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Abstract

Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. 
Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional net-
work. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase and 
causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has 
been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological hu-
man processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway 
knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a causally 
connected way. To demonstrate that individual variant genes from connected pathways result in similar but distinguishable phenotypes, 
we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using 
GO-CAM representations of 2 related but distinct pathways, gluconeogenesis and glycolysis, we show that individual causal paths in 
gene networks give rise to discrete phenotypic outcomes resulting from perturbations of glycolytic and gluconeogenic genes. The ac-
curate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can 
be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants 
and to identify potential gene targets in altered processes.
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Introduction
Gene products mediate networks of causally connected functions 
to give rise to biological outcomes, revealed as observable pheno-
types. Phenotypes correlate with gene functions, and GO biologic-
al processes can be predicted by analyzing phenotypic outcomes 
(Ascensao et al. 2014). Causally connected gene functions can be 
grouped into biological pathways that represent their coordinated 
action to achieve a specific outcome. However, phenotypes, even 
ones conventionally attributed to a single mutated gene, can be 
the result of interactions of multiple genes. Phenotypic variability 
among affected individuals described as incomplete penetrance 
and variable expressivity can be the result of interactions between 
the mutated gene and other genes with which it normally inter-
acts (Kingdom and Wright 2022). Genes can also display epistatic 
interactions in which the phenotype caused by a mutation in 1 
gene can mask a phenotype of another variant gene in the same 
pathway (de Visser et al. 2011). Recent studies in large human po-
pulations of the range of phenotypes observed in individuals 

heterozygous for CFTR (cystic fibrosis transmembrane conduct-
ance regulator) mutations (Barton et al. 2022), mutations in genes 

associated with developmental delay (Kingdom et al. 2022), and 

mutations in genes associated with maturity onset diabetes of 

the young (Mirshahi et al. 2022) provide striking illustrations of 

the complex interactions that occur between a mutation in 1 

gene and normal genomic polymorphisms resulting in an affected 

individual’s phenotype.
Pathway databases, which model biological processes as net-

works of reactions, provide useful tools for exploring such interac-

tions. An individual reaction converts input physical entities into 

modified or relocated output entities. The conversion is mediated 

by regulatory and catalytic activities of still other entities. A reac-

tion is thereby temporally and causally connected to other reac-

tions that generate its inputs, consume its outputs, or modulate 

the activities of its catalysts and regulators, and loss of a single pro-

tein’s function can result in multiple phenotypic consequences de-

termined by the reaction network structure. Understanding this 
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structure thus provides a framework for interpreting phenotypes 
associated with mutations in genes present in the network.

How generally can this network model be applied to predict phe-
notypes resulting from the disruption of individual genes given di-
verse genetic backgrounds? Can we use phenotypes to tease apart 
subpathways in a network and identify the ones whose disruption 
gives rise to a discrete phenotype? Here, we used a network of path-
ways representing glucose and pyruvate metabolism to address 
these questions. Under normal physiological conditions in verte-
brates glucose levels are tightly controlled despite variation in de-
mands for energy and biosynthetic intermediates that depend on 
glucose metabolism, and variation in glucose availability from diet-
ary intake, glycogen breakdown and de novo glucose synthesis.

The complementary, interconnected processes of glycolysis 
and gluconeogenesis, in which glucose is catabolized and synthe-
sized, respectively, are central to glucose homeostasis. Glycolysis 
converts glucose and other monosaccharides to pyruvate and 
generates ATP and reduced NAD (Prochownik and Wang 2021). 
Gluconeogenesis consumes pyruvate, NADH, and ATP to generate 
glucose (Chourpiliadis and Mohiuddin 2022). Lactate (Cori 1981) 
and amino acids (Felig 1973) are major sources of carbon skeletons 
that are converted to pyruvate, and there are 3 routes from pyru-
vate to a common phosphoenolpyruvate intermediate (Fig. 1a). 
From phosphoenolpyruvate to glucose is a 10-reaction process. 
Seven reactions are shared by gluconeogenesis and glycolysis: 
These reactions are reversible under physiological conditions, 
mediated by the same enzymes, and directed by mass action. 
The remaining reactions of each process are irreversible under 
physiological conditions and mediated by different enzymes.

Glycolysis occurs in all tissues in the body. For red blood cells, 
which lack mitochondria, glycolysis is the only source of ATP. In 
contrast, gluconeogenesis is mainly confined to hepatocytes and 
kidney proximal tubules. The irreversible steps of glycolysis and 
gluconeogenesis are normally coordinately regulated to maximize 
hepatocyte glycolysis when blood glucose levels are high and in 
skeletal muscle in response to strenuous exercise, and to minimize 
hepatocyte glycolysis and maximize hepatocyte and kidney prox-
imal tubule gluconeogenesis in response to fasting and physiologic-
al stresses. The pyruvate end-product of glycolysis is metabolized 
aerobically to acetyl-CoA or anaerobically to lactate (Fig. 1b).

We distinguished 3 groups of genes and regulatory processes 
for our analysis as follows: those unique to glycolysis, those un-
ique to gluconeogenesis, and those shared between glycolysis 
and gluconeogenesis, allowing us to ask whether variant forms 
of genes in each set are associated with distinct or shared pheno-
types. Shared phenotypes for genes in 1 set that are distinct from 
phenotypes of another set would allow us to associate an individ-
ual biochemical pathway with specific outcomes. Thus, we could 
identify genes in the pathway that could potentially be manipu-
lated to modify clinical outcomes.

We have previously computationally generated Gene 
Ontology-Causal Activity Models (GO-CAMs) of the human pro-
cesses of glycolysis and gluconeogenesis, and of the metabolism 
of pyruvate, the end-product of glycolysis, to lactate (anaerobic 
metabolism) or acetyl-CoA (aerobic metabolism) (Good et al. 
2021). The GO paradigm annotates individual gene products 
with terms that describe their molecular functions, association 
with cellular components, and involvement in multistep biologic-
al processes (The Gene Ontology Consortium 2017). GO-CAM 
models link these annotations of individual gene products into a 
causal flow. In GO-CAM models of metabolic processes, this cau-
sal flow is represented by enzymatic activities enabled by gene 
products that are connected by shared input, output molecules 

or regulatory functions of gene products within the causal chain 
(Thomas et al. 2019). A GO-CAM differs from the Reactome model 
of the same process in that the latter employs a more discursive 
process description data model (Le Novère et al. 2009) to describe 
processes as networks of reactions mediated by gene products 
that transform input molecules into output molecules (Gillespie 
et al. 2022). GO-CAM models derived from Reactome pathways 
can be used to define sets of genes that function in linear causal 
pathways and can be used to discriminate genes that function in 
multiple or branched pathways. A specific feature of GO-CAM mod-
els generated in the work described here is that each covers a group 
of molecular functions corresponding to a single GO biological pro-
cess, while Reactome models are more variable in size and scope, 
combining, for example, metabolic and regulatory functions, and 
merging multiple tissue-specific variant forms of a process.

