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Hemizygous variants in protein phosphatase

1 regulatory subunit 3F (PPP1R3F) are associated
with a neurodevelopmental disorder characterized
by developmental delay, intellectual disability

and autistic features
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Abstract

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the
large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that
regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-
linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild
intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including
tone, gait and cerebellar abnormalities. PPPIR3F variants segregated with disease in affected hemizygous males that inherited the
variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes
to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in
extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under
changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding,
protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular
data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the
critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the
role of PP1 in brain development and proper function.

Keywords: X-linked, protein phosphatase 1, PPP1R3F, glycogen metabolism, developmental delay, intellectual disability, seizureautism

Introduction

Protein phosphatase 1 (PP1) is a major eukaryotic serine/threonine
protein phosphatase that regulates diverse cellular processes
including cell cycle progression, protein synthesis, muscle con-
traction, carbohydrate metabolism, transcription and neuronal
signaling (1). The PP1 holoenzyme is composed of a catalytic
subunit and at least one of the over 200 predicted regulatory
subunits in vertebrates (2) that determine substrate specificity
and target PP1 to specific subcellular compartments (3). Among
the regulatory subunits, glycogen-targeting subunits (GTSs) reg-
ulate glycogen synthesis by targeting PP1 to dephosphorylate
the rate-limiting enzymes glycogen synthase (GS) or glycogen
phosphorylase.

There are seven known or putative GTS genes in the human
genome: PPPIR3A (R3A, Gy (4-6), PPPIR3B (R3B, Gy) (7), PPP1R3C
(R3C, PTG/RS) (8), PPPIR3D (R3D, R6) (9), PPPIR3E (R3E) (10),
PPP1R3F (R3F) (11) and PPPIR3G (R3G) (10). All GTSs contain a
PP1-binding motif, a glycogen-binding domain and a GS-binding
domain, and show different expression patterns (Supplementary
Material, Fig. S1). GTSs may also contain domains that bind other
regulatory proteins and substrates (12,13), and are themselves
regulated by phosphorylation at multiple sites (11). R3A and R3F
are tail-anchored proteins that have a C-terminal transmembrane
domain that targets these proteins to the membrane (6,14). R3F
is primarily expressed in the brain and has been suggested to
regulate GS in astrocytoma cells in response to glucose and
extracellular signals (11).

Here, we report the identification of hemizygous variants in
PPP1R3F associated with a novel X-linked recessive neurodevel-
opmental disorder in 13 unrelated individuals. PPPIR3F variants
segregated with disease in affected hemizygous males that inher-
ited the variants from their heterozygous carrier mothers. This
disorder is characterized by developmental delay (DD), mild intel-
lectual disability (ID), autism spectrum disorder (ASD), seizures
and other neurological findings including tone, gait and cerebellar
abnormalities. Functional studies suggest that R3F plays a role in
maintaining steady brain glycogen levels under changing glucose
conditions. Most patient variants have defects in PP1 binding, pro-
tein stability, subcellular localization and regulation of glycogen

metabolism. Collectively, the genetic and molecular data indicate
that deleterious variants in PPP1R3F are associated with a new X-
linked disorder of glycogen metabolism, highlighting the critical
role of GTSs in neurological development.

Results
Clinical presentations

Through international collaboration efforts facilitated by the Gen-
eMatcher platform (15), we identified 13 patients from 13 unre-
lated families of different ancestries (Old Order Amish, Jewish,
Asian, Middle Eastern and European) with a similar clinical spec-
trum. The onset of the clinical manifestations appeared to be
around 2-3 years of age for most probands in this series. All the
patients were male. Typical disease presentation in this series
included DD, ASD, speech delay, behavioral disorders and neuro-
logical abnormalities. ID was often mild, usually noted as learning
difficulties or concerns for ASD. Expressive language deficiency
was particularly prominent in most cases with five individuals
reported to be nonverbal. Most patients presented with variable
neurological findings, including hypotonia, hyperreflexia, gross
motor delay, spasticity in the lower extremities, dystonia and
ataxia. Seizures, when present, were heterogeneous in their clini-
cal presentation. Types of seizure include generalized, nocturnal,
tonic, atonic, focal myoclonic and atypical absence. Significant
behavior issues such as ASD, attention deficit hyperactivity dis-
order (ADHD) or aggressive behavior were observed in most of
the patients. Brain magnetic resonance imaging (MRI) studies
showed variable abnormalities in four patients. Microcephaly was
observed in three patients. Some facial dysmorphic features were
noted in most of the patients although they seemed nonspecific
as there is no common gestalt. The phenotypic manifestations are
summarized in Table 1 and detailed clinical descriptions of each
case are available in the Supplementary Material.

