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Abstract

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized

by a variety of clinical manifestations. TSC is caused by mutations in the TSC1 or TSC2

genes, which encode the hamartin/tuberin proteins respectively. These proteins function as

a heterodimer that negatively regulates the mechanistic Target of Rapamycin Complex 1

(mTORC1). TSC research has focused on the effects of mTORC1, a critical signaling hub,

on regulation of diverse cell processes including metabolism, cell growth, translation, and

neurogenesis. However, non-canonical functions of TSC2 are not well studied, and the

potential disease-relevant biological mechanisms of mutations affecting these functions are

not well understood. We observed aberrant multipolar mitotic division, a novel phenotype, in

TSC2 mutant iPSCs. The multipolar phenotype is not meaningfully affected by treatment

with the inhibitor rapamycin. We further observed dominant negative activity of the mutant

form of TSC2 in producing the multipolar division phenotype. These data expand the knowl-

edge of TSC2 function and pathophysiology which will be highly relevant to future treat-

ments for patients with TSC.

Introduction

Tuberous Sclerosis Complex is a genetic disorder with a broad spectrum of phenotypes, affect-

ing virtually every organ system [1]. This disorder occurs in approximately 1 in 6,000 people

and is marked by mutations in TSC1 or TSC2 which code for hamartin and tuberin, respec-

tively [2–5]. Loss of function mutations of either TSC1 or TSC2 are sufficient to cause patho-

genesis, though mutations in TSC2 have been associated with more severe phenotypes [3]. An

autosomal dominant inherence pattern is possible, but de novo mutations are much more

common, and are seen in the majority of patients with TSC [6]. Current models of TSC patho-

genesis suggest a possible two-hit hypothesis wherein a loss-of function mutation is required

in both copies of either TSC1 or TSC2 in order to produce disease [7]. However, not all hamar-

tomas found in patients with TSC reliably demonstrate loss of heterozygosity, suggesting that

haploinsufficiency, post-translational inactivation of remaining protein, or dominant negative
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activities of mutant TSC1 (hamartin) or TSC2 (tuberin) may also underlie some disease phe-

notypes [8–10].

Hamartin and tuberin are canonical negative regulators of the essential mammalian/mech-

anistic Target of Rapamycin (mTOR) pathway [1, 11]. Hamartin and tuberin are constitutive

inhibitors of RHEB GTPase (Ras homolog enriched in the brain), an upstream regulator of

mTOR complex 1 (mTORC1) [12–14]. The principal identified effect of TSC1 and TSC2 loss

of function mutations is thus unchecked overactivity of mTORC1 [12]. mTORC1 promotes

protein synthesis, cell growth, and proliferation through phosphorylation of downstream tar-

gets, classically including the activation of S6 kinase (S6K) and the inhibition of eukaryotic ini-

tiation factor 4E-binding proteins (4E-BP) [12, 15–20].

A large proportion of patients with TSC present with epilepsy and are found to have exten-

sive cortical hamartomas (also known as cortical tubers) of the brain in which lamination is

disordered and dysmorphic neurons are present [1]. A diagnostic characteristic of cortical

tubers is the presence of “giant cells”, so named due to their large size. Giant cells are thought

to have abnormal differentiation and can exhibit both astrocytic and neuronal features.

Though the cell of origin of giant cells remains controversial, it has been repeatedly observed

that giant cells can be multinucleated, a phenotype that can arise from multipolar division

[21–24].

During cell culture experiments with induced pluripotent stem cells (iPSC) derived from a

patient with TSC, we observed a high incidence of multipolar dividing cells. This suggests a

possible mechanism that may underlie the multinucleated giant cells found in cortical tubers.

In this report, we present evidence that a TSC2 loss of function mutant, containing a 6 amino

acid deletion within the C-terminus, exhibits a dominant negative function leading to multipo-

lar spindle formation. This finding highlights a possible contributing factor to the disruptions

of normal neuronal migration and cortical development seen in patients with TSC.

Materials and methods

Use of human stem cells. Deidentified cells from human subjects were used as previously

described (Sundberg 2018; Armstrong 2017). These initial publications had details of deriva-

tion including informed consent and institutional approval. For line 77 (Sundberg et al. 2018),

subject was recruited through Boston Children’s Hospital and protocol approved by Boston

Children’s Hospital (Boston, USA) IRB (P00008224). Written informed consents were

obtained from all participants and/or their parents as appropriate.

