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ABSTRACT

Objective: Scalable strategies to reduce the time burden and increase contact tracing efficiency are crucial during early
waves and peaks of infectious transmission.
Design: We enrolled a cohort of SARS-CoV-2-positive seed cases into a peer recruitment study testing social network
methodology and a novel electronic platform to increase contact tracing efficiency.
Setting: Index cases were recruited from an academic medical center and requested to recruit their local social contacts
for enrollment and SARS-CoV-2 testing.
Participants: A total of 509 adult participants enrolled over 19 months (384 seed cases and 125 social peers).
Intervention: Participants completed a survey and were then eligible to recruit their social contacts with unique “coupons”
for enrollment. Peer participants were eligible for SARS-CoV-2 and respiratory pathogen screening.
Main Outcome Measures: The main outcome measures were the percentage of tests administered through the study that
identified new SARS-CoV-2 cases, the feasibility of deploying the platform and the peer recruitment strategy, the perceived
acceptability of the platform and the peer recruitment strategy, and the scalability of both during pandemic peaks.
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Results: After development and deployment, few human resources were needed to maintain the platform and enroll par-
ticipants, regardless of peaks. Platform acceptability was high. Percent positivity tracked with other testing programs in the
area.
Conclusions: An electronic platform may be a suitable tool to augment public health contact tracing activities by allowing
participants to select an online platform for contact tracing rather than sitting for an interview.
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Highly transmissible infections, such as SARS-
CoV-2,1 which can be spread via aerosols2

and while infected persons are presymp-
tomatic or asymptomatic,3 frequently require social
rather than biological interventions to slow spread.4

Effective social interventions include primary preven-
tion (reducing contacts to prevent onward infections),
secondary prevention (early diagnosis leading to iso-
lation, reducing potential for onward infections), and
tertiary prevention (isolation after symptoms, or treat-
ment to shorten duration of infectiousness). Although
tertiary efforts are generally less beneficial in reduc-
ing onward spread, isolation should be emphasized
for an infection that can be transmitted through ca-
sual contact because incidental contacts are at risk,
although only close contacts are generally targeted
during contact tracing.

Forecasts of the size and duration of epidemic
curves varied significantly early in the SARS-CoV-2
pandemic.5-8 Most, however, indicated that the pub-
lic health infrastructure and human resources needed
to implement testing and tracing protocols for effec-
tive social interventions would be strained. Contact
tracing resources are not rapidly scalable, compound-
ing challenges when faced with a novel infection with
rapid spread.

With the goal of more efficiently identifying and
contacting community members at risk of infection,
we designed a protocol to identify new cases of SARS-
CoV-2 in the community. We used social network
analysis to streamline potential contacts of known
cases based on descriptions of each case’s contacts,
community locations visited, and recent activities,
with the aim of minimizing efforts needed to identify
new cases in the community.

Methods

The Snowball Study opened to enrollment in Decem-
ber 2020. It included 4 elements: (1) a social network
component that deployed a link tracing strategy9 to
enroll participants, understand mixing patterns in
the community, and identify where transmission was
occurring; (2) a novel technology component con-
sisting of a secure cloud-based platform to collect
and manage study data and track relationships be-
tween participants; (3) a sampling component that

developed protocols to safely sample potentially in-
fected participants in community settings; and (4)
a biometric monitoring component that enrolled a
subset of participants into a sister study to use in-
formation from wearable devices to identify early
signs of infection10,11 (Figure, Supplemental Digital
Content 1, available at http://links.lww.com/JPHMP/
B192). Using the electronic platform, which enabled
self-reporting by cases, we sought to rapidly iden-
tify contacts who were recruited to the study by the
case using an online enrollment pathway. To increase
capacity during future epidemics, the technology de-
veloped and methods used have been made publicly
available in a tool kit that is generalizable to any
infection.12

Link tracing designs

Snowball sampling9,13 is a type of link tracing de-
sign in which a seed case is recruited, and that seed
case collects their contacts for enrollment, who then
collect their contacts for enrollment, and so on. This
method not only mirrors how infections are transmit-
ted from person-to-person but also is similar to the
process used by public health contact tracing. A sepa-
rate set of eligibility criteria may be applied to persons
recruited into the cohort by another study member
(called peer participants), depending on the goal of
the cohort, which can facilitate generalizability.9,13