Identification of hemizygous PPP1R3F variants

in patients

Whole-exome sequencing analyses, either clinical or on a
research basis, were performed on these probands and their
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parents. Studies were approved by the Institutional Review Boards
(IRBs) of all participating institutions and written informed
consent was obtained from each participant or their legal
guardian. These analyses revealed hemizygous variants in all
the patients in the X-linked gene PPPIR3F (Fig. 1A) as the main
candidate from exome sequencing studies. In five patients,
Fragile X testing was negative. In other patients, Fragile X
was either considered unlikely or the information was not
available. Chromosome microarray and karyotyping analyses
were performed for most patients with no significant findings
(Supplemental Material). All PPP1R3F variants co-segregated with
the phenotype in each family as expected based on the pedigrees
(Fig. 1B). Affected individuals inherited the PPPIR3F variants
from their carrier mothers. Sanger sequencing confirmation
and segregation of variants showed that noncarrier male and
heterozygous carrier female siblings were unaffected. However,
in two instances, carrier mothers were reported to have had a
history of childhood seizures (Table 1, Patients 4 and 8).

Among the 13 PPPIR3F variants identified, four are predicted
to result in loss of function through the introduction of early
terminations, including two nonsense variants in Patients 3
(p.Gly212Ter) and 4 (p.Gln304Ter), and two frameshift variants
in Patients 10 (p.Arg431GInfs*34) and 13 (p.Gly70Alafs*95). The
remaining variants were missense. PPP1R3F is not a particularly
constrained gene (pLI=0, o/e=0.73 (0.42-1.31), missense Z
score=0.21). However, being variant permissive does not by
itself exclude the gene from being associated with a disease, as
other X-linked genes with low pLI scores have been associated
with relatively mild diseases (16-20). The tolerance landscape
generated by MetaDome showed that, except for p.His180Tyr and
p.Asp396Val, most missense variants are at locations ranked from
intolerant to neutral (Supplementary Material, Fig. S2). Patient
3 likely has co-occurring disorders (21-23) with both a de novo
SMARCC?2 variant (p.Pro77Leu) and the PPP1R3F variant. Features
like scoliosis and some dysmorphic features may be because
of the SMARCC2 variant, whereas ID, motor and speech delays
and behavioral problems are shared features of both disorders;
gait abnormalities are mainly observed in patients with PPPIR3F
variants.

We assessed the effects of missense variants on protein
function through bioinformatic prediction programs PolyPhen-
2, SIFT, PROVEAN, MutationTaster and CADD. All variants were
identified as damaging or disease causing by at least one of
these in silico algorithms (Table 1). Most missense variants are
located in the highly conserved N-terminal half of the protein,
which contains the PP1-binding site, the glycogen-binding site
and the substrate-binding site (Fig. 1A). No clear orthologs
of PPPIR3F could be identified in invertebrates, suggesting a
recent evolutionary origin. Multiple sequence alignment using
mammalian R3F protein sequences (Supplementary Material,
Fig. S3) revealed that eight of the nine missense variants are at
locations fully conserved in all species. The p.Asp396Val variant
is at a location that is conserved in all mammals other than the
kangaroo rat.

