrhea.20 While IBS-C was asso
ciated with a slight increase in typically pro- 
inflammatory bacteria (e.g., Escherichia coli), IBS- 
D was associated with a loss of commensal, buty
rate-producing anaerobic bacteria (e.g., 
Faecalibacterium prausnitzii), explaining the over
all lower microbial diversity in IBS-D. Although 
outperformed by other risk factors, such as age, 
sex, and diet, as expected for the multifactorial 
etiology of IBS, gut microbial taxa and functional 
pathways were independent machine learning pre
dictors distinguishing participants with IBS-D 
from those with IBS-C or without IBS.

Our study also suggests that the gut microbiota 
could potentially modify the association between 
diet and IBS subtypes. Specifically, the positive 
associations between dietary fiber and iron intake 
and IBS-D were stronger when the relative abun
dance of F. prausnitzii was higher, which was 
potentially driven by several glycan metabolic 
pathways, including GLUCUROCAT-PWY and 
its key enzyme glucuronidase. Microbial glucur
onidase, which catalyzes the hydrolysis of β- 
glucuronide and can remove glucuronic acid 
from its conjugate with hydrophobic xenobiotics, 
thereby releasing xenobiotics into the gut lumen 
and affecting the activities and toxicities of var
ious xenobiotics and drugs.21 For example, 
microbial glucuronidase can reactivate the 

Figure 3. Taxonomic-level results were comparable with prior studies. (a) The correlation between parameter estimates for specific 
taxa-IBS associations between our study, Vich Vila et al.8 (results for IBS defined using self-reported Rome III questionnaire), and Jeffery 
and Das et al.13 (clinically identified IBS using Rome IV criteria) were assessed using Pearson correlation. (b) A cross prediction using 
random forest classification built upon our dataset (367 overlapping taxa) to distinguish IBS subgroups in Mars et al.9
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excreted metabolite of irinotecan, a chemotherapy 
drug for colorectal cancer, causing adverse gut 
responses such as diarrhea.22 Dietary fiber can 
reduce irinotecan toxicity partially through 
increased cecal butyrate levels.23 In turn, an ele
vated level of glucuronidase may diminish the 
benefits of fiber in IBS-D. Taken together, our 
findings add evidence to the subtype-specific 
microbiome-IBS associations and provide insights 
into microbiome-informed and subtype-specific 
dietary interventions for IBS.

Our results compare favorably with previous 
findings,8,9,13 with moderate correlations between 
parameter estimates for individual taxa and 
acceptable performance of between-study 
machine learning predictions, indicating potential 
generalizability. Our study showed similar 

findings in decreased overall microbial diversity 
and decreased relative abundance of the butyrate- 
producing F. prausnitzii in IBS-D.8,13,14 

F. prausnitzii is one of the most dominant anae
robes in the human gut and plays an important 
role in gut wellbeing, protecting against inflam
matory bowel disease and colorectal cancer, lar
gely due to its putative anti-inflammatory 
properties.24 Murine models showed that 
F. prausnitzii could restore the colonic serotonin 
levels to normal in chemical-induced chronic 
low-grade inflammation.25 Serotonin is a crucial 
neurotransmitter modulating gastrointestinal 
motility and nociception,26 both of which are 
involved in IBS pathophysiology. Specifically, 
a rodent IBS model demonstrated that a daily 
dose of F. prausnitzii A2–165 strain for 10 days 

Figure 4. The association between dietary fiber and IBS-D varied by the relative abundance of Faecalibacterium prausnitzii. Interaction 
between fiber (continuous variable in g/d) and F. prausnitzii (continuous variable in relative abundance) was assessed using a binomial 
model adjusted for sex, age, education, smoking, menopausal status, menopausal hormone therapy, antibiotic use, probiotic use, BMI, 
and total energy intake. For visualization, F. prausnitzii was categorized to quartiles of taxa relative abundance. (a) The probability of 
having IBS-D was estimated by quartiles of F. prausnitzii while keeping other covariates constant. P-value was adjusted for multiple 
testing using Benjamini-Hochberg method (q-value). Among metabolic pathways contributed by F. prausnitzii, (b) Superpathway of β- 
D-glucuronide and D-glucuronate degradation, (c) D-galacturonate degradation I, (d) starch degradation V, (e) Superpathway of 
N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation were the major pathways involved in driving the 
modifying role of F. prausnitzii in IBS-D response to dietary fiber. Interactions between fiber and each pathway, as well as each enzyme 
involved in the pathways, was tested in a binomial model adjusted for the above covariates. For visualization, stratified odds ratio (OR) 
and 95% confidence intervals were estimated for fiber-IBS-D associations according to the median relative abundance of pathways 
and enzymes. EC, enzyme commission number.
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could markedly reduce colonic hypersensitivity 
and strengthen the intestinal epithelial barrier,27 