Snowball Platform

To support our study activities, we developed a novel
online electronic data capture system, the Snowball
Platform,14 which allowed us to identify potential seed
cases from among new SARS-CoV-2 diagnoses made
at a local academic health system (Duke University
Health System [DUHS]), invite potential seed cases
to enroll, validate their study eligibility, direct them
to provide informed consent and complete the study
survey online, and provide “coupons” to distribute
to their contacts to join the study and receive SARS-
CoV-2 testing. Participants could select an English-
or Spanish-language track for all procedures in the
platform, which was built to Fast Healthcare Interop-
erability Resources (FHIR) standards15 and operated
in a HIPAA-compliant cloud space.16 The platform

http://links.lww.com/JPHMP/B192
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was designed so that participants could complete the
entire enrollment process, from receiving an invite to
recruiting their peers, without needing to interact with
any member of our study team.

We invited seed cases daily from among eligible
new diagnoses via informational e-mail, which in-
cluded an enrollment coupon with a unique 4-word
token. Invited seed cases could click a link in the
coupon or a link to a study informational page and
enter the token. Once the token was validated by
the Snowball Platform, potential seed cases would be
taken to the survey system and presented with elec-
tronic informed consent documents. Upon providing
informed consent, seed cases were directed to the sur-
vey, which included modules for demographics, health
history, SARS-CoV-2 and influenza testing history,
respiratory symptoms, social network descriptors
(cohabitants and other: demographics, relationship
type, and frequency of contact), venues and activities,
and health-related attitudes and behaviors.

Upon completing the survey, seed cases were given
unique electronic coupons to distribute to their so-
cial contacts. Study design dictates the number of
coupons given to each respondent. Here, most re-
ceived 5, although up to 10 were provided if the
seed cases’ social network included a large number of
potentially infectious people (ie, recently tested pos-
itive or symptomatic), high-risk people (congregate
settings), or members of groups who are historically
excluded from research (ie, Black/Latinx)17,18 or were
underrepresented in the cohort compared with so-
ciodemographic proportions of the target population
(Durham County, North Carolina). Contacts who en-
rolled were deemed “peers” and followed the same
process as seed cases; they also received sampling for
SARS-CoV-2 (polymerase chain reaction [PCR] and
anti-nucleocapsid immunoglobulin G [IgG] [to test
for prior infection]) and a full respiratory pathogen
panel (PCR) to capture causes for participants with
respiratory symptoms but who had a negative SARS-
CoV-2 PCR result. Peers were sampled at home during
2020 and 2021 but were given a choice of in-home
or in-clinic sampling in 2022. Peers who completed
the survey were eligible for their own coupons to
distribute to potential next-wave peers.

Coupons provided to seed cases and peers expired
if not validated within 4 days of generation; the abil-
ity to complete the survey expired 2 days after token
validation. Completing the consent documents and
survey online took approximately 45 minutes; par-
ticipants who completed the survey before it expired
were compensated. Referring seed cases and peers
received additional compensation for any peer who
enrolled using their coupon and completed the survey
before it expired.

For most of the study, a clinical research coordina-
tor (CRC) attempted to reach all potential seed cases
to introduce the study. All participants could contact
a CRC at any point during the process for assistance.
This study was approved by the DUHS Institutional
Review Board (#Pro00105430).

Study cohort

Seed cases were eligible if they provided informed
consent, were 18 years or older, were a resident of
Durham County, North Carolina, at the time of SARS-
CoV-2 diagnosis (December 2020-July 2022), were
diagnosed on a PCR test, had checked their test result
in their electronic health record (EHR), were not ad-
mitted to inpatient care at the time of diagnosis, and
had not opted out of research.

Peer participants were eligible if they were referred
by another study participant, provided informed con-
sent, were 18 years or older, resided in or sufficiently
close to Durham County to be sampled, and did not
have a prior SARS-CoV-2 diagnosis during an exclu-
sionary period. This period was more than 2 weeks
prior at the start of the study but amended to 2 weeks
to 45 days prior between the Delta and Omicron pe-
riods, when the scientific community concluded that
reinfections were common.