Additional adult patients with PPP1R3F variants

While none of these variants were present at any significant allele
frequency in public population databases (<0.005%, Table 1), we
did observe the existence of some of the variants in gnomAD
(p.Gly70AlafsTer95, p.Asp82Tyr, p.Prol06Leu and p.Arg279Gly, one
case of each, including hemizygotes for p.Gly70AlafsTer95 and
p.Prol06Leu). The clinical expressivity makes it possible that
some adult individuals present in public databases carrying

loss-of-function variants in the gene may have eluded a genetic
diagnosis to date. Because the phenotypic information of
hemizygous individuals in public databases is not available for
further interrogation, we explored the Regeneron Genetics Center
internal exome database of 173585 adult participants in the
DiscovEHR study (24) and anotherinternal Amish exome database
of 10809 samples with limited electronic health record (EHR)
information recorded in the form of ICD-10 codes. We identified
five hemizygous males (p.Pro47GIn (x4) and p.Arg279Gly (x1))
and one homozygous female (p.His180Tyr) with PPP1R3F variants
of interest, all of them adults older than 49 years of age
(Supplementary Material, Table S1). Exploration of the available
ICD codes in these individuals’ EHR showed that five of them had
ICD codes (Supplementary Material, Table S1) of interest with
some overlap with the phenotype we describe here, indicating
possible unrecognized cases, and/or variable expressivity of the
disease. For the remaining case, incomplete penetrance of the
disorder or unrecorded features cannot be discarded.

R3F is predominantly expressed in the brain
astrocytes

Little is known about the function of the protein encoded
by PPP1R3F, R3F. It has been postulated to regulate glycogen
metabolism, based on the presence of glycogen- and GS-binding
sites, similar to other glycogen-regulating subunits known to
regulate glycogen metabolism (11). Of note, PPP1R3F transcripts
have a long isoform (NM_033215.5) and a short isoform of
(NM_001184745.2). The latter lacks all N-terminal functional
domains and is likely to be nonfunctional. Interestingly, a
recent transcriptional network analysis identified PPPIR3F as a
candidate master regulator affecting a large body of downstream
genes that are associated with ASD (25). This would be consistent
with our findings and a previous report of non-synonymous rare
variants in PPP1R3F in X-chromosome synaptic genes in ASD and
schizophrenia (26). We first investigated the relative abundance of
R3F expression in different mouse tissues by immunoblotting. R3F
is predominantly expressed in brain tissues, with weak expression
in the liver and kidney and no detected expression in the heart
and skeletal muscles (Fig. 2A). Among the brain tissues, the
cortex has relatively higher levels of R3F than the cerebellum,
hippocampus and thalamus (Fig. 2A). Real-time PCR showed that
R3F mRNA levels are much higher in mouse astrocytes than
those in neurons and oligodendrocytes (Fig. 2B). R3F expression is
relatively constant in young mice, with higher expression levels
between P30 and P60 (Fig. 2C).

R3F modulates cellular glycogen levels

Next, we generated a PPP1R3F knockout (KO) strain of the H4
cells, a human astrocytoma cell line. However, we observed no
significant differences in steady-state cellular glycogen contents
between WT and PPPIR3F KO cells in normal DMEM culture
media. Then, we measured changes in cellular glycogen levels in
response to changes in extracellular glucose levels. When cells
were shifted from high glucose medium to low glucose medium,
WT cells showed a significantly slower decrease in glycogen con-
tent than KO cells (Fig. 2D). The strongest difference appeared
at 8 h after media replacement. When cells were shifted from
low glucose medium to high glucose medium, glycogen levels
increased faster in WT cells than in KO cells (Fig. 2E). PP1 catalytic
subunits bind to regulatory subunits, forming a holoenzyme that
phosphorylates substrates. R3F is proposed to recruit PP1 and acti-
vate GS by dephosphorylating the enzyme (11). Immunoblotting
revealed that when cells were shifted from high glucose to low
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Figure 1. Segregation of PPP1R3F variants in patient families. (A) Schematic diagram showing the domain structure of R3F and locations of identified
variants from patient series. (B) Pedigrees and PPP1R3F variant segregation in the 13 families. m, mutant allele, —, normal allele, Y, Y chromosome.
Asterisks denote females that have reported childhood seizures or seizure with learning disabilities.