Resource availability

Corresponding author. Further information and requests for resources and reagents

should be directed to and will be fulfilled by the co-corresponding author, Kevin Ess (kevin.

ess@vumc.org).

Materials availability. This study did not generate new unique reagents.

hiPSC Cell Culture

iPSCs were grown as colonies on Matrigel (Corning, Corning, NY) coated 6 well plates or glass

bottom 35mm plates (Cellvis, Mountain View, CA) in mTeSR1 medium (StemCell Tech, Van-

couver, Canada), replaced daily, maintained at 37˚C and 5% CO2, and passaged as needed

with ReLSR (StemCell Tech).
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Cell treatment

Cells were grown as described above. When cells reached 50% confluence, they were treated

with 0.4 nM or 30 nM rapamycin (Tocris Bioscience, Bristol, United Kingdom) or vehicle

DMSO (Sigma Aldrich, St. Louis, MO) for 24 or 48 hours. Rapamycin was prepared in DMSO

and added directly to the media. Cells were then lysed or fixed as described below.

Whole cell extracts

Cells were washed with 1X PBS with 10 μM sodium vanadate. Cells were lysed using lysis

buffer (1% Triton X-100 in STE [100mM NaCl, 1mM EDTA, 10 mM Tris pH 8.0], PhosSTOP

(Sigma Aldrich), PIC (Sigma Aldrich), 50 μM MG132 (Sigma Aldrich), 1 μM PMSF (Sigma

Aldrich)) added directly to the plate followed by scraping of the cells. Lysate was then soni-

cated for 3 seconds on power 3 at 4˚C, followed by centrifugation for 15 minutes at 16,000 x g
at 4˚C. Supernatant was kept at -80˚C until further analysis.

Immunoblotting

Samples were prepared by mixing whole cell extracts with 4X Laemmli Sample Buffer (Bio-

Rad, Hercules, CA) and then boiling for 5 minutes at 105˚C. Gel electrophoresis was per-

formed on a 4–12% Bis-Tris gel (ThermoFisher, Waltham, MA) with 1X NuPage MOPS run-

ning buffer (ThermoFisher) at a constant voltage of 140V for 90 minutes. Proteins were

transferred to a PVDF membrane (ThermoFisher) in transfer buffer on ice in the cold room

(4˚C) overnight at a constant current of 33 mA. Post-transfer, the membrane was stained with

Ponceau S solution (Sigma Aldrich) for 5 minutes to determine total protein loaded into gel

lanes. Membranes were washed 3X in ddH2O. Membranes were blocked in 5% non-fat milk

(RPI Corp, Mount Prospect, IL) in Tris-buffered saline (Corning) with 0.1% Tween 20 (Sigma

Aldrich)(subsequently termed TBS-t) for 1 hour at room temperature with agitation. All pri-

mary and secondary antibodies were diluted in TBS-t with 5% non-fat milk, and the mem-

brane was washed 3X with 0.1% TBS-t afterwards. Antibodies are listed in Table 1. Primary

antibodies were incubated overnight at 4˚C with agitation. Secondary antibodies were incu-

bated for 1 hour at room temperature with agitation. The membrane was imaged using ECL

developing reagents (ThermoScientific) and a CCD Imager—AI600 (General Electric, Boston,

MA).

Immunofluorescence

All cells were fixed by incubation in 100% methanol for 10 minutes at -20˚C. Fixed samples

were blocked with blocking buffer [PBS (Corning), 1% Normal Donkey Serum

Table 1. Antibodies used in these experiments.

Antibody Manufacturer Catalog Dilution Application

Alpha Tubulin (TUBA) Invitrogen MA1-80017 1:500 Immunostaining

GAPDH Cell Signaling Technologies 2118 1:2000 Western Blot

TUBERIN (TSC2) Cell Signaling Technologies 4308 1:2000 Western Blot

phospho-S6 Ribosomal Protein (Ser 240/244) Cell Signaling Technologies 5364 1:1000 Western Blot

S6 Ribosomal Protein Cell Signaling Technologies 2217 1:1000 Western Blot

Goat anti-Rat IgG, Alexa Fluor 594 Invitrogen A-11007 1:1000 Immunostaining

Goat anti-Rat IgG, Alexa Fluor 568 Invitrogen A-11077 1:1000 Immunostaining

Goat anti-rabbit IgG, HRP Invitrogen 65–6120 1:5000 Western Blot

https://doi.org/10.1371/journal.pone.0292086.t001
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(ThermoScientific), 1% BSA (Sigma Aldrich), 0.1% Triton X-100] for 1 hour at room tempera-

ture. Primary antibodies were diluted in blocking buffer and then incubated overnight at 4˚C.