We have now used computationally-derived human GO-CAM 
models as templates to manually construct GO-CAM models of 
the corresponding mouse pathways, teasing apart pathway net-
works to create a causal flow of GO molecular functions enabled 
by mouse gene products. We used the gene lists from these mod-
els as a basis to interrogate MGD phenotype annotations to deter-
mine if mutant forms of mouse genes associated with different 
mouse GO-CAM models were enriched for different phenotypes 
(Blake et al. 2021). This approach takes advantage of the wealth 
of data in the laboratory mouse linking genetic variation to pheno-
typic variation (http://www.informatics.jax.org/greenbook/).

Laboratory mice are a uniquely rich resource of mammalian phe-
notypes associated with variations in single genes expressed on di-
verse genetic backgrounds. A large and diverse collection of mouse 
genetic variants associated with visible phenotypes has been as-
sembled in the past 120 years by systematically searching for visibly 
abnormal individuals in inbred populations, by inducing random 
mutations by mutagens, radiation or insertion of gene trap con-
structs, and by modern genome editing technologies such as targeted 
mutagenesis in ES cells or CRISPR/Cas9 methodologies (reviewed in 
Bello et al. 2021). The variant heritable alleles generated in these 
ways involve DNA sequence changes including point mutations, in-
sertions of heterologous sequence, chromosomal deletions, and rear-
rangements affecting several genes, and their phenotypes have been 
assessed to various extents, by individual investigators and in small 
and large scale mutagenesis projects (Groza et al. 2023). These dispar-
ate phenotype data whether generated by large projects, or by expert 
curation of published literature, are standardized using terms from 
the Mammalian Phenotype ontology (https://www.informatics. 
jax.org/vocab/mp_ontology) (Smith et al. 2005) and to relevant 
experimental strain genetic backgrounds and evidence, 
and are integrated in the phenotypes section of the Mouse 
Genome Informatics resource (https://www.informatics.jax.org/ 
phenotypes.shtml) (Bello et al. 2015). MGI genotype–phenotype data 
include simple genotypes with causative mutations in a single gene 
as well as more complex genotypes where mutations in multiple 
genes may contribute to the phenotype. For analyses here, only the 
simple genotype associations were used (Bello and Eppig 2016).

Lastly, we asked if we could extend our knowledge mechanis-
tically by using enriched phenotypes for gluconeogenesis to iden-
tify transcription factors that are associated with the same 
phenotypes. We then confirmed that some of the transcription 
factors we identified are involved in regulation of gluconeogenesis 
while others are involved in pathways that interact with the glu-
coneogenic pathway. With this inferential approach, we can begin 
to systematically expand our pathway analysis to include coordi-
nated transcriptional regulation of the pathway. Combining tran-
scriptional regulation with well-studied allosteric regulation of 
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the enzymes of the pathway, we can begin to better understand 
the causal connections among genes that result in complex ab-
normal phenotypes.

Materials and methods
Genes used in GO-CAM models
GO-CAM (Thomas et al. 2019) activity flow (Le Novère et al. 2009) 
models computed from Reactome gluconeogenesis, glycolysis, 
pyruvate–lactate, and pyruvate–acetyl-CoA pathways (Hill et al. 
2016; Good et al. 2021; Gillespie et al. 2022) assigned functions to 
60 human gene products (Table 1). These gene products are 
grouped in Reactome into sets of paralogs that share a function 
(e.g. the “glucokinase” set consists of GCK, HK1, HK2, HK3, and 
HKDC1). We identified high-confidence mouse orthologs of these 
human gene products: mouse gene products with experimental 
evidence of conserved function from direct assays (Blake et al. 
2021; Ringwald et al. 2022). Supporting evidence, such as refer-
ences and evidence codes, was added to the mouse models using 
standard protocols for GO annotation (Balakrishnan et al. 2013; 
The Gene Ontology Consortium 2017). This search yielded 44 
mouse gene products, typically 1 or 2 corresponding to each hu-
man set. This search failed for 1, Slc25a1 (MGI:1345283): Despite 
its sequence similarity to human SLC25A1, we found no experi-
mental evidence to support its role in phosphoenolpyruvate 
transport in mice and only suggestive indirect evidence in related 
species. One mouse gene product with no human counterpart, 
Eno1b (MGI:3648653), was identified: This gene arose by retrotran-
sposition after the divergence of mouse and human lineages from 
their last common ancestor (Bulusu et al. 2017). The 44 mouse 
gene products identified in this step were used to construct mouse 
GO-CAM models. To construct a mouse GO-CAM, each molecular 
function node in the corresponding human GO-CAM was popu-
lated with the 1 or 2 mouse gene products known from direct ex-
perimental evidence to enable that function.

The part of the Reactome gluconeogenesis model that repre-
sented alternative pathways from pyruvate to phosphoenolpyru-
vate was split into separate mouse GO-CAMs. Separating the 

Reactome pathways that represent multiple branches of a single 
process into individual GO-CAMS allows us to compare and con-
trast “subpathways” as in our analysis of the fates of pyruvate de-
scribed below. We created 4 pathways to represent glycolysis and 
gluconeogenesis as follows: canonical glycolysis 1 (mouse)— 
gomodel:5745387b00001516, gluconeogenesis 1 (mouse)— 
gomodel:61e0e55600001225, gluconeogenesis 2 (mouse)— 
gomodel:62d0afa500000132, and gluconeogenesis 3 (mouse)— 
gomodel:62d0afa500000298 (Fig. 1a and Table 1). For analyses of 
downstream pathways, we created 2 mouse GO-CAM models 
based on the Reactome “Pyruvate Metabolism” (R-HSA-70268) 
pathway, 1 representing the interconversion of pyruvate and 
lactate—gomodel:633b013300001238 and 1 representing the con-
version of pyruvate to acetyl-CoA—gomodel:633b013300001469 
(Fig. 1b). All GO-CAM models can be browsed at http://model. 
geneontology.org/##, where ## is replaced by the model ID (e.g. 
http://model.geneontology.org/633b013300001238).

Genes used for phenotype enrichment analysis
We extended the list of mouse–human gene product pairs used to 
construct mouse GO-CAM models by searching MGI for all mouse 
orthologs of human set members supported by any experimental 
annotations or sequence orthology annotations consistent with 
conserved function. The resulting list contains 59 human–mouse 
pairs, excluding human SLC25A1 (no experimentally verified 
mouse counterpart) and mouse Eno1b (no human counterpart) 
(Table 1).