The positive tests performed by DUHS, which we
used to identify potential cases, were submitted to
the Durham County Health Department in accor-
dance with public health reportable disease mandates.
All positive results for tests performed on peers by
the Snowball Study were submitted to the Durham
County Health Department; testing was conducted
under a Clinical Laboratory Improvement Amend-
ments (CLIA) waiver held by our sampling team. All
participants were subject to local regulations for con-
tact tracing, isolation, quarantine, and masking, and
followed guidelines for usual care.

Optional assessments

Seed cases and peers who enrolled during the Delta
and Omicron waves (July 1, 2021, through study end
in July 2022) and who received coupons to distribute
were eligible for a follow-up survey that asked about
immunizations and infections since the initial survey
was completed and about perceptions of study par-
ticipation. Participants who completed the follow-up
survey were compensated.

Percent positivity

We used the proportion of tests administered that
identified a positive contact as a metric for pro-
grammatic success, aiming for a percent positivity
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that matched or exceeded those of local testing pro-
grams. We aggregated all Snowball tests performed
by study month and calculated the percent positiv-
ity as the number of positive PCR tests over the total
number of PCR tests collected during that month
(December 2020-July 2022); this proportion has a
95% confidence interval (CI). We compared this pro-
portion to the weekly percent positivity reported
by Durham County and DUHS facilities located in
Durham. DUHS tests may have been administered for
presurgical screening, employee surveillance, student
surveillance (during some intervals), and/or testing of
symptomatic patients, staff, and students as needed
and according to protocols then in place.

Secondary attack rate

We calculated the secondary attack rate within house-
holds to assess risk and ability to intervene among
close contacts. Using survey data from seed cases
with at least one other household member, the sec-
ondary attack rate was the number of people who
were documented or likely to be positive based on
test results and/or the Centers for Disease Control and
Prevention’s SARS-CoV-2 symptom list,19 over total
household members minus the respondent. For this
analysis, we only included the first person enrolled
by date of enrollment regardless of role (seed cases
or peer), when there was a household from which
multiple people were enrolled for the study.

For seed cases who believed they were infected at
home, we calculated the number of other household
members also diagnosed or symptomatic at the time
of the seed case’s survey completion, over the total
number of household members minus the initially
infected person, as the likely secondary infections
within the household based on the cohabitants who
displayed symptoms or were diagnosed after the ini-
tial household member brought the infection into the
home. For seed cases who believed that they were
infected outside of the home, we calculated the pro-
portion of cohabitants who had symptoms or were
diagnosed 3 to 12 days20 after the seed case’s infec-
tion or until time of survey completion (if <12 days
after symptom onset) as an indicator of likely onward
(secondary) transmission from the seed case.

We calculated the overall household secondary at-
tack rate and used the Kruskal-Wallis tests (at α = .05)
to compare rates between the following: households
with children versus not, households comprising fam-
ily members or significant others versus roommates,
households affiliated with Duke University or DUHS
(faculty, staff, or students) versus not, by seed case’s
reported household social distancing, by seed case’s
reported mask-wearing, by seed case’s number of daily

contacts outside the home being above or at/below
this analysis subset’s median, and the predominant cir-
culating variant when the seed case enrolled in the
study. We calculated 95% CIs for the proportions for
the comparisons.

Replicability

Toy data sets and generalized R code are publicly
available.12

Results

Cohort

Overall, 6994 people who were eligible for the study
as per their EHR received an informational e-mail
to participate (Figure, Supplemental Digital Content
2, available at http://links.lww.com/JPHMP/B193).
Over 19 months, 384 Durham County residents
completed the survey as seed cases and successfully re-
cruited another 125 peer participants who completed
the survey (N = 509 total enrolled cohort members
with completed surveys) (Table 1). These seed cases
and peers described 2199 contacts in their survey (5.7
mean peers per participant; some enrolled in the study
as peer participants or were duplicated across sur-
veys). Most cohort members were female (64%); were
non-Hispanic (91%) and/or were White or European
American (58%) (the majority of participants identi-
fied as non-Hispanic White or European American);
spoke English at home (89%); and were younger than
40 years (63%). The same was true for contacts de-
scribed overall, although cohabitants were younger,
more likely to be male, and more likely to be Black
or African American compared with noncohabitants
described (Table 1). Most (80%) cohabitants were
family members, whereas 34% of noncohabitating
contacts were family members.