Secondary antibodies were diluted in blocking buffer and then incubated 1 hour at room tem-

perature in the dark. Antibodies are listed in Table 1. Images were acquired using a Prime 95B

camera mounted on a Nikon spinning disk microscope using a Plan Apo Lambda 20x objec-

tive lens. 9 randomized images per genotype and condition were captured. The software used

for image acquisition and reconstruction were NIS-Elements Viewer (Nikon, Tokyo, Japan)

and ImageJ (FIJI).

Image analysis

Images were blinded prior to scoring. CellProfiler was then used to quantify the total number

of cells in each image. Subsequently, cells were manually identified to be in mitosis and in pro-

phase, metaphase, anaphase, or telophase. The number of cells with more than two mitotic

spindles was also recorded. Two-way ANOVA and student t-tests were run using Prism

(GraphPad, San Diego, CA) on the collected data.

DNA content flow cytometry

iPSCs were grown to 70% confluency as described above. Cells were washed with 1X PBS

before incubating with ReLSR (StemCell Tech) for 30 seconds at room temperature. ReLSR

was aspirated and the cells were allowed to further incubate at room temperature for 3 min-

utes. Cells were resuspended in 1X PBS and spun down 300 x g for 5 minutes. Supernatant was

aspirated and cells were resuspended in 300μL 1X PBS. Cells were vortexed to remove clumps.

700μL ice-cold 100% Ethanol (Decon Laboratories, King of Prussia, PA) was added to the cells

and the sample was incubated at -20˚C for at least 10 minutes up to overnight. Cells were

counted using Trypan Blue (Corning) on a Countess II (Invitrogen). Cells were washed twice

with 1X PBS by spinning down at 1000 rpm for 5 minutes followed by resuspension in staining

mix [10mL 0.1% Triton X-100 (ThermoScientific), 10μL RNAseA (100 mg/mL)(Qiagen, Hil-

den, Germany), 10μL DAPI (1mg/mL)(ThermoScientific)]. Cells were resuspended to a uni-

form final concentration (1 x 106 cells/mL staining mix). Cells and staining mix were passed

through a cell-strainer cap on FACS tubes (BD Falcon). Cells were incubated overnight at 4˚C.

Stained cells were then run slowly on a 3-Laser LSRII flow cytometer (<100 events/second).

Stained cells were expertly gated for live, single cells. Data was stored and processed on Cyto-

bank. Events were recorded as G1 phase for the first DAPI peak (2n) and G2/M phase for the

second DAPI peak (4n) of the DAPI histogram. Events between the peaks were recorded as S

phase.

siRNA transfection of hiPSCs

Cells were grown as described previously. When iPSCs reached 50% confluency, 1 μM siRNA

(Horizon Accell SMARTpool, Waterbeach, United Kingdom) in DMEM/F12 (Gibco, Ther-

moScientific) was added to the cells and left on for 24 hours. Media was changed to mTeSR1

after 24 hours and cells were allowed to grow normally for 48 more hours. iPSCs were then

fixed or lysed.

Results

Patient-derived TSC2 mutant iPSCs display multipolar division

We have been using an allelic series of isogenic iPSCs derived from a patient with a C terminal

6 amino acid in-frame microdeletion (c.5238_5255del, p. His1746_Arg1751del) in exon 41 of
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TSC2 [25]. An accompanying set of isogenic cells was generated from the heterozygous

patient-derived iPSC (TSC2 +/LOF); in one line the second, wild type allele was also mutated

(TSC2 LOF/LOF) and in the other the heterozygous mutant allele was corrected to wild type

(WT) as previously described [25]. A mutant TSC2 protein is produced from the allele harbor-

ing the 6 aa in frame microdeletion found in the TSC2 +/LOF and TSC2 LOF/LOF cells,

although the expression level of this mutant protein is decreased relative to TSC2 levels seen in

other wild-type iPSCs and the corrected patient-matched line (Fig 1a and 1b).