The mouse gene products on this larger list were assembled 
into 5 sets that were derived from the GO-CAM models and repre-
sented genes whose functions are causally connected in each 
pathway. These GO-CAM-derived “causal” gene sets were used 
for phenotype enrichment analyses: (1) genes unique to glycolysis, 
(2) genes unique to gluconeogenesis, (3) genes shared between gly-
colysis and gluconeogenesis, (4) genes unique to glycolysis plus 
genes that convert pyruvate to lactate, and (5) genes unique to 
glycolysis plus genes that convert pyruvate to acetyl-CoA. 
Enrichment analysis was performed on the gene sets using the 
VisuaL Annotation Display (VLAD) tool (http://proto.informatics. 

mitochondrial matrix

cytosol

mitochondrial matrix
mitochondrial

intermembrane
space

cytosolextracellular

(a) (b)

Fig. 1. Reactome pathways. a) Three alternative routes from mitochondrial pyruvate to cytosolic oxaloacetate at the start of the gluconeogenesis 
pathway (https://reactome.org/PathwayBrowser/#/R-HSA-70263), corresponding to GO-CAM models gluconeogenesis 1 (red highlighting), 2 (yellow), and 
3 (magenta). b) Aerobic conversion of pyruvate to acetyl-CoA (green highlighting) and anaerobic conversion to lactate (gray) (https://reactome.org/ 
PathwayBrowser/#/R-HSA-70268). In each case, the process description format shows the substrates and products (chemical entities) of each reaction, 
the identities of the proteins or complexes that mediate it, and causal connections due to shared products/substrates.
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jax.org/prototypes/vlad/) (Richardson and Bult 2015) using default 
settings and MGI annotation data complete through 2023 January 
26. For comparison of sets 1, 2, and 3, we used the comparative 
analysis functionality of VLAD. This functionality calculates an 
enrichment score for each set and plots the relative enrichment 
significance in graphical format overlaying the structure of the 
Mammalian Phenotype (MP) ontology (Smith and Eppig 2012). 
Results are also generated in a tabular format. We hypothesized 
that genes causally connected in the separate branches would 
share separate phenotypes with the main branch. We analyzed 
sets 1, 4, and 5 individually. We filtered the results of each analysis 
using a false discovery rate (FDR) q < 0.05 cutoff. If a phenotype 
term, e.g. MP:0013663 “increased myeloid cell number”, and a 
more specific is_a child of that term, e.g. MP:0002640 “reticulocy-
tosis” both fell below the q < 0.05 cut-off, we considered only the 
child term in our analyses here. Next, we determined which of 
these significant phenotypes had a greater number of genes asso-
ciated with glycolysis and either downstream pathway compared 
with glycolysis alone or with the other downstream pathway. 
Complete results from all VLAD analyses are shown in 
Supplementary Tables 1–5.

Analysis of transcription factors that correspond 
to phenotypes enriched in the gluconeogenesis 
gene set
To identify transcription factors that are associated with pheno-
types enriched in the gluconeogenesis genes, we searched the 
MGI “Genes and Markers Query Form” on (https://www. 
informatics.jax.org/marker—2023 February 2 data) for genes an-
notated to the GO term “DNA binding transcription factor activity” 
(GO:0003700) and to the 10 most specific enriched MP terms with a 
FDR q < 0.05 in the VLAD graph that correspond to specific meta-
bolic or developmental processes: “hypoglycemia” (MP:0000189), 
“increased liver triglyceride level” (MP:0009355), “decreased circu-
lating triglyceride level” (MP:0002644), “increased liver glycogen 
level” (MP:0010400), “increased kidney glycogen level” 
(MP:0031003), “decreased granulocyte number” (MP:0000334), “ab-
normal midbrain development” (MP:0003864), “abnormal gluco-
neogenesis” (MP:0003383), “increased circulating triglyceride 
level” (MP:0001552), and “hepatic steatosis” (MP:0002628).

Results
Creation and validation of mouse GO-CAM models
To determine whether we could associate biochemical pathways 
with specific phenotypes, we first built mouse GO-CAM models 
for glycolysis, gluconeogenesis, and pyruvate metabolism. 
Reactome-derived human GO-CAM models served as templates 
and were populated with orthologous mouse gene products avail-
able from MGI (Table 1). We generated a single mouse pathway for 
glycolysis. For gluconeogenesis, we generated 3 mouse GO-CAM 
models, 1 for each of the 3 distinct routes to the formation 
of cytosolic oxaloacetate in the Reactome model of human 
gluconeogenesis (https://reactome.org/PathwayBrowser/#/R-HSA- 
70263), (Fig. 1a and Table 1). We generated models for anaerobic 
metabolism of pyruvate to lactate and aerobic metabolism 
to acetyl-CoA, representing branches of pyruvate metabolism in 
the Reactome human model (https://reactome.org/Pathway 
Browser/#/R-HSA-70268) (Fig. 1b and Table 1). For each of the genes 
in the models, we supported our assertions with standard GO anno-
tation evidence (Balakrishnan et al. 2013). A total of 43 assertions 
were supported by direct experimental evidence from mouse sys-
tems, while 16 were supported by sequence orthology to human 

or rat proteins whose functions are known from experimental 
data. Genes associated with glycolysis and gluconeogenesis were 
classified as involved only in gluconeogenesis, only in glycolysis, 
or shared by both pathways (Fig. 2 and Table 1).

Related biological pathways are associated with 
related but distinct sets of specific phenotypes
To ask whether variant forms of genes associated with a pathway 
were associated with similar phenotypes, we used the MP ontol-
ogy terms assigned by MGI to the genes in our mouse GO-CAM 
pathways (Table 1) to perform comparative enrichment analyses 
using the VisuaL Annotation Display (VLAD) tool (Richardson and 
Bult 2015). Fifty-three of 59 genes in our pathways were annotated 
with MP terms in MGI. We analyzed 3 sets of genes, glycolysis only, 
gluconeogenesis only, and shared between glycolysis and gluco-
neogenesis. This VLAD enrichment comparative analysis identi-
fied 95 phenotypes that were enriched in at least 1 of the gene 
sets with a FDR (q) < 0.05 (Table S1). The top scoring phenotypes 
for comparative enrichment, which fall in the domains of homeo-
stasis, embryonic lethality, and hematopoietic system, and their 
relationships to one another in the MP ontology are shown graph-
ically in Fig. 3. The 3 colors in the bar in each node represent the 
relative significance values for each gene set. A tabular summary 
of the relative enrichment data is shown in Table 2, split into 3 sec-
tions as follows: gluconeogenesis only, glycolysis only, and 
shared. The table shows enrichment results for all MP domains 
that fit 3 criteria as follows: (1) The term has a FDR < 0.05, (2) the 
term has no children that are also FDR < 0.05, and (3) when a 
term or a child passes criteria (1) and (2) in more than 1 set, the 
terms with the smallest FDR are retained. For example, abnormal 
hematocrit (shared) is not shown in the table because decreased 
hematocrit (glycolysis) scores better with these criteria.

The 3 gene sets were associated with distinct enriched pheno-
types. The gluconeogenesis genes had more significant enrich-
ment in categories representing “abnormal triglyceride levels”, 
“abnormal glycogen levels”, “hypoglycemia”, “ketosis”, and growth 
and development. The glycolysis genes had more significant en-
richment in categories representing glucose homeostatic pheno-
types as well as erythrocyte (in)stability and downstream 
consequences such as iron levels and bilirubin levels. Shared 
genes were more significantly enriched for sperm and lethal 
phenotypes.