Of 125 peers with complete surveys, 106 (85%)
were sampled; 18 had positive SARS-CoV-2 PCR
results (17% positivity) and 20 had positive SARS-
CoV-2 antibody results (4 were positive on both).
For the respiratory pathogen panel, 2 SARS-CoV-
2-negative peers were positive for other respiratory
infections (one for influenza A and bocavirus and the
other for rhinovirus/enterovirus).

Participant engagement

The Snowball Platform moved participants rapidly
through the first few study activities, which were en-
tirely contained within the platform (Figure 1). The
number of days for each milestone increased substan-
tially for subsequent activities (eg, time required to

http://links.lww.com/JPHMP/B193
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TABLE 1
Demographics of Cohort Members and Contactsa

Cohort
Members With

Completed
Surveys

(N = 509)
Seed Cases

(n = 384)
Peer Cases

(n = 125)

Total Contacts
Described by
Seed or Peer

Casesb,c

(N = 2199)
Cohabitants

(n = 842)

Other Nonco-
habitating
Contacts

(n = 1357)

n % n % n % n % n % n %

Gender
Male 174 34 119 31 55 44 985 45 433 51 552 41
Female 326 64 261 68 65 52 1 188 54 399 47 789 58
Nonbinary/Other 9 2 4 1 5 4 23 1 9 1 14 1

Age, y
0-19 10 2 9 2 1 1 351 16 282 34 69 5
20-29 175 34 138 36 37 30 610 28 202 24 408 30
30-39 139 27 112 29 27 22 475 22 143 17 332 25
40-49 74 15 56 15 18 14 251 11 58 7 193 14
50-59 54 11 35 9 19 15 219 10 76 9 143 11
60-69 37 7 25 7 12 10 196 9 58 7 138 10
70-79 19 4 8 2 11 9 79 4 18 2 61 5
80+ 1 <1 1 <1 0 0 18 1 5 1 13 1

Ethnicity
Hispanic or Latino 48 9 42 11 6 5 199 9 79 9 120 9
Not Hispanic or Latino 461 91 342 89 119 95 1 959 91 758 91 1 201 91
Unknownd 0 0 0 41 5 36

Race
American Indian or Alaska

Native
0 0 0 0 0 0 4 <1 3 <1 1 <1

Asian 59 12 46 12 13 10 210 10 90 11 120 9
Black or African American 105 21 76 20 29 23 408 19 213 25 195 15
Native Hawaiian or Other

Pacific Islander
0 0 0 0 0 0 8 <1 2 <1 6 <1

White or European American 294 58 220 57 74 59 1312 61 433 52 879 67
Other/2+ races 14 3 11 3 3 2 57 3 29 3 28 2
None selectede 37 7 31 8 6 5 159 7 67 8 92 7
Unknownd 0 0 0 41 5 36

SARS-CoV-2 statusf

Definitely infected 418 82 384 100 34 27 659 30 299 36 360 27
Probably infected 3 <1 0 0 3 3 125 6 66 8 59 4
Not sure 7 1 0 0 7 6 454 20 147 17 307 23
Probably not infected 9 2 0 0 9 7 572 26 178 21 394 29
Definitely not infected 72 14 0 0 72 58 389 18 152 18 237 18

aCohort members include the enrolled seed cases and enrolled peers with completed surveys. These cohort members described their social contacts in their surveys, which
are shown by cohabitants versus noncohabitating other contacts.
bAttributes of contacts are as reported by the respondent describing the contact, not reported by the contact or verified.
cSome contacts may have been described as more than one respondent or may have enrolled in the study as a seed case or peer participant.
dEthnicity/race was not reported for some of the contacts described. Unknown responses are not included in the proportion.
eSome enrolled participants (seed cases and peers) or described contacts who were identified as Hispanic ethnicity declined to select a race.
fSeed cases were required to be positive on polymerase chain reaction. SARS-CoV-2 status for peers who were tested (106/125; 85%) was based on laboratory result, and the
SARS-CoV-2 status for peers who were not tested (19/125; 15%) was based on that peer’s survey response (Question: Do you think that you have COVID-19?). SARS-CoV-2
status for contacts described is based on the report of the seed case or peer who described the contact in the survey.
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FIGURE 1 Study Milestones Are Shown as Categories on the x-Axis, and the y-Axis Is Time in Days From the Prior Milestone to the Milestone Describeda