During standard cell culture maintenance, we observed that patient-derived TSC2 +/LOF

iPSC cells exhibited a higher incidence of multipolar division, with cells including three or

more mitotic poles as opposed to the typical two expected during mitosis (S1a Fig). This phe-

notype was detected in both the original patient-derived line as well as the homozygous LOF

line (TSC2 +/LOF and TSC2 LOF/LOF) (Fig 1d). To determine the rate of multipolar division

in the mutant patient iPSC line, we counted the total nuclei present and then scored the total

number of nuclei undergoing division within this population. The average rate of division was

not significantly different in the wild type compared to mutant iPSCs (TSC2 +/LOF and TSC2

LOF/LOF) (S1b Fig). Further, no significant difference was found between genotypes for the

proportion of cells in each phase of mitosis nor the cell cycle (S1c–S1g Fig). Nuclei undergoing

division and exhibiting more than two spindle poles were considered to be multipolar, and the

total number of such nuclei was counted. A significant increase in multipolar nuclei as a per-

centage of dividing nuclei was observed in TSC2 LOF/LOF iPSCs compared to matched wild

Fig 1. Patient-derived TSC2 loss of function mutant induced pluripotent stem cell cultures have multipolar mitotic cells. (a) Representative

immunoblot showing protein expression of tuberin in patient iPSCs. (b) Quantification of mean relative expression of tuberin in immunoblot shown in

A (across 3 technical replicates using these lines) Error bars = SD. (c) Average proportion of multipolar dividing nuclei by genotype. Vehicle n = 6;

0.4nM rapamycin for 24 hours n = 4; 30nM rapamycin for 24 hours n = 3; 0.4nM rapamycin for 48 hours n = 3 independent replicates per genotype.

Genotype p = 0.0013. * refers to p = 0.0471 [Two way ANOVA and Dunnett’s multiple comparisons test]. Error bars = SD. (d) Representative

immunofluorescence images of induced pluripotent stem cells using TUBA (magenta) to identify mitotic cells and Hoechst (teal) to identify DNA.

White arrows indicate multipolar dividing nuclei. Scale bars = 50 μm. (e) Representative immunoblot showing protein expression of vehicle and

rapamycin treated cells in c.

https://doi.org/10.1371/journal.pone.0292086.g001
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type iPSCs (p = 0.0471) (Fig 1c). TSC2 +/LOF iPSCs showed an increase in multipolar nuclei

compared to wildtype (Fig 1c). To determine if the multipolar phenotype was due to increased

mTORC1 activity, each iPSC line was treated with rapamycin, a potent mTORC1 inhibitor, at

different concentrations and for different durations (0.4 nM rapamycin for 24 hours, 30 nM

rapamycin for 24 hours, 0.4 nM rapamycin for 48 hours). No significant differences in the per-

centage of mitotic cells were observed in vehicle treated vs all rapamycin dose and duration

treated iPSCs (S1b Fig). Interestingly there was no significant change in number of multipolar

nuclei with different rapamycin dose and duration of treated TSC2 mutant iPSCs (TSC2

+/LOF and TSC2 LOF/LOF) (Fig 1c) though at longest exposure there was a trend towards

decreased multi-polarity in all genotypes. Further, we observed no significant change in per-

centage of mitotic cells in each phase of mitosis for any genotype when treated with rapamycin

(S1c–S1f Fig).

Multipolar division phenotype is not observed in TSC2 knock out iPSCs

We sought to replicate these observations in another iPSC line. To test the impact of the pres-

ence or absence of tuberin, we used a TSC2 CRISPR-engineered knock out iPSC line that did

not originate from a patient and produces no tuberin protein, originally described in [26] (Fig

2a and 2b). When repeating the approach shown in Fig 1 with this line, few to no multipolar

dividing nuclei were observed in the TSC2 knock out iPSCs (Fig 2c and 2d). Moreover, the

average percentage of dividing nuclei were not significantly different between the isogenic

wild type and TSC2 knock out iPSCs (S2a Fig). No significant differences were found between

Fig 2. TSC2 knock out induced pluripotent stem cell cultures have no multipolar mitotic cells. (A) Representative immunoblot showing tuberin

expression in TSC2 knock out iPSCs. (B) Quantification of relative expression of tuberin (across 3 technical replicates using these lines). (C)

Representative immunofluorescence images of induced pluripotent stem cells showing expression of TUBA (magenta) and Hoechst (teal) to

identify DNA to identify mitotic cells. Scale bars = 50 μm (D) Quantification showing average percentage of mitotic cells that have the multipolar

division by genotype. N = 3 independent replicates per genotype. No significance [paired students t test]. Error bars = SD.

https://doi.org/10.1371/journal.pone.0292086.g002
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wild type and TSC2 knock out iPSCs when examining the proportion of cells in each phase of

mitosis or cell cycle stage (S2b–S2f Fig).