The higher levels of the MP ontology hierarchy in Fig. 3 show 
that top scoring abnormal phenotypes for genes unique to glycoly-
sis tend to affect erythropoiesis, while those of gluconeogenesis 
tend to affect energy metabolism, notably of glycogen and 
triglycerides.

By convention, glycolysis ends with production of pyruvate. 
Pyruvate is further metabolized aerobically to form acetyl-CoA 
or anaerobically to form lactate (Figs. 1b and 2a) (Prochownik 
and Wang 2021). Given the distinct phenotypes associated with 
variation in genes associated with glycolysis and gluconeogenesis, 
we next tested if we could discriminate between phenotypes asso-
ciated with these 2 fates of pyruvate. We compared 3 gene sets as 
follows: genes that were unique to glycolysis (i.e. not in gluconeo-
genesis) and these glycolysis genes in combination with those ei-
ther for aerobic or anaerobic pyruvate metabolism. We analyzed 
the 3 gene sets using VLAD and compared phenotypes that were 
enriched with a FDR < 0.05 (Table 3) by counting the number of 
genes associated with each phenotype.

Phenotypes associated with variant forms of genes of anaerobic 
metabolism represented abnormalities in the erythropoietic sys-
tem such as “reticulocytosis” (MP:0002640), “hemolytic anemia” 
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(MP:0001585), “decreased hematocrit” (MP:0000208), and “de-
creased erythrocyte cell number” (MP:0002875). Phenotypes indir-
ectly associated with the erythropoietic system included 
“increased circulating bilirubin level” (MP:005344) and “abnormal 
lactate dehydrogenase level” (MP:002943), 2 clinical features of 
hemolytic anemia (Dhaliwal et al. 2004). We also observed an in-
crease in the number of genes associated with “impaired exercise 
endurance” (MP:0012106). One phenotype, “decreased circulating 
alanine transaminase level” (MP:0002942), was not associated 
with any genes in the glycolysis pathway, but was associated 
with 2 genes, Ldha (MGI:96759) and Slc16a1 (MGI:106013) in the 
downstream conversion of pyruvate to lactate.

Phenotypes associated with variant forms of genes of aerobic 
metabolism represented abnormalities such as “impaired glucose 
tolerance” (MP:0005293), “decreased insulin secretion” 
(MP:0003059), “increased circulating lactate level” (MP:0013405), 
and “ketosis” (MP:0030970) (a phenotype associated with rapid li-
pid breakdown). Several phenotypes with central nervous system 
defects, e.g. “abnormal putamen morphology” (MP:0004079) and 
“decreased stria medullaris size” (MP:0020544), were associated 
with genes in the pyruvate to acetyl-CoA portion of the pathway 
and not the glycolytic portion. Another phenotype, “increased cir-
culating lactate level” (MP:0013405), was only associated with 

genes in the downstream pyruvate to acetyl-CoA pathway and 
may indicate a metabolic switch to the pyruvate pathway when 
the aerobic pathway is not functional.

We also saw general phenotypes associated with genes that 
function in both the lactate and acetyl-CoA pathways when com-
pared with core glycolysis, e.g. “abnormal triglyceride level” 
(MP:0000187), abnormal glucose tolerance (MP:0005291), and “de-
creased circulating insulin level” (MP:0002727).

Phenotypes associated with specific pathways 
can be used to identify transcription factors 
causally related to the pathway
Since the GO-CAM models we created represent genes that are 
causally connected in a pathway, we hypothesized that we could 
make predictions about other genes that might be causally con-
nected to the same pathways based on their phenotypes. 
Specifically, we attempted to identify DNA-binding transcription 
factors causally connected to gluconeogenesis by searching for 
transcription factors that shared enriched phenotypes. We used 
the MGI “Genes and Markers” query tool to search for genes anno-
tated with the Gene Ontology term “DNA binding transcription 
factor activity” (GO:0003700) and the most specific enriched gluco-
neogenesis phenotypes with FDR < 0.05. The search yielded 93 
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Fig. 2. Causal connections among gene products that mediate glycolysis, gluconeogenesis, and pyruvate metabolism. Activity flow representation of the 
pathways of glycolysis, gluconeogenesis, and pyruvate catabolism, showing gene products (Table 1) associated with each process. The enzymes or 
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genes annotated as transcription factors (Table S5), 11 of which 
were associated with 3 or more phenotypes (Table 4). We then 
searched for published evidence of causal connections to gluco-
neogenesis for each of these 11 genes as follows: 

• Cebpa (MGI:99480) 6 phenotypes: Cebpa directly regulates glu-
coneogenesis by regulating the gluconeogenic enzymes 
phosphoenolpyruvate carboxykinase and glucose-6- 
phosphatase (Pedersen et al. 2007). Furthermore, knocking 
out Cebpa (Cebpatm1Gjd, MGI:2177053) results in “abnormal 
gluconeogenesis” (MP:0003383) (Wang et al. 1995).

• Bmal1 (MGI:1096381) 5 phenotypes: Bmal1 regulates gluco-
neogenic gene expression by interaction with Hdac5 (Li et al. 
2018). Bmal1 interacts with Clock to form a transcription fac-
tor complex (Huang et al. 2012) involved in the circadian regu-
lation of glucose homeostasis (Schiaffino et al. 2016).

• Cebpb (MGI:88373) 4 phenotypes: Cebpb directly regulates the 
expression of the phosphoenolpyruvate carboxykinase gene 
(Arizmendi et al. 1999).

• Pparg (MGI:97747) 4 phenotypes: The Pparg gene is generally 
thought to have a negative effect on gluconeogenesis and is 
involved in adipocyte differentiation (Way et al. 2001; 
Pendse et al. 2010; Hernandez-Quiles et al. 2021). However, 
Pparg may indirectly upregulate gluconeogenesis through 
Pomc signaling in response to a high fat diet (Long et al. 
2014). The Pparg2 isoform also upregulates pyruvate carb-
oxylase gene expression (Jitrapakdee et al. 2005). Three of 
the 4 phenotypes associated with Pparg involve triglyceride 
metabolism. These could all reflect its overall involvement 
in controlling triglyceride metabolism (Semple et al. 2006), 
consistent with the fourth “hepatic steatosis” phenotype.

• Ncoa3 (MGI:1276535) 3 phenotypes: We were not able to find 
direct evidence of a role for this gene in gluconeogenesis. 
It is well documented in the control of lipid metabolism 
(Astapova 2016), and the members of the Ncoa family are 
thought to be overall regulators of metabolic processes 
(York and O’Malley 2010).