implicating the possible use of F. prausnitzii as 
a treatment for IBS. Since butyrate can ameliorate 
inflammation and modulate visceral sensitivity,28 

selective loss of butyrate-producers may contri
bute to abdominal pain in patients with IBS. 
A randomized, placebo-controlled clinical trial 
has shown that microencapsulated sodium buty
rate can reduce pain during defecation in IBS 
patients.29 Additionally, the loss of beneficial 
anaerobes may partially contribute to the associa
tion we observed between healthy plant-based 
foods and IBS-D, since in the absence of 
microbes necessary for carbohydrate fermenta
tion, these typically beneficial foods may actually 
have negative impacts on health.30 For example, 
a recent study using colonic biopsies cultured ex 
vivo and an adult randomized controlled trial 
demonstrated that dietary β-fructan induced 
inflammation in patients with active inflamma
tory bowel disease who lack fermentative 
microbes.31

IBS-associated decreases in strictly anaerobic bac
teria and potentially increased inflammation may 
allow for the proliferation of non-fastidious, faculta
tive bacteria such as Escherichia coli, which was 
increased in the gut of our IBS-C patients. 
Moreover, we found that taxa that have been linked 
to colorectal cancer (e.g., Hungatella hathewayi and 
Eisenbergiella tayi)32,33 and the gut-brain axis (e.g., 
Parabacteroides johnsonii)34,35 were slightly increased 
in IBS-C. The enrichment of Parabacteroides has 
been correlated with decreased hippocampal function 
and alterations in gene expression in dopaminergic 
signaling and neurodegenerative disease in rats35 as 
well as increased plasma proline and depression 
scores in humans.34

The strengths of our study include the large 
sample size, the use of shotgun metagenomic 
sequencing data, and comprehensive measure
ments of participant characteristics, including diet
ary intake, enabling us to explore the complicated 
gut microbial composition and functions in IBS 
subtypes with high resolution and control for 
potential confounders.

One of the limitations of our study was its 
cross-sectional design. We were unable to discern 
causal mechanisms or disentangle any changes in 

diet and the gut microbiome following the pro
gression and variations of IBS symptoms.4 It is 
possible that the observed positive associations 
between plant-based foods and IBS-D could be 
partially due to adherence to dietary recommen
dations from health care providers in an effort to 
treat symptoms. Moreover, we could not distin
guish between the intake of soluble and insoluble 
fibers, which might have differential effects on 
IBS symptoms.7 Although we used a detailed 
questionnaire to assess IBS subtypes, which was 
more sensitive than self-reported physician diag
nosis of IBS, we did not have information on the 
severity or duration of IBS.

In summary, our findings suggest IBS subtype- 
specific variations in gut microbial composition, 
function, and diet-microbiota interactions, providing 
insights into potential biomarkers of IBS and micro
biome-informed personalized dietary interventions 
for IBS treatment. Longitudinal studies are warranted 
to confirm our results. Furthermore, a randomized 
controlled feeding trial may help unravel whether IBS 
patients have a differential response to dietary inter
ventions depending on their gut microbiome compo
sition and disease subtype.

Material and methods

Study population

The ZOE PREDICT 1 was a single-arm, single- 
blinded multinational intervention study 
(NCT03479866) conducted between June 5th, 
2018, and May 8th, 2019. The study enrolled 
a primary cohort (1,002 healthy adults) from 
London, UK, and a validation cohort (100 
healthy adults) from Boston, MA, USA. The elig
ibility criteria (e.g., aged 18–65 years) have been 
previously described.36 Ethical approval for the 
study was obtained from the Research Ethics 
Committee and Integrated Research Application 
System (IRAS 236,407) in the UK and from the 
institutional review board (Mass General 
Brigham IRB 2018P002078) in the US. The trial 
was conducted in accordance with the Good 
Clinical Practice and Declaration of Helsinki. 
Written informed consent was obtained from all 
the participants. In the current study, we 
included 969 UK participants who provided 
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stool samples and completed questionnaires dur
ing the baseline clinical visit.