Patient-derived mutant TSC2 exhibits a dominant negative effect

Since the multipolar division phenotype was observed in the iPSCs with the mutant tuberin

but not the TSC2 KO iPSCs, we next tested whether the mutant version of TSC2 that is

expressed in patient-derived iPSCs exerts a dominant negative effect. We performed a tran-

sient siRNA knock down in the patient mutant lines to remove the mutant TSC2 protein. Loss

of TSC2 protein was observed in all iPSCs treated with siRNA against TSC2 (Fig 3a). The pro-

portion of multipolar division significantly decreased between the scramble control and

siTSC2 treated patient TSC2 +/LOF iPSCs (p = 0.0051) (Fig 3c). The percentage of cells in

mitosis increased in the TSC2 +/LOF siTSC2 treated iPSC compared to scramble control cells

(Fig 3b). Interestingly, the average rate of mitosis and proportion of multipolar divisions did

not significantly differ between scramble control and siTSC2-treated cells in the patient wild

type. The same was true in scramble control and siTSC2-treated TSC2 LOF/LOF iPSCs (Fig 3b

and 3c).

Discussion

TSC is a prototypical neurogenetic disorder whose study has led to many insights into the nor-

mal process of brain development as well as the pathogenesis of epilepsy, autism, and intellec-

tual disabilities. While the disorder is caused by mutations in TSC1 or TSC2 genes, patients

with TSC2 mutations typically have more severe symptoms [1, 3]. In this study, we chose to

Fig 3. siTSC2 induced pluripotent stem cells have multipolar mitotic cells. (A) Representative immunoblot of

induced pluripotent stem cells showing expression loss of Tuberin in siTSC2 iPSCs. (B) Quantification showing

average percentage of cells in mitosis per genotype and treatment. N = 3 independent replicates per genotype and

treatment [Two way ANOVA]. Error bars = SD. (C) Quantification showing average percentage of mitotic cells that

have the multipolar division per genotype and treatment. N = 3 independent replicates per genotype and treatment,

Genotype x treatment p = 0.0060, treatment p = 0.0283, * refers to p = 0.0051 [Two way ANOVA with Šidák’s multiple

comparisons test]. Error bars = SD.

https://doi.org/10.1371/journal.pone.0292086.g003
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use an isogenic allelic series of iPSCs from a patient with a TSC2 mutation [25]. This particular

TSC2 mutation (c.5238_5255del, p. (His1746_Arg1751del) in exon 41) has been frequently

reported. In fact, in multiple studies profiling mutations in patients with TSC throughout the

world, this same 6 aa deletion was found to be one of the most common mutations [6, 27–30].

The impact from this specific mutant allele thus has important consequences for many patients

with TSC globally.

Approximately 90% of TSC patients experience epilepsy which is thought to originate from

cortical tubers [31]. A diagnostic characteristic of cortical tubers is the presence of giant cells.

Prior studies of these lesions include reports that a subpopulation of cells are multinucleated

[21–24]. Multinucleated cells can arise from several different mechanisms. One such mecha-

nism is multipolar division, in which a cell has more than two mitotic spindle poles [32]. A cell

undergoing multipolar division may then not complete cytokinesis, resulting in a single cell

with more than one nucleus [33]. As multinucleated giant cells are located within cortical

tubers, an unanswered question is whether cell division abnormalities are involved in disrup-

tion of early brain development and the formation of cortical tubers in patients with TSC. We

found that iPSC cultures with both heterozygous and homozygous TSC2 mutation include a

subpopulation of cells undergoing multipolar division, indicating a role for tuberin in proper

division during mitosis within this cell type. A possible contributing mechanism to the forma-

tion of multinucleated giant cells in cortical tubers from mutant tuberin may thus be abnormal

mitosis with failed cytokinesis through multipolar division. Further study will be required to

determine such a mechanism.

When we investigated TSC2 KO iPSCs, which lack all tuberin protein, we did not find any

nuclei undergoing multipolar division. As the complete absence of tuberin did not result in

multipolar cells, expression of a mutant tuberin protein lacking 6aa seems to be required to

trigger multipolar division. To test this possibility, we knocked down tuberin with siRNA and

saw that in the TSC2 heterozygous iPSCs, upon treatment of siTSC2, there was an increase in

the percentage of cells in mitosis and a decreased incidence of multipolar division. These find-

ings indicate a dominant negative effect of the mutant tuberin against the wild type tuberin.