• Foxa2 (MGI:1347476) and Foxo1 (MGI:1890077) 3 phenotypes 
each: Foxa2 in concert with Foxo1 upregulates 

MP:0031002
abnormal kidney

glycogen level

p=4E-06, k=2
K=4

MP:0031003
increased kidney

glycogen level

p=4E-06, k=2
K=4

MP:0001764
abnormal homeostasis

p=1E-01, k=5

p=2E-03, k=13

p=8E-01, k=3

K=7085

MP:0002118
abnormal l ip id
homeostasis

p=2E-01,  k=2
p=1E-04,  k=8
K=1962

MP:0002078
abnormal glucose

homeostasis

p=5E-02, k=3
p=3E-05, k=9
p=7E-01, k=1
K=2065

MP:0009642
abnorma l  b lood

homeostas is

p=2E-01 ,  k=4
p=5E-04 ,  k=12
p=8E-01 ,  k=2

K = 5 3 5 2

MP:0002424
abnormal

ret iculocyte
morpho logy

p=1E-05,  k=3
p=2E-03,  k=2

K=120

MP:0011913
abnormal

reticulocyte cell
number

p=1E-05,  k=3
p=1E-03,  k=2

K=113

MP:0001585
hemolyt ic  anemia

p=1E-04, k=2
p=2E-02, k=1

K=42

MP:0000598
abnormal liver

morphology

p=3E-03,  k=4

p=2E-03,  k=6

p=2E-01,  k=2

K=1602

MP:0012777
abnormal l iver
glycogen level

p=5E-02, k=1
p=1E-04, k=3

K=111

MP:0002628
hepatic steatosis

p=1E-01, k=1
p=1E-04, k=4
p=1E-01, k=1

K=301

MP:0012778
abnormal liver

triglyceride level

p=1E-01, k=1
p=6E-05, k=4

K=246

MP:0000001
mammalian phenotype

MP:0009850
embryonic lethal i ty

between implantation
and placentation

p=2E-01, k=1
p=9E-05, k=4

K=513

MP:0002640
reticulocytosis

p=8E-06, k=3
p=1E-03, k=2

K=99

MP:0001547
abnormal l ipid level

p=2E-01, k=2
p=9E-05, k=8
K=1834

MP:0000187
abnormal

tr iglyceride level

p=4E-02 ,  k=2
p=3E-06 ,  k=7

K = 7 7 1

MP:0005344
increased
circulating

bilirubin level

p=6E-05, k=3
p=2E-01, k=1
p=4E-03, k=2

K=190

MP:0002396
abnormal

hematopoietic system
morphology/development

p=1E-01, k=4

p=1E-01, k=7

p=1E-01, k=5

K=5119

MP:0010163
hemolysis

p=1E-04, k=2
p=2E-02, k=1

K=38

MP:0005317
increased

triglyceride level

p=2E-01, k=1
p=4E-05, k=5

K=462

MP:0011969
abnormal circulating

tr iglyceride level

p=2E-01, k=1
p=9E-06, k=6

K=591

MP:0000188
abnormal circulating

glucose level

p=1E-01, k=2
p=8E-06, k=8
p=5E-01, k=1
K=1309

MP:0005437
abnormal  g lycogen

leve l

p=2E-03 ,  k=2
p=5E-04 ,  k=3

K = 1 7 4

MP:0001569
abnormal circulating

bilirubin level

p=7E-05, k=3
p=2E-01, k=1
p=5E-03, k=2

K=203

MP:0005560
decreased

circulating glucose
level

p=3E-01, k=1
p=8E-08, k=8

K=719

MP:0031085
increased

erythrocyte osmotic
fragility

p=3E-05, k=2
K=20

MP:0003657
abnormal erythrocyte

osmotic lysis

p=8E-05, k=2
p=2E-02, k=1

K=33

MP:0000189
hypoglycemia

p=6E-02, k=1
p=2E-09, k=6

K=139

MP:0009355
increased l iver

tr iglyceride level

p=7E-06, k=4
K=144

Fig. 3. Graphical view of VLAD comparative enrichment analysis for mammalian phenotype annotation data from 2023 January 26. Three gene sets were 
used for the analysis as follows: glycolysis (green), gluconeogenesis (red), and genes shared between glycolysis and gluconeogenesis (blue) (Table 1). Blue 
arrows indicate a direct is_a relationship between terms, and black arrows indicate that the terms are indirectly related. As indicated in Table 1, 1 
glycolysis-only gene (Pfkp MGI:1891833) and 5 shared genes (Pgk1 MGI:97555, Pgam2 MGI:1933118, Eno1b MGI:3648653, Eno2 MGI:95394, and Eno3 
MGI:95395) have not been associated with any variant phenotypes and so were excluded from this analysis. Phenotypes in the domains of homeostasis, 
embryonic lethality, and hematopoietic system are shown. This graph shows the top 25 phenotypes based on enrichment score for clarity. The complete 
results of this VLAD analysis are tabulated in Table S1.
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Table 2. Enrichment results for the most specific phenotype terms in the comparative analysis.

TermID Term Q # of genes 
annotated to 

term

# of 
genes in 

set

Query set Symbols

Shared set
MP:0002675 Asthenozoospermia 1.00E+00 0 19 Gluconeogenesis-specific

1.00E+00 0 9 Glycolysisis-specific
2.65E−02 3 11 Shared Eno4, Gapdhs, 

Pgk2
MP:0009835 Absent sperm annulus 1.00E+00 0 19 Gluconeogenesis-specific

1.00E+00 0 9 Glycolysisis-specific
3.47E−02 1 11 Shared Eno4

MP:0005642 Decreased mean corpuscular hemoglobin 
concentration

1.00E+00 0 19 Gluconeogenesis-specific
1.00E+00 0 9 Glycolysisis-specific
3.66E−02 2 11 Shared Gpi1, Tpi1

MP:0011609 Decreased glyceraldehyde-3-phosphate 
dehydrogenase (NAD+) 
(phosphorylating) activity

1.00E+00 0 19 Gluconeogenesis-specific
1.00E+00 0 9 Glycolysisis-specific
2.65E−02 1 11 Shared Gapdh

MP:0006205 Embryonic lethality between 
implantation and somite formation

1.00E+00 0 19 Gluconeogenesis-specific
1.00E+00 0 9 Glycolysisis-specific
2.65E−02 3 11 Shared Eno1, Gapdh, 

Tpi1
Glycolysis
MP:0008859 Abnormal hair cycle catagen phase 1.00E+00 0 19 Gluconeogenesis-specific

4.93E−02 1 9 Glycolysisis-specific Pfkl
1.00E+00 0 11 Shared

MP:0003731 Abnormal retina outer nuclear layer 
morphology

1.00E+00 0 19 Gluconeogenesis-specific
4.93E−02 2 9 Glycolysisis-specific Hkdc1, Pkm
1.00E+00 0 11 Shared

MP:0004952 Increased spleen weight 1.00E+00 0 19 Gluconeogenesis-specific
4.82E−02 2 9 Glycolysisis-specific Hk1, Pfkm
8.36E−02 2 11 Shared Gpi1, Tpi1

MP:0013404 Decreased circulating lactate level 1.00E+00 0 19 Gluconeogenesis-specific
4.65E−02 1 9 Glycolysisis-specific Pfkm
1.00E+00 0 11 Shared

MP:0010035 Increased erythrocyte clearance 1.00E+00 0 19 Gluconeogenesis-specific
4.65E−02 1 9 Glycolysisis-specific Pklr
1.00E+00 0 11 Shared