Assessment of IBS symptoms

In the baseline survey, we asked the participants if 
they experienced symptoms consistent with Rome III 
for IBS. We asked participants if they experienced 
abdominal discomfort or pain, starting at least six 
months prior and occurring at least 3 days per 
month in the past three months, associated with at 
least two of the following symptoms: discomfort or 
pain related to defecation, altered defecation fre
quency, or altered stool consistency. The Rome III 
criteria have been shown to perform modestly in 
predicting the clinical diagnosis of IBS.37 

Participants were categorized by subtype using pre
dominant (≥25% of bowel movements) change in 
stool form when the abdominal discomfort or pain 
started: constipation (IBS-C) if they reported harder 
stools, diarrhea (IBS-D) if they reported looser stools, 
mixed (IBS-M) subtype if they reported both harder 
and softer stools, and unclassified (IBS-U) subtype if 
they reported none of these changes. Participants with 
IBS-U were subsequently excluded from the analysis 
because of the small sample size (n = 3). The partici
pants also reported whether they had ever been diag
nosed with IBS by a physician.

Baseline stool sample collection, metagenomic 
sequencing, quality control, and profiling

Sample collection and sequencing procedures have 
been reported in more detail elsewhere.38 

Specifically, participants self-collected stool sam
ples at home using the EasySampler collection kit 
(ALPCO). Samples were stored at ambient tem
perature until receipt in the laboratory, where 
they were homogenized, aliquoted, and stored at 
−80°C. The sample collection procedure was 
internally validated by testing different DNA 
extraction kits, storage conditions, and sequencing 
techniques.

Before metagenomic sequencing, a Fragment 
Analyzer (Agilent Technologies) was used to assess 
sample quality and quantity. For DNA fragmenta
tion, end-repair, and A-tailing, the NEBNext Ultra 
II FS DNA module (cat #E7810S/L) was used. For 
adapter ligation, the NEBNext Ultra II Ligation 

module (cat #E7595S/L) was used. Using the 
Illumina NovaSeq600 platform, libraries were 
sequenced for 300 bp paired-end reads and a 1.1  
nM library was used for flow cell loading. The 
NovaSeq control software NCS v1.5, Illumina data 
analysis pipeline RTA 3.3.5, and Bcl2fastq v2.20 
were used. A preprocessing pipeline (https:// 
github.com/SegataLab/preprocessing) was used 
for the quality control. Following the general 
guidelines,39 we performed taxonomic 
(MetaPhlAn v.3.0)40 and functional (HUMAnN 
v.3.0 and UniRef database release 2014–07)41 pro
filing using the bioBakery analysis environment. 
Reads aligned with MAPQ values of < 5 were fil
tered. A total of 1107 taxa 1001 pathways were 
discovered. The average number of species for 
individuals without IBS, with IBS-C, IBS-D, and 
IBS-M were 119 ± 17, 116 ± 20, 111 ± 17, and 115  
± 17, respectively.

We computed within-person diversity (alpha 
diversity) using the Shannon diversity index, 
Simpson’s diversity index, and richness, as well as 
between-person diversity (beta diversity) using 
Bray-Curtis dissimilarity and Jaccard distance.

Assessment of habitual diet

Habitual diet in the past year was assessed using the 
131-item European Prospective Investigation into 
Cancer and Nutrition (EPIC) food frequency ques
tionnaire (FFQ), which has been validated against 
pre-established biomarkers.42 Nutrient intakes 
were estimated using the FETA software (v2.53).43 

FFQs were excluded if > 10 food items were unan
swered and if the ratio of estimated total energy 
intake and participant’s basal metabolic rate esti
mated by the Harris Benedict equation was > 2SD 
away from the mean (<0.52 or > 2.58).44

Food categorization and the calculation of diet
ary indices have been described previously:38 

including the healthy food diversity (HFD) index, 
healthy eating index (HEI) 2010, plant-based diet 
index (PDI), and alternative Mediterranean diet 
(aMED) score.

Statistical analysis

To compare differences in participants’ character
istics and gut microbial alpha-diversity by IBS 
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subtype, we used the Kruskal-Wallis test for con
tinuous variables and the Chi-square test for cate
gorical variables. For gut microbial alpha diversity, 
pairwise comparisons between each group were 
performed using the Wilcoxon rank-sum test. We 
performed PERMANOVA using the vegan 
R package45 to assess whether microbial beta diver
sity differed by IBS subtype, which was visualized 
using principal coordinate analysis (PCoA).