glucose, total and dephosphorylated GS levels increased in WT in HEK293T cells. Similar changes in total GS were observed in
cells, but not in PPP1R3F KO cells (Fig. 2F). R3F is also expressed HEK?293T cells, but not in HepG2 cells (Supplementary Material,

in HEK293T and HepG2 cells, with a higher expression level found Fig. S5).
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Figure 2. R3F expression pattern and its role in regulating glycogen levels. (A) Immunoblotting detection of R3F in various mouse tissue lysates with
GAPDH as a loading control. (B) Comparison of Ppp1r3f mRNA levels in mouse astrocytes and oligodendrocytes relative to neurons. The expression level
in the neuron is set as 1. (C) Immunoblotting detection of R3F in brain lysates prepared from mice of indicated ages. Three mice were analyzed for each
time point. (D) Quantification of relative R3F and GAPDH band intensities in D. *P < 0.05. (E) Relative glycogen levels (glycogen/protein) in WT and PPP1R3F
KO cells at indicated hours after switching from high glucose medium to low glucose medium. *P < 0.05. (F) Relative glycogen levels (glycogen/protein)
in WT and R3F KO cells at indicated minutes after switching from low glucose medium to high glucose medium. *P < 0.05. (G). Immunoblotting analysis
of PP1, GS, R3F and B-actin levels in WT and KO H4 cells collected at indicated hours after switching from high glucose medium to low glucose medium.

R3F is localized to the endoplasmic reticulum

via its C-terminal trail anchor

The R3F variants identified in our patients are located primarily
in the N-terminal half of the protein that contains the major
functional domains (Fig. 1A). We investigated the functional con-
sequences of the variants in the first nine patients identified
through the GeneMatcher platform (Patients 1-9, Table 1). To
investigate intracellular localization, patient-derived R3F variants

were co-expressed with the endoplasmic reticulum (ER) mem-
brane marker mCherry-SEC61-C18 in COS-7 cells. WT R3F co-
localized with SEC61-C18, indicating that this protein is localized
to the ER (Fig. 3), which is consistent with a previous report (14).
However, unlike SEC61, R3F is not uniformly distributed in the
reticular structures of the ER, suggesting that there may be factors
in the ER constraining R3F localization to specific membrane
domains. Deletion of the transmembrane domain (ATM variant)



disrupted the ER localization pattern and instead led to a par-
ticulate distribution pattern in the cytoplasm (Fig. 3), suggesting
that soluble R3F is associated with glycogen particles. Missense
mutants (p.Pro47GIn is shown) also exhibited an ER localiza-
tion pattern, similar to the WT protein. The nonsense mutant
p.Gln304Ter mostly accumulated in cell nuclei, with only low-
level expression detected in the cytoplasm. The nonsense mutant
p.Gly212Ter was expressed at a very low level and any detected
expression was also found in cell nuclei (Fig. 3).

Effects of R3F variants on interactions
with PP1 and GS

To investigate whether these R3F variants affect interactions with
PP1 or GS, we carried out co-immunoprecipitation experiments in
HEK?293T cells. In addition to patient-derived mutations, we also
included WT as a positive control and the Phe39Ala point muta-
tion that abrogates the PP1-binding motif as a negative control.
To study the role of the transmembrane domain, we included
a mutant with the TM deletion (ATM) and a mutant with both
Phe39Ala and ATM mutations. As shown in Fig. 4A, WT R3F could
co-IP with both PP1 and GS. The Phe39Ala mutant, the p.Asp41Tyr
variant and the Phe39Ala+ ATM double mutant failed to co-IP
with PP1 (Fig. 4B) and pulled down primarily phosphorylated GS
(P-GS; Fig. 4C). The p.Pro47Gln and p.GIn304Ter variants pulled
down little or no PP1 but retained co-IP with GS (Fig. 4A and D).
The relative amount of P-GS that co-IPed with p.Pro47Gln was
higher than WT and lower than Phe39Ala and p.Asp41Tyr (Fig. 4C).
While WT R3F and other variants were IPed at similar levels
(Fig. 4D), the p.Gly212Ter variant expression was barely detectable
because of the early truncation of the protein. Treatment of cells
with the proteasome inhibitor MG132 increased its level to above
the detection limit of immunoblotting (Supplementary Material,
Fig. S6). Thus, truncation of R3F caused by the p.Gly212Ter muta-
tion leads to an unstable protein that fails to accumulate in
cells. Consequently, the p.Gly212Ter mutant failed to co-IP with
PP1 and GS (Fig. 4A-C). Other missense variants (p.Prol06Leu,
p.Pro149Arg, p.His180Tyr, p.Pro200Ser and p.Arg279Gly) showed
no obvious defects in co-IP with PP1 or GS. No co-IP defects were
observed for the ATM mutant either (Fig. 4A-C). However, this
mutant was expressed at a much higher level than other R3F
variants (Fig. 4A), suggesting that TM deletion allows the protein
to escape a mechanism that normally limits the steady-state level
of WT R3F on the ER membrane.