The patient wild type and TSC2 LOF/LOF iPSCs did not show the dominant negative effect

likely due to neither genotype having both a wild type copy and a mutant copy of tuberin.

Dominant negative activity from a heterozygous TSC2 mutation, as indicated by these data,

could indicate a novel mechanism of disease that has not been widely considered for TSC.

Future studies are also needed to determine if any other TSC2 mutations similarly lead to an

increase in multipolar dividing cells.

This multipolar phenotype is potentially ameliorated by rapamycin, as indicated by the

lower multipolar division rate seen in each genotype after the longer 48 hour exposure. Previ-

ous studies on tuberin function have primarily focused on mTORC1-dependent phenotypes,

but more investigation into mTORC1-independent tuberin functions is strongly needed as

some aspects of the TSC phenotype appear to be resistant to treatment with rapamycin or

structurally related drugs [34–38].

The TSC heterodimer is composed of hamartin and tuberin [2, 14]. Hamartin has been

shown to localize to the centrosome. Further, hamartin and hence the entire TSC heterodimer

has been shown to interact with PLK1 (polo-like kinase 1), a kinase involved in the duplication

of centrioles [39, 40]. Additionally, the transforming acidic coiled-coil 3 protein (TACC3) was

found to be necessary to localize phosphorylated tuberin (p-TSC2 Ser 939) to the spindle pole,

and TACC3- and TSC2-deficient cells were determined to have an increase in binucleated

cells [41–43]. These data, combined with the findings from this study, indicate a role for

tuberin and the TSC complex in centriole duplication, suggesting a possible mechanism that

may underlie multipolar division.
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Conclusions

In summary, we determined that the patient mutant copy of TSC2 promotes aberrant multipo-

lar division that is not significantly changed by treatment with the mTORC1 inhibitor rapamy-

cin (Fig 1, S1 Fig). Complete loss of TSC2 does not produce multipolar division (Fig 2).

Knockdown of mutant TSC2 shows a possible dominant negative effect with regards to this

multipolar division (Fig 3). We anticipate that the results presented here will be a catalyst for

further analysis of additional TSC patient-derived iPSCs for the presence of multipolar cells

and the mechanisms behind their origin.

Supporting information

S1 Fig. Percentage of dividing nuclei, cells in cell cycle phase, or cells in mitotic phase do

not change with genotype nor rapamycin treatment in patient iPSCs. (a) Quantification

showing average percentage of cells in mitosis per genotype and treatment for experiments

included in Fig 1. N = 3 independent replicates per genotype and treatment, [ANOVA]. Error

bars = SD. (b) Quantification of relative expression of tuberin in immunoblot shown in d.

N = 3 independent replicates, paired students t test. Error bars = SD. (c) Quantification of rela-

tive expression of p-S6 Ser240/244 in immunoblot shown in d. N = 3 independent replicates,

paired students t test. Error bars = SD. (d) Representative immunoblot showing protein

expression of tuberin and p-S6 in patient iPSCs. (e) Quantification showing average percent-

age of cells in cell cycle phase as determined by DNA content per genotype. N = 3 independent

replicates per genotype, [ANOVA]. Error bars = SD. (f) Example images of patient iPSCs

showing expression of TUBA (yellow) and Hoechst (teal) to identify DNA to display each

cycle of mitosis. (g-j) Quantification showing average percentage of cells in each mitotic phase

as determined by mitotic indexing per genotype and treatment. N = 3 independent replicates

per genotype, [ANOVA]. Error bars = SD.

(TIF)

S2 Fig. Percentage of dividing nuclei, cells in cell cycle phase, or cells in mitotic phase do

not change with knock out of TSC2 nor rapamycin treatment. (a) Quantification showing

average percentage of cells in mitosis per genotype and treatment for experiments included in

Fig 1. N = 3 independent replicates per genotype and treatment, [paired students t test]. Error

bars = SD. (b-e) Quantification showing average percentage of cells in each mitotic phase as

determined by mitotic indexing per genotype and treatment. N = 2 independent replicates per

genotype. Error bars = SD. (f) Quantification showing average percentage of cells in cell cycle

phase as determined by DNA content per genotype. N = 2 independent replicates per geno-

type. Error bars = SD.

(TIF)

S1 Raw images. Raw images of blots included in these studies.

(ZIP)
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