MP:0001585 Hemolytic anemia 1.00E+00 0 19 Gluconeogenesis-specific
6.18E−03 2 9 Glycolysisis-specific Hk1, Pklr
1.12E−01 1 11 Shared Tpi1

MP:0003059 Decreased insulin secretion 1.00E+00 0 19 Gluconeogenesis-specific
3.76E−02 2 9 Glycolysisis-specific Gck, Pfkm
1.00E+00 0 11 Shared

MP:0031085 Increased erythrocyte osmotic fragility 1.00E+00 0 19 Gluconeogenesis-specific
3.08E−03 2 9 Glycolysisis-specific Pfkm, Pklr
1.00E+00 0 11 Shared

MP:0011606 Decreased glucokinase activity 1.00E+00 0 19 Gluconeogenesis-specific
1.84E−02 1 9 Glycolysisis-specific Gck
1.00E+00 0 11 Shared

MP:0005293 Impaired glucose tolerance 1.00E+00 0 19 Gluconeogenesis-specific
2.78E−02 3 9 Glycolysisis-specific Gck, Hkdc1, 

Pfkm
1.00E+00 0 11 Shared

MP:0005639 Hemosiderosis 1.00E+00 0 19 Gluconeogenesis-specific
4.82E−02 1 9 Glycolysisis-specific Pklr
1.00E+00 0 11 Shared

MP:0010375 Increased kidney iron level 1.00E+00 0 19 Gluconeogenesis-specific
4.93E−02 1 9 Glycolysisis-specific Hk1
1.00E+00 0 11 Shared

MP:0000245 Abnormal erythropoiesis 1.00E+00 0 19 Gluconeogenesis-specific
3.77E−02 2 9 Glycolysisis-specific Hk1, Pklr
2.28E−01 1 11 Shared Tpi1

MP:0002814 Hyperchromasia 1.00E+00 0 19 Gluconeogenesis-specific
4.36E−02 1 9 Glycolysisis-specific Hk1
1.00E+00 0 11 Shared

MP:0002590 Increased mean corpuscular volume 1.00E+00 0 19 Gluconeogenesis-specific
4.65E−02 2 9 Glycolysisis-specific Hk1, Pklr
8.02E−02 2 11 Shared Gpi1, Tpi1

MP:0031318 Enhanced skeletal muscle regeneration 1.00E+00 0 19 Gluconeogenesis-specific
4.65E−02 1 9 Glycolysisis-specific Pfkm
1.00E+00 0 11 Shared

(continued) 
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Table 2. (continued)  

TermID Term Q # of genes 
annotated to 

term

# of 
genes in 

set

Query set Symbols

MP:0000208 Decreased hematocrit 1.00E+00 0 19 Gluconeogenesis-specific
1.11E−02 3 9 Glycolysisis-specific Hk1, Pfkm, Pklr
9.30E−02 2 11 Shared Gpi1, Tpi1

MP:0002640 Reticulocytosis 1.00E+00 0 19 Gluconeogenesis-specific
1.94E−03 3 9 Glycolysisis-specific Hk1, Pfkm, Pklr
3.47E−02 2 11 Shared Gpi1, Tpi1

MP:0005344 Increased circulating bilirubin level 3.16E−01 1 19 Gluconeogenesis-specific Slc37a1
4.60E−03 3 9 Glycolysisis-specific Hk1, Pfkm, Pklr
5.87E−02 2 11 Shared Gpi1, Tpi1

MP:0000874 Irregular external granule cell layer 
thickness

1.00E+00 0 19 Gluconeogenesis-specific
1.34E−02 1 9 Glycolysisis-specific Hk2
1.00E+00 0 11 Shared

MP:0006353 Increased glycosylated hemoglobin level 1.00E+00 0 19 Gluconeogenesis-specific
4.52E−02 1 9 Glycolysisis-specific Gck
1.00E+00 0 11 Shared

Gluconeogenesis
MP:0000334 Decreased granulocyte number 3.08E−02 3 19 Gluconeogenesis-specific G6pc3, Got1, 

Slc37a4
1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

MP:0003864 Abnormal midbrain development 2.44E−02 2 19 Gluconeogenesis-specific Got2, Mdh2
1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

MP:0001731 Abnormal postnatal growth 4.63E−02 5 19 Gluconeogenesis-specific G6pc, G6pc3, 
Pck1, 
Slc25a12, 
Slc37a4

4.40E−01 1 9 Glycolysisis-specific Gck
1.00E+00 0 11 Shared

MP:0003383 Abnormal gluconeogenesis 3.08E−02 2 19 Gluconeogenesis-specific Pcx, Slc25a13
1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

MP:0013405 Increased circulating lactate level 7.85E−03 2 19 Gluconeogenesis-specific Pck1, Pcx
1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

MP:0002575 Increased circulating ketone body level 1.62E−02 2 19 Gluconeogenesis-specific Pck1, Pcx
1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

MP:0000189 Hypoglycemia 9.96E−07 6 19 Gluconeogenesis-specific Fbp1, G6pc, 
Pck1, Pcx, 
Slc25a13, 
Slc37a4

1.27E−01 1 9 Glycolysisis-specific Gck
1.00E+00 0 11 Shared

MP:0002628 Hepatic steatosis 5.28E−03 4 19 Gluconeogenesis-specific G6pc, Pck1, Pcx, 
Slc25a13

1.97E−01 1 9 Glycolysisis-specific Gck
3.26E−01 1 11 Shared Aldob

MP:0009355 Increased liver triglyceride level 6.31E−04 4 19 Gluconeogenesis-specific G6pc, Pck1, Pcx, 
Slc25a13

1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

MP:0010400 Increased liver glycogen level 1.61E−02 2 19 Gluconeogenesis-specific G6pc, Slc37a4
1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

MP:0002644 Decreased circulating triglyceride level 3.58E−02 3 19 Gluconeogenesis-specific G6pc2, Pck1, 
Pck2

1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

MP:0001552 Increased circulating triglyceride level 7.05E−03 4 19 Gluconeogenesis-specific G6pc, Pck1, Pcx, 
Slc37a4

2.09E−01 1 9 Glycolysisis-specific Gck
1.00E+00 0 11 Shared

MP:0031003 Increased kidney glycogen level 5.28E−04 2 19 Gluconeogenesis-specific G6pc, Slc37a4
1.00E+00 0 9 Glycolysisis-specific
1.00E+00 0 11 Shared

10 | D. P. Hill et al.



gluconeogenesis and in particular upregulates phosphoenol-
pyruvate carboxykinase in the fasting liver (Zhang et al. 2005; 
Puigserver and Rodgers 2006).

• Klf15 (MGI:1929988) 3 phenotypes: Klf15 is one of the genes re-
sponsible for regulating the switch downregulating lipogen-
esis and upregulating gluconeogenesis during fasting, 
upregulating the expression of Pck1 (Takeuchi et al. 2016). 
Additional results support the role of Klf15 in regulating glu-
coneogenesis through mutational studies and transcription 
assays (Teshigawara et al. 2005; Gray et al. 2007).