To understand the structural basis of the loss on PP1 binding
of the R3F variants, we modeled PP1-binding domains of R3F
and R3A in complex with PP1. The p.Asp41Tyr and p.Pro47GIn
variants are very close to the PP1-binding site. Although Asp41
is not in the core sequence of the PP1-binding domain, the cor-
responding amino acid residue in Asp70grsa forms a salt-bridge
with Arg261pp; in the crystal structures of PP1 in complex with
the PP1-binding domain of R3A (27,28). Changing this residue to
Tyr is expected to negatively impact PP1 binding (Supplemen-
tary Material, Fig. S8), consistent with our experimental findings
(Fig. 4A). The p.Pro47GlIn variant may also affect PP1 binding by
altering the structure of the PP1-binding domain (Supplementary
Material, Fig. S8).

Effects of R3F variants on glycogen metabolism

To test whether R3F variants can affect R3F function in regulating
glycogen metabolism, we stably expressed these variants in
H4 KO cells. Protein levels were similar among R3F variants
except for p.Gly212Ter (Supplementary Material, Fig. S7). These
cells were switched to low glucose medium after culturing in
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high glucose medium and glycogen contents were measured
at 8 h after the switch. WT R3F expression increased glycogen
content in H4 KO cells compared with vector control, whereas the
inactivating mutant Phe39Ala and patient variants p.Asp41Tyr
and p.Gly212Ter had no effect (Fig.5). Variants p.Pro47Gln,
p.Prol49Arg and p.Pro200Ser moderately increased glycogen
content, but the increases were significantly less than WT R3F.
On the other hand, variants p.Prol06Leu, p.His180Tyr, p.Arg279Gly
and p.Gln304Ter increased glycogen content to the same extent
as WT R3F (Fig. 5). Glycogen synthesis can occur in the nucleus
(29), which may explain why the glycogen level is not decreased
with the p.Gln304Ter in this experiment.

Discussion

We describe a novel neurodevelopmental disorder associated with
variants in PPP1R3F, a gene that encodes a PP1 regulatory subunit
that likely functions in regulating brain astrocyte glycogen levels
in response to changing blood glucose levels. Evidence supporting
a causal role of PPPIR3F variants includes segregation of the
variants consistent with an X-linked disorder, multiple compu-
tational evidence predicting a deleterious effect of variants on
the gene and identification of functional defects in most of the
variants studied. The individuals in our study demonstrated a
wide variability of clinical features, which is not uncommon for
neurodevelopmental disorders (30). The most consistent clinical
findings in our cohort are developmental, intellectual and speech
delays, ranging from mild to severe. Other common symptoms
include behavioral disorders and neurological problems in tone
and gait. However, because of the limited number of patients
deeply phenotyped and clinically characterized documented in
this report, a genotype-phenotype correlation cannot be reliably
determined at this point.

Although several conserved functional domains of R3F are
identified in the N-terminal end of the protein, the sequences
between PP1- and glycogen-binding sites and more than half of
the protein C-terminal to the GS-binding site contain no known
functional domains (Fig. 1A). These parts of the protein contain
patches of highly conserved sequences (Supplementary Mate-
rial, Fig. S3) and could accommodate additional substrate-binding
domains and other regulatory motifs. Therefore, we could not rule
out the possibility that R3F may function by regulating a different
substrate, potentially an ER-localized protein. R3A also contains a
long C-terminal sequence with unknown functions. It has recently
been reported that R3A can dephosphorylate ryanodine recep-
tor 2 (RyR2) (12). Although GS is a known substrate of R3F, it
is possible that other substrates also exist, such as astrocyte-
specific RyRs. Indeed, our functional assay did not reveal any
defects in glycogen metabolism for p.Pro106Leu, p.His180Tyr and
p.Arg279Gly variants (Fig. 4B). The lack of observed functional
defects of these variants may be because of limitations in our
assays such as the overexpression of R3F variants, the functional
defect may be through diminished or aberrant interactions with
other regulatory proteins of the holoenzyme, or perhaps these and
other pathogenic variants cause defects in regulating the phos-
phorylation of a yet-to-be-identified substrate. As noted, some of
the missense variants described in this report have been observed
in population databases like gnomAD, including the p.Prol06Leu
and p.Arg279Gly variants. We cannot discard the possibility that
the patient phenotype could be caused or confounded by an
undetected co-occurring variant. This highlights the challenge
in identifying causal variants in a variant permissive gene. Fur-
ther experiments and characterization of additional patients with
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Figure 3. COS-7 cells were co-expressed with mCherry-SEC61-C18 and Myc-R3F. Immunofluorescence staining of R3F was performed with an anti-Myc
antibody. Cell nuclei were revealed with DAPI staining. Scale bar: 10 um. The rightmost column shows magnified images from the boxed region of each