We used linear regression with MaAsLin246 to 
identify individual dietary risk factors, taxa, and 
pathways associated with IBS subtypes after adjust
ing for the following self-reported risk factors 
selected a priori: sex, age, educational attainment, 
smoking, menopausal status, menopausal hormone 
therapy, antibiotic use in the past three months, 
regular probiotic use, body mass index, total energy 
intake, and overall diet quality assessed by the HEI 
2010 score (not adjusted for dietary risk factors). 
Dietary risk factors were standardized using 
z-scores. The taxa and pathway relative abundances 
were normalized by total sum scaling and log- 
transformed. After filtering those with low preva
lence (≤0.1) or low abundance (≤0.0001%), we 
analyzed 170 taxa and 301 pathways in linear 
regression. Continuous covariates were z-score 
standardized, with five participants (0.5%) missing 
BMI imputed with the median value. Missing diet
ary information among 71 (7.3%) participants was 
multiply imputed using the SAS PROC MI proce
dure (Markov Chain Monte Carlo method) based 
on IBS status, the above-mentioned covariates, as 
well as other participant characteristics, including 
physical activity, hypertension, hypercholesterole
mia, and multivitamin intake.

We conducted strain-level analysis using 
ANPAN (https://github.com/biobakery/anpan) to 
(1) identify gene families contributed by each 
taxon that were associated with IBS subtypes via 
logistic regression models adjusted for age and sex, 
and (2) assess whether the phylogenetic structure 
of each taxon was associated with IBS subtypes via 
logistic mixed models adjusted for age and sex, 
with the phylogenetic structure as the random 
effect. Gene families were filtered based on the 
initial gene prevalence [>5 and <;(N-5) positives 
per group], species prevalence, and final gene pre
valence (removing marginal genes that became 

almost constant). Phylogenies were estimated for 
each taxon from gene matrices using the ape 
package.

To investigate the potential interplay between 
diet and gut microbiota in IBS subtypes, we first 
examined the correlations between IBS- 
associated dietary factors and IBS-associated 
taxa using HAllA (v.0.8.20), a computational 
method for pattern discovery in high- 
dimensional datasets.47 We then selected corre
lated diet and taxa and tested their interactions 
(continuous variables) in each IBS subtype using 
a multivariable-adjusted binomial model. 
Furthermore, to identify the pathways underlying 
the diet-taxa interaction, we examined pathways 
contributed by each species associated with IBS 
subtypes via the linear models described above 
and examined the interactions between diet and 
these pathways as well as the involved enzymes. 
We excluded highly correlated pathways (Pearson 
correlation > 0.9) while keeping the most abun
dant one in each correlated cluster as 
representative.

We employed random forest analysis based on 
the scikit-learn Python package48 for the machine 
learning classification of IBS subtypes according to 
host factors (regression model covariates), gut 
microbial taxa, functional pathways, the combina
tion of host factors and taxa, and the combination 
of host factors and pathways. We implemented 
a 5-fold cross-validation approach and estimated 
the area under the curve (AUC) with 95% confi
dence intervals based on a 75/25 random split of 
training and testing datasets and 9999 resamples 
for the bootstrap distribution.

We compared our findings with those of pre
vious studies8,9,13 by testing the Pearson correlation 
between taxonomic-level parameter estimates and 
assessing the performance of a random forest 
model trained by our data in predicting IBS sub
types in Mars et al.9

To test the robustness of our findings, we 
conducted sensitivity analyses by (1) additionally 
adjusting for the Bristol stool scale to examine 
whether different stool consistency affect the 
results, (2) repeating the analyses in female par
ticipants (N = 701), (3) repeating the analyses in 
participants (N = 898) without imputation of 
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dietary information, and (4) analyzing IBS (with
out subtype stratification) and self-reported doc
tor diagnosis of IBS (n = 125) as secondary 
outcomes. Additionally, among participants 
with frequent constipation or diarrhea (hard/ 
lumpy or loose/mushy/watery stools ≥ 50% of 
the time in the past 3 months), we conducted 
multivariate linear regression analyses to com
pare the differences between participants without 
IBS and those with IBS-C and IBS-D, 
respectively.

We corrected p-values for multiple hypotheses 
testing using the Benjamini-Hochberg method and 
considered an adjusted p-value (q-value) <0.10 as 
statistically significant.
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