• Nr1h4 (MGI:1352464) 3 phenotypes: Metabolites of sesame oil 
antagonize Nr1h4 function, resulting in a decrease in mRNA 
levels encoding phosphoenolpyruvate carboxykinase and 
glucose 6-phosphatase (Sasaki et al. 2022). Activation of 
Nr1h4 by cholic acids, however, resulted in a decrease in 
the expression of gluconeogenic genes, likely by indirectly 
regulating Foxo1 and Hnf4a (Yamagata et al. 2004). These re-
sults may be a reflection of the interaction of Nr1h4 with 

different partners, resulting in different outcomes 
(Yamagata et al. 2004; Xu et al. 2018).

• Ppara (MGI:104740) 3 phenotypes: Ppara plays a role in regu-
lating many metabolic genes including those that function 
in gluconeogenesis and lipid metabolism (Preidis et al. 
2017). Like other transcription factors we have identified in 
our query, the exact nature of Ppara’s activity may depend 
on its partners and other transcription factors that are ex-
pressed in different physiological states (Kersten 2014).

• Clock (MGI:99698) 3 phenotypes: Clock and Bmal1 (above) inter-
act to synchronize gluconeogenesis with circadian rhythms 
(Schiaffino et al. 2016; Li et al. 2018).

Although it is standard practice at MGI to infer the biological 
processes in which a gene is involved using the “inferred from mu-
tant phenotype” evidence code, GO and phenotype annotation are 
done separately. Of the 11 genes that we identified through our 
phenotypic analysis, only 2, Ppara and Foxo1, were already 

Table 3. Comparison of number of genes annotated to phenotypes in downstream pathways.

ID Terma Lactate Glycolysis Acetyl-CoA

Phenotypes with more genes in the glucose to lactate pathway (anaerobic) than glucose to pyruvate
MP:0002447 Abnormal erythrocyte morphology 5 (5.24E−02) 4 (4.55E−02) 4 (1.51E−01)
MP:0002875 Decreased erythrocyte cell number 3 (3.71E−02) 2 (6.79E−02) 2 (1.51E−01)
MP:0000208 Decreased hematocrit 4 (4.21E−03) 3 (1.11E−03) 3 (3.37E−02)
MP:0005563 Abnormal hemoglobin content 4 (8.64E−03) 3 (1.74E−02) 3 (5.74E−02)
MP:0002874 Decreased hemoglobin content 3 (2.69E−02) 2 (5.21E−02) 2 (1.27E−01)
MP:0002590 Increased mean corpuscular volume 3 (2.03E−02) 2 (4.65E−02) 2 (1.07E−01)
MP:0013707 Abnormal hematopoietic precursor cell morphology 3 (3.82E−02) 2 (7.01E−02) 2 (1.51E−01)
MP:0001585 Hemolytic anemia 3 (4.06E−04) 2 (6.18E−03) 2 (1.74E−02)
MP:0002640 Reticulocytosis 4 (2.10E−04) 3 (1.94E−03) 3 (7.40E−03)
MP:0005344 Increased circulating bilirubin level 4 (7.85E−04) 3 (4.60E−03) 3 (1.69E−02)
MP:0000598 Abnormal liver morphology 6 (2.15E−02) 4 (4.65E−02) 4 (1.67E−01)
MP:0002221 Abnormal lymph organ size 5 (7.50E−02) 4 (4.82E−02) 4 (1.84E−01)
MP:0004952 Increased spleen weight 3 (2.15E−02) 2 (4.82E−02) 2 (1.12E−01)
MP:0012106 Impaired exercise endurance 2 (3.71E−02) 1 (1.11E−01) 1 (1.92E−01)
MP:0005584 Abnormal enzyme/coenzyme activity 4 (4.21E−03) 3 (1.11E−02) 3 (3.37E−02)
MP:0002942 Decreased circulating alanine transaminase level 2 (2.69E−02) 0 (NA) 0 (NA)
MP:0002943 Abnormal lactate dehydrogenase level 2 (2.32E−02) 1 (9.55E−02) 1 (1.66E−01)
Phenotypes with more genes in the glucose to acetyl-CoA pathway (aerobic) than glucose to pyruvate
MP:0030970 Ketosis 1 (1.44E−01) 1 (8.22E−02) 3 (2.23E−03)
MP:0002575 Increased circulating ketone body level 0 (NA) 0 (NA) 2 (1.74E−02)
MP:0003059 Decreased insulin secretion 2 (5.96E−02) 2 (3.76E−02) 3 (1.31E−02)
MP:0005293 Impaired glucose tolerance 3 (6.56E−02) 3 (2.78E−02) 5 (7.40E−03)
MP:0013403 Abnormal circulating lactate level 1 (1.37E−01) 1 (7.91E−02) 3 (2.23E−03)
MP:0013405 Increased circulating lactate level 0 (NA) 0 (NA) 2 (1.21E−02)
MP:0001325 Abnormal retina morphology 2 (3.08E−01) 2 (1.62E−01) 5 (3.20E−02)
MP:0003731 Abnormal retina outer nuclear layer morphology 2 (1.07E−01) 2 (4.93E−02) 3 (2.50E−02)
MP:0008931 Abnormal paraventricular thalamic nucleus morphology 0 (NA) 0 (NA) 1 (1.98E−02)
MP:0004079 Abnormal putamen morphology 0 (NA) 0 (NA) 1 (4.09E−02)
MP:0020554 Decreased stria medullaris size 0 (NA) 0 (NA) 1 (2.50E−02)
MP:0009976 Abnormal cerebellar peduncle morphology 0 (NA) 0 (NA) 1 (4.60E−02)
MP:0003984 Embryonic growth retardation 1 (4.79E−01) 1 (3.24E−01) 4 (3.20E−02)
Phenotypes with more genes in both the lactate/acetyl-CoA pathways than in glucose to pyruvate
MP:0000187 Abnormal triglyceride level 3 (1.00E−01) 2 (1.10E−01) 4 (4.09E−02)
MP:0005318 Decreased triglyceride level 2 (1.38E−01) 1 (2.20E−01) 3 (4.14E−02)
MP:0002078 Abnormal glucose homeostasis 4 (1.59E−01) 3 (1.16E−01) 7 (2.02E−02)
MP:0005291 Abnormal glucose tolerance 4 (3.98E−02) 3 (4.65E−02) 6 (7.40E−03)
MP:0001560 Abnormal circulating insulin level 3 (7.85E−02) 2 (9.49E−02) 4 (2.50E−02)
MP:0002727 Decreased circulating insulin level 3 (2.69E−02) 2 (5.22E−02) 3 (3.20E−02)
MP:0002080 Prenatal lethality 5 (1.59E−01) 3 (1.99E−01) 8 (2.60E−02)
MP:0005266 Abnormal metabolism 6 (4.14E−03) 4 (1.74E−02) 5 (2.50E−02)
MP:0010768 Mortality/aging 9 (1.57E−01) 7 (7.09E−02) 14 (1.31E−02)
MP:0010769 Abnormal survival 8 (1.74E−01) 6 (1.00E−01) 13 (1.63E−02)
MP:0008762 Embryonic lethality 4 (1.74E−01) 3 (1.34E−01) 8 (1.31E−02)
MP:0010770 Preweaning lethality 8 (1.35E−01) 3 (1.11E−01) 13 (7.40E−03)
MP:0011100 Preweaning lethality, complete penetrance 4 (1.57E−01) 3 (1.11E−01) 6 (4.60E−02)