variant. Experiments were repeated three times.

variants in PPPIR3F will be necessary to clarify the effect of
deleterious variants in this gene.

Although other GTSs are also expressed in the brain to some
extent, including R3C, R3D and R3G, R3F is the only subunit thatis
attached to the ER membrane through a TM tail anchor located in
the C-terminus of the protein (Fig. 1A). The ER localization allows
R3F to direct the PP1 enzymatic activity to the surface of the ER,

and subjects R3F and PP1 to regulation by ER-associated proteins.
Deletion of the TM domain leads to the mislocalization of the pro-
tein and presumably the loss of interactions with other proteins
in its normal subcellular environment. This would be relevant for
variants such as p.Arg431GInfs*34 predicted to escape nonsense
mediated decay and potentially result in a truncated protein,
yet missing the TM domain. The p.GIn304Ter variant retains all
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Figure 4. Functional characterization of R3F and identified variants. (A) Co-immunoprecipitation of R3F variants with PP1 and GS (upper panel). R3F
variants were immunoprecipitated with the anti-Myc antibody from 293 T cells and immunoblotted with antibodies against PP1, GS, GS pSer641 and
R3F. Protein levels in cell lysates are detected by immunoblotting and are shown in the lower panel. (B-E) Band intensities of immunoprecipitated PP1
(A), GS pSer641 (B), GS total (C) and R3F variants (E) were quantitated and plotted as ratios to the IgG heavy chain band. *P < 0.05 compared with WT.
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Figure 5. Effects of R3F variants on glycogen metabolism in H4 KO
cells. Relative glycogen levels (glycogen/protein) in H4 KO cells stably
expressing the indicated R3F variants at 8 h after cells were switched from
a high glucose medium to a low glucose medium. Each dot represents the
value from an independent replicate. *P < 0.05 compared with WT.

known functional domains in the N-terminal half of the protein,
yetit abolishes the co-IP with PP1 and leads to the mislocalization
of the protein to the nucleus. Interestingly, most other soluble
GTSs are shorter than the truncated protein generated by the
p.GIn304Ter mutation (Supplementary Material, Fig. S1), but these
proteins are not localized to the nucleus. C-terminal truncation
of R3F could expose a nuclear localization signal that directs
the protein into the nucleus. R3A is also a membrane-anchored
GTS. It is localized to the sarcoplasmic reticulum (SR) in muscle
cells and is phosphorylated by SR-localized Ca?*-calmodulin-
dependent protein kinase (CaMKII) (31). A C-terminal deletion
mutation results in the mislocalization of R3A to the cytosol and
is associated with type 2 diabetes (4).