aIn these violin plots, the width is indicative of the density of the data at each y-axis value (days to complete the milestone) and the dots at higher
y-values are outliers based on the interquartile range. For both seed and peer cases, we see that each of the first steps in the enrollment process was
typically completed in not more than 1 day. In fact, 67% of seed cases progressed through completing the survey in 3 or fewer days after diagnosis.
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collect samples, process laboratory test results, and
communicate results to participants) that required in-
tervention from a clinical staff member. Among seed
cases who completed the survey, two-thirds did so
within 3 days of diagnosis. By the fourth day after
diagnosis, 11% of seed cases who completed the sur-
vey had recruited at least one peer who completed the
survey. Overall, 14% (69/509) of participants (59/384
seed cases; 10/125 peers) recruited at least one other
peer who completed the survey (range, 1-10; median
[IQR] = 1 [1-2] peers who completed the survey).

We solicited participants’ attitudes toward the plat-
form by age in the follow-up survey (n = 194

responded among 453 invited). The response was pos-
itive toward taking an online survey (Figure 2A) and
in dispensing coupons (Figure 2B). Age stratification
revealed a strong preference for the online survey ver-
sus talking to someone such as a contact tracer among
younger age-groups (Figure 2A).

Percent positivity

For most months, there was no significant difference
between the Snowball Study’s performance and lo-
cal testing programs (Figure 3). Although September
and November 2021 reflect better performance in

FIGURE 2 Attitudes About Snowball Study Procedures: (A) Data Collection and Contact Elicitation and (B) Recruiting Contacts for Enrollmenta

Abbreviation: N/A, not applicable.
aThe first 2 of the contact elicitation statements (panel A) are stratified by age, showing that contact elicitation via an electronic platform has higher
acceptability among younger respondents. Columns show the proportion of respondents (N = 194) indicating agreement with each statement in the
follow-up survey.
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FIGURE 3 Percent Positivity Comparing Snowball, Local Public Health, and a Local Academic Medical Centera

Abbreviations: RAT, rapid antigen test; USPS, United States Postal Service.
aThe percent positivity was calculated as the number of positive polymerase chain reaction (PCR) tests over the number of PCR tests collected during
that month (December 2020-July 2022). This proportion has a 95% confidence interval. We compared this proportion to the weekly percent positivity
reported by Durham County and the Duke University Health System. The academic medical center tests may have been administered for presurgical
screening, employee surveillance, possibly student surveillance during some time periods, and testing of symptomatic patients, staff, and students as
needed and per the protocols at that time. Each Snowball point is labeled with the number of positive PCR tests over the total number of PCR tests.
The graph also shows notable policy changes that could affect prevalence (vertical bars, labeled) and common variants circulating at the time (horizontal
bars below the positivity proportions).

Snowball, the small number of tests reduces confi-
dence in there being an actual difference.

Secondary attack rates

Among 384 seed cases with complete surveys, 302
(79%) had at least one cohabitant who was not also a
contemporaneous seed case and described the general
location where they believed that they were infected.
Of these, a quarter (n = 74) believed they caught
SARS-CoV-2 within their own home and the other
228 believed they were infected outside the home.
The overall secondary attack rate within households
in this cohort was 21% (range, 0%-100%; median
[IQR] = 0 [0%-33%]) (Table 2). There was no sta-
tistically significant difference in the secondary attack
rate between households with Duke affiliation versus
not; the seed case’s number of daily contacts above or
below the median; or the predominant SARS-CoV-2
variant at the time of the seed case’s infection.
However, secondary attack rates were significantly
higher among households with children than among
households without (23% vs 19%, respectively);
households with any family members versus house-
holds comprising only roommates/unrelated members
(23% vs 12%, respectively); households reporting
“always”or “mostly”staying home in the last 2 weeks

versus households reporting “sometimes,”“rarely,”or
“never” staying home (28% vs 15%, respectively);
and households reporting “always” or “most of the
time” masking outside of the home or not leaving the
home in the last 2 weeks versus households where
members “sometimes,” “rarely,” or “never” wore
masks outside the home (23% vs 12%, respectively).

Discussion

Most Snowball Study participants completed their
survey within 3 days of receiving their diagnostic test
result, disclosing information similar to what would
have been collected during a contact tracing interview,
suggesting that such surveys represent a rapid, effi-
cient method to collect contacts during an epidemic.
In addition, the scalable platform built for the Snow-
ball Study was capable of managing all aspects of
tracing contacts and identifying novel cases. Finally,
the Snowball Study’s percent positivity rates were sim-
ilar to those reported by a local academic medical
center and public health program.

This Web-based system is rapidly deployable and
easily scalable to manage the number of cases requir-
ing contact tracing. This was demonstrated during
surges in COVID-19 infection, when rapid increases
in cases and enrollment activity did not require
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TABLE 2
Secondary Attack Rates Within Households by Selected
Characteristicsa

n

Secondary
Attack Rate (%)

(95%CI)

Overall 302 21 (19-23)
Children in householdb

Yes 106 23 (20-25)
No 196 19 (12-19)

Cohabitants compositionb

Some or all familial relations 250 23 (20-24)
No familial relations 52 12 (7-19)

Duke affiliation
Yes; affiliated 154 22 (20-26)
No; not affiliated 148 21 (17-22)

Household social distancing prior 2 wkb

Always, most of the time 134 28 (25-31)
Sometimes, rarely, never 168 15 (11-16)

Household mask wearing prior 2 wkb

Always, most of the time, did not
leave house

250 23 (20-24)

Sometimes, rarely, never 52 12 (12-21)
Seed case’s daily contacts

Above median (>15) 144 20 (17-23)
At or below median (0-15) 158 23 (19-25)

Predominant circulating variantc

Delta 63 26 (24-33)
Omicron BA.1 138 22 (16-22)
Omicron BA.2/2.12/2.75 84 19 (12-20)
Omicron BA.4/BA.5 15 12 (6-20)

Abbreviation: CI, confidence interval.
aThe secondary attack rate within the household is shown overall and by selected
characteristics, which are compared using the Kruskal-Wallis test.
bDifference in groups significant at P ≤ .05.
cTwo participants recruited during the Alpha wave were dropped from this analysis
due to small cell size.

additional personnel. This suggests an obvious ben-
efit to public health, given that surges could be met
without the need for hiring and training new con-
tact tracers.21-24 In addition, the Snowball Platform
enabled the collection of information similar to that
gathered by contact tracing, including demographics,
social contacts, household composition, workplace
information, venues frequented, and health beliefs
and behaviors, without time spent by contact tracers
to collect the information.

Most infections have longer serial intervals to on-
ward infection. Applying the Snowball Platform14

and social analysis methods to other settings may
yield an advantage that could help reduce community

transmission rates overall. For example, because per-
sons with sexually transmitted infections tend to be
younger or middle-aged, the Snowball Platform might
be a suitable tool in this population, given the high ac-
ceptability seen in our study among these age-groups.
Cases or contacts could be offered the platform as an
alternative to traditional contact tracing, with a pro-
visionally scheduled interview that would be canceled
if the person completed the survey within a specified
time window. Several contact tracing programs de-
veloped during the SARS-CoV-2 pandemic reported
multiple days or multiple attempts to engage cases
and complete contact tracing interviews.25,26 The plat-
form could thus augment public health activities and
reduce time and effort needed to elicit risk behaviors
and contacts for tracing.

Household transmission was high among the
Snowball Study cohort, with 1 in 5 household mem-
bers infected on average along with the seed case.
However, only 11% of seed cases with completed
surveys had at least one peer enroll by day 4 post-
diagnosis. This represents the outer margin of the
intervention window for slowing onward transmis-
sion for SARS-CoV-2,27 particularly given that most
seed cases were diagnosed a few days into their infec-
tion cycles, similar to other programs,28 and that the
serial interval time for SARS-CoV-2 for the majority
of seed cases (enrolled during Delta and Omicron
waves) may have been as short as 3 to 4 days.29

Disrupting transmission in this setting would require
a combination of the Snowball Platform to distribute
or make available highly accurate rapid home tests
with a way to report results, combined with biometric
monitoring as a second layer of targeting resources
to highly infectious or even preinfectious persons.
Providing bar-coded home tests and developing a way
to securely upload results might extend the efficiency
of the platform further into the disease transmission
process.