The brain is the highest energy-consuming organ in the human
body. Astrocytes are the major site of glycogen synthesis and
storage in the brain (32,33). Glucose from capillary vessels is taken
up by astrocytes and converted into glycogen storage particles.
Although glycogen concentration in the brain is much lower than
in muscle or liver, evidence in the recent decade indicates that
brain glycogen plays important roles in brain functions such as
memory, learning, sleep and prevention of seizures (32-34). Our
data show that R3F plays an important role in glycogen synthesis
during low glucose conditions (Fig. 2), unlike other glycogen tar-
geting subunits such as R3A, R3B, R3C and R3G, which increase
glycogen synthesis with high glucose (35,36). Our results suggest
that the main function of R3F is to prevent glycogen depletion in
the brain under low glucose conditions. A plausible mechanism
for the newly described disorder is the inability of astrocytes to
effectively respond to fluctuations in local glucose levels in the
absence of functional R3F. Glycogen mobilization is critical for
higher brain functions such as learning and memory in different
animal models (37-39). Lactate produced in astrocytes provides
energy to neurons during periods of hypoglycemia and ischemia
and long-term memory formation. It is thought that maintain-
ing a readily releasable glycogen pool is important to sustain
astrocyte-dependent neural plasticity (37-39). The majority of
identified patients demonstrate learning disability, ID and devel-
opmental and speech delays. Several patients are also reported to
experience or have experienced seizures. Interestingly, the accu-
mulation of glycogen particles in neurons and astrocytes leads to
fatal epilepsy in patients with Lafora disease (40). However, mice
with brain-specific deletion of GS showed greater susceptibility to
epilepsy (34), highlighting the importance of proper regulation of
brain glycogen levels.

In conclusion, our findings provide evidence that deleteri-
ous variants in PPPIR3F are associated with a novel neurode-
velopmental disorder characterized by DD, mild ID, ASD fea-
tures, behavioral disorders, seizures and abnormal neurological

findings including tone, gait and cerebellar abnormalities. These
findings expand our knowledge of neurodevelopmental disorders
and highlight the roles of PP1 and glycogen metabolism in brain
development and function.

Materials and Methods

Subjects and clinical assessment

The study was approved by the IRBs of all participating insti-
tutions, and written informed consent was obtained from each
participant or their legal guardian. Thirteen affected individuals
of different ancestries were clinically evaluated independently by
the referring physicians. Additional clinical information, medical
records and neuroimaging studies were reviewed to evaluate the
phenotype features and detailed case information is included in
the clinical phenotype descriptions in the Supplementary Infor-
mation.

Genetic analyses

Clinical or research-based exome sequencing was performed on
all probands and their parents in most cases using Illumina
platforms, as described previously (23). Data analysis pipelines
based on each pedigree focused on the presence of (i) rare vari-
ants (MAF < 0.01 in population and in-house genomic databases),
(ii) deleteriousness based on the effect on the protein product
(missense, nonsense, frameshift and splice-site variants) and (iii)
segregation with the disease. Candidate variants were validated
using Sanger sequencing in affected individuals, parents and
siblings whenever it was applicable.

Cell lines and culture conditions

HEK293T, COS-7, human astrocytoma cell line H4 and PPPIR3F
CRISPR KO (-2, —4) H4 cells (Synthego, Redwood City, CA) were
cultured in Dulbecco Modified Eagle Medium supplemented with
10% FBS and 1% penicillin and streptomycin. All cells were main-
tained at 37°C and 5% CO, culture conditions and tested negative
upon routine mycoplasma testing with the Universal Mycoplasma
Detection Kit (American Type Culture Collection, Manassas, VA).

Mouse primary cells and real-time RT-PCR

C57BL/6 ] wild-type male mice (3 months old) were dissected
to obtain tissues for protein detection. Primary mouse neurons
were isolated from cortical tissues of E14.5 embryos (41). Primary
mouse astrocytes and oligodendrocytes were isolated from PO cor-
tical tissues (42). Real-time RT-PCR primers for Ppp1r3f were ATG-
GCCCCAGATGACACTTC (sense) and TGGCGGACCTCTGTAAAAGC
(antisense). Relative gene expression was calculated by the 2-44¢t
method using Gapdh as a reference gene.

Plasmids

N-terminal Myc-tagged R3F expression plasmid (pcDNA-myc-
R3F) was a gift from Dr Michael Schrader (14). PPP1R3F cDNA
with an N-terminal FLAG tag was cloned into a retroviral vector
PMSCV. Mutations were introduced into the wild-type plasmid
using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent
Technologies, Santa Clara, CA). All constructs were validated by
Sanger DNA sequencing to confirm the presence of the mutation
and the absence of unintended mutations.