We expected to see a lower secondary attack rate in
households affiliated with Duke, as these households
are likely better resourced than other Durham County
households and had excellent access to testing, pre-
sumably enabling earlier detection, and subsequently
less onward transmission. The absence of significant
difference may be due to the fact that seed cases in the
cohort were drawn from Durham County residents
who had access to care (as evidenced by having been
tested within this single health system). We did not
expect that households reporting higher levels of mit-
igating social behaviors (masking, social distancing)
at the time of household infection would have signifi-
cantly higher secondary attack rates than households
that were less likely to report such behaviors; these
results require further investigation. We expected
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the higher secondary attack rates among households
with children and households where family members
resided together that we observed. The Delta variant
appeared to have a higher secondary attack rate than
other variants among this cohort. This differs from
estimated effective reproduction numbers for the vari-
ants, where Omicron and its sublineages appear more
transmissible.30,31 Higher vaccination rates and less
severe symptoms may have led to fewer Omicron sec-
ondary attacks being detected within households and
could indicate that a lower proportion of cases were
or are being counted in the communities.

In April 2022, Snowball performed slightly bet-
ter than local testing programs due to a multiwave
peer chain among a group that was not tested reg-
ularly and also had several members who tested
positive for SARS-CoV-2. The major limitation of
the percent positivity analysis is the small sample
sizes, which limits interpretation. Some months had
large CIs and the collection of more tests would
have changed the proportion and interval. Second,
we compared a study population comprising contacts
identified by an infected person with a hospital-based
and a county testing program, which included screen-
ing and surveillance testing. However, one of the goals
of the study was to test the efficiency of the plat-
form and the methods by investigating whether we
could successfully identify positive cases and match
percent positivity with less effort and fewer human
resources.

Multiple biases affected selection into this cohort,
which limits inference. First, we invited seed cases
from an academic medical center that does not serve
a population that is representative of this geographic
area. This is especially problematic, given that this
cohort failed to engage representative proportions of
groups that have historically been excluded from re-
search. Because most participant recruitment chains
terminated at the seed case or first-wave peer, we
were not able to reach into the community and
mitigate bias from seed case selection.32-34 Second, em-
ployees of the health system/university and students
are overrepresented in the cohort. Third, invitation
to the study required an e-mail address, access to
the Internet, and the ability to access one’s EHR.
The first 3 biases described parallel marginalization
of some groups that occurred during the pandemic.
Fourth, study activities were only available in En-
glish and Spanish. Fifth and finally, cohort members
who elected to participate in the study were offered
a small monetary incentive and received coupons
to distribute for free testing. However, free testing
was widely available by the time the study began
enrollment and thus this strategy may not have con-
stituted a suitable incentive.35 Selection bias may have

been compounded for the follow-up survey, as peo-
ple who were amenable to online data collection in
the first place or who had positive feelings toward
the study may have been more likely to agree to
participate, which would bias toward more accept-
able attitudes toward the platform and study process.
However, the concentrated geographic area from
which the cohort was drawn lends strength to the
analysis.

Employing a link tracing design that permitted
study participants to determine and recruit their own
contacts at risk yielded similar percent positivity in
this setting as more time- and labor-intensive local
sampling programs. The electronic platform required
resources to develop and deploy but was scalable to
the infection and is now publicly available,14 obvi-
ating the need for intensive development to address
future outbreaks of COVID-19 or other novel or
known infectious agents. The technology and meth-
ods used here have the potential to increase capacity
as they are acceptable, adaptable, and scalable, reduc-
ing the need for additional human resources during
typically labor-intensive contact tracing steps.

Implications for Policy & Practice

■ An electronic platform was developed to collect informa-
tion analogous to what is typically collected during a contact
tracing interview and was made freely available.

■ The platform captures case-contact relationships and per-
mits cases to refer their contacts for testing.

■ The platform has the ability to expand public health capac-
ity: in the setting described here, the percentage of positive
COVID-19 tests mirrored that of local testing programs, but
with far fewer human resources needed.

■ The electronic platform is scalable to any epidemic size, cus-
tomizable to any infection, and can be used by public health
systems across administrative levels.

■ The platform had high acceptability among respondents who
chose to use it.

■ The platform can be deployed rapidly and customized to a
new infection in the event of a future outbreak, epidemic, or
pandemic.

■ The platform can be integrated if there are existing disease
surveillance systems by uploading data from the platform
through the back end of any existing system.

■ For standardizing data collection for diseases that are re-
portable, the public health agencies mandating disease
reporting can customize the survey module before dissem-
inating the platform to local agencies, ensuring the data are
collected in a standard manner.
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