Stable expression cells constructed by retroviral
gene transfer

HEK?293T cells plated on 60-mm dishes were transfected with
a pMSCV-based retroviral expression plasmid (2 ug), together
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with the pGag-pol (2 ug) and the pVSV-G (0.7 ug) plasmids using
FuGENE6 (Promega, Madison, WI). Fifty hours after transfection,
virus-containing media were harvested and used to infect cells
in the presence of polybrene (8 ug/mL). The infected cells were
selected with puromycin (2 ug/mL) for at least 10 days.

Glycogen assay

Cells were harvested on ice after washing two times with ice-cold
PBS. The cells were aliquoted into two halves in PBS suspensions
and span down as pellets at 4°C. One half of the cell pellet was
heated at 100°C for 10 min right after suspension with Milli-
Q water to test the glycogen concentration. The other half of
the cell pellet was used to detect the protein concentration by
adding the same volume of NP40 lysis buffer with protease/phos-
phatase inhibitor cocktails (Thermo Fisher, Waltham, MA). Glyco-
gen assays were done with the Glycogen Colorimetric/Fluoro-
metric Assay kit (BioVision, Milpitas, CA, Cat. #K646-100). Protein
assays were done using the Bio-Rad protein assay dye reagent
concentrate (Bio-Rad, Hercules, CA, Cat. #500-0006).

Immunoprecipitation and immunoblotting

HEK293T cells (1X10 (6)) were transfected with the expression
plasmids of Myc-tagged PPP1R3F and its variants for 30 h. The
transfected cells were lysed onice for 30 minin 1 mL of lysis buffer
(50 mM Tris-HCI, 150 mM NacCl, 1% NP-40, 0.05% SDS, 1 mM EDTA,
pH 7.5) with protease/phosphatase inhibitor cocktails (Thermo
Fisher). For each immunoprecipitation, a 0.8-mL aliquot of the
lysate was incubated with 2.0 ug of the anti-Myc antibody (Santa
Cruz Biotechnology, Dallas, TX) for 3 h and incubated another
1 h after adding 40 uL of a 1:1 slurry of Protein A/G Plus-Agarose
(Santa Cruz Biotechnology). The agarose beads were washed four
times with 1 mL of lysis buffer. The precipitates were added 1
X SDS loading buffer and analyzed by standard immunoblotting
procedures. Anti-PPP1R3F rabbit polyclone antibody (206170-T36,
Sino Biological), anti-pGS (Ser641) rabbit monoclonal antibody
(47043, Cell Signaling, Danvers, MA), anti-GS rabbit monoclonal
antibody (3886, Cell Signaling), anti-PP1 mouse monoclonal anti-
body (SC-7482, Santa Cruz) were applied as 1:1000 dilution for
western blot analysis. Anti-g actin mouse monoclonal antibody
(MABTS523, Sigma-Aldrich, St. Louis, MO) and anti-GAPDH mouse
monoclonal antibody (600041, Proteintech, Rosemont, IL) were
diluted as 1:2000 for western blot analysis.

Immunofluorescence analysis

COS-7 cells (1X10 (5) cells/mL) were seeded in 12-well plates with
18 mm cover glass and transfected with the indicated plasmids
by FuGENE 6 transfection reagent. The transfected cells were
fixed with 4% paraformaldehyde for 10 m after 20 h culture
and permeabilized with 0.25% Triton X-100 in PBS. The cells
were incubated with anti-Myc antibody (1:50, sc-40 Santa Cruz)
overnight at 4°C and incubated with the Alexa 488 goat anti-
mouse antibody (Thermo Fisher) for 1 h at room temperature. The
slides were mounted with the VECTASHIELD medium with DAPI
(Vector Laboratories, Newark, CA) and observed with an Olympus
confocal microscope as previously described (43).

Protein structure analysis

Sequence alignment between R3A/Gm with R3F was constructed
by CLUSTALW (44). The structure of human PP1 and the PP1-
binding region from the R3A protein (Protein Data Bank (PDB) ID
6DNO) was downloaded from the PDB (27). The mutant struc-
tures were built by the PDB reader of Charmm-Gui (45). Protein
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structures were visualized by Visual Molecular Dynamics Version
1.9.3 (46).

Statistical analysis

All experimental data are presented as mean +standard devia-
tion. Statistical significance was calculated using one-way ANOVA
test. P-values < 0.05 were considered significant.

Supplementary Material

Supplementary Material is available at HMG online.
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