a If a parent MP term and its child were annotated to the same numbers of terms, only the child term is shown. For example, “abnormal insulin secretion” 
(parent—not shown) and “decreased insulin secretion” (child—shown) had 2,2,3 terms.
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annotated in the separate GO curation process as being involved 
in gluconeogenesis or its regulation. Six of the 11 transcription 
factors we identified (Cebpa, Bmal1, Cebpb, Foxo1, Klf15, Clock) 
were also annotated to “abnormal gluconeogenesis” 
(MP:0003383). To test whether the transcription factors were pref-
erentially annotated to gluconeogenic phenotypes, we ran a VLAD 
analysis on the transcription factors alone and compared with the 
gluconeogenic genes. As expected, the top scoring phenotypes 
were related to the pre-chosen gluconeogenic phenotypes. 
However, the transcription factors were also significantly en-
riched for other phenotypes that were not enriched in the gluco-
neogenic gene analysis, e.g. “abnormal ovulation cycle” 
(MP:0009344) and “abnormal hair cycle anagen phase” 
(MP:0008858) (Supplementary Table S6, analysis date 2023 July 
3). These results imply that the transcription factors we identified 
were not a priori or specifically limited to the study of 
gluconeogenesis.

Discussion
Here, we have shown that human GO-CAM models of glycolysis, 
gluconeogenesis, and pyruvate metabolism serve as accurate 
templates for modeling the orthologous mouse pathways, that 
VLAD analysis of phenotypes associated with mutant mouse 
genes associated distinct but related phenotypes with mutational 
disruptions of genes involved in each pathway, and that analysis 
of common enriched phenotypes further supported the identifica-
tion of transcription factors that play major roles in regulating 
these pathways. These results are not surprising: These path-
ways, their transcriptional regulation, and their pathophysiology 
have been very extensively characterized experimentally in both 
species and shown to be closely related. Neither GO-CAM con-
struction nor VLAD analysis was trained or optimized for these 
domains of biology, however, so these results are useful as a test 
of a general strategy for pathway annotation and analysis, and 
suggest that it can be extended to less exhaustively studied pro-
cesses and less well characterized species.

Reactome GO-CAMs can bridge the biology of 
model organisms and humans
Reactome annotations of human pathways of glycolysis, gluco-
neogenesis, and pyruvate metabolism to lactate or acetyl-CoA 
identified functions for 60 human gene products, 44 of which 
have high-confidence mouse structural orthologs (Table 1), enab-
ling the streamlined generation of mouse GO-CAM models by 
swapping human gene products for their mouse counterparts. 
This successful manual pathway construction exercise is a proof 
of principle for automating the construction of model organism 
template pathways useful as starting points for expert manual 
curation and addition of organism-specific supporting experimen-
tal evidence. Indeed, Reactome already computationally predicts 
pathways for 15 model organisms using orthologs of human pro-
teins to systematically populate reactions for these other species, 
a process that could be extended to any model organism whose 
proteome is known (https://reactome.org/documentation/ 
inferred-events).

Phenotype enrichment analysis of 
pathway-specific gene lists identifies and 
distinguishes pathway-specific phenotypes
We separated the genes annotated in our mouse GO-CAM models 
into 3 groups as follows: specific for glycolysis, specific for gluco-
neogenesis, and shared genes. Phenotype enrichment on the 3 

sets showed that the enriched phenotypes fell into different 
classes for each set (Figs. 2 and 3). Phenotypes associated with al-
leles of the genes shared by glycolysis and gluconeogenesis com-
pared with genes specific to each pathway were overrepresented 
in an early embryonic lethal phenotype, reflecting the central 
role of glucose metabolism in mammalian physiology.

Variants of the glycolysis-specific genes, compared to 
gluconeogenesis-specific or shared genes, were more significantly 
enriched for phenotypes associated with abnormalities of red 
blood cells, consistent with the absolute dependence of these cells 
on anaerobic glycolysis for ATP.

Variants of gluconeogenesis-specific genes were overrepre-
sented in the abnormal phenotypes of hypoglycemia, increased 
triglyceride levels and abnormal kidney and liver glycogen levels. 
Increased glycogen levels in the kidney and liver are explained by 
the identities of the genetic defects associated with the pheno-
types: mutations that inactivate Slc37a4 (MGI:1316650) and G6pc 
(MGI:95607). The products of these 2 genes normally mediate 
the transport and dephosphorylation of glucose-6-phosphate 
newly synthesized by gluconeogenesis, enabling release of free 
glucose into the circulation–inactivation of either leads directly 
to hypoglycemia (Froissart et al. 2011). Abnormal accumulation 
of intracellular glucose-6-phosphate drives glycogen synthesis 
by mass action (Adeva-Andany et al. 2016). “Increased liver trigly-
ceride level” was associated with mutations of 3 genes in the 
gluconeogenesis-specific gene set, G6pc (MGI:95607), Pck1 
(MGI:97501), and Slc25a13 (MGI:1354721), and is consistent with 
phenotypes associated with excess accumulation of glucose-6- 
phosphate observed in a G6pc knockout mouse and in human pa-
tients with partial loss of G6PC function (Hoogerland et al. 2021).

To test the hypothesis that phenotypes could be further distin-
guished by joining analysis of glycolysis with analysis of the aer-
obic and anaerobic fates of its major product, pyruvate, we 
performed phenotype enrichment analyses on 3 sets of genes as 
follows: those specific for canonical glycolysis (conversion of glu-
cose to pyruvate), those for canonical glycolysis plus downstream 
anaerobic metabolism of pyruvate to lactate, and those specific 
for canonical glycolysis plus downstream aerobic metabolism of 
pyruvate to acetyl-CoA (Table 3). Analysis of the glycolysis + lac-
tate/anaerobic gene set revealed additional associations of genes 
with red blood cell phenotypes. These phenotypes reflect the de-
pendence of red blood cells on anaerobic glycolysis to lactate as 
an energy source (Goto et al. 2019); (Rose and Warms 1966); 
(TeSlaa et al. 2021). A non-erythropoietic phenotype identified in 
this analysis was “impaired exercise endurance”, consistent with 
enhanced anaerobic glucose metabolism during intense exercise 
(Alberti 1977; Robergs et al. 2004). When we add the genes for 
the acetyl-CoA/aerobic pathway, additional associations with glu-
cose homeostasis phenotypes are detected. These associations 
are in concordance with known physiology. Glycolysis and the 
downstream aerobic metabolism of glucose through pyruvate 
conversion to acetyl-CoA and the tricarboxylic acid cycle are key 
steps in the regulation of insulin secretion in response to glucose 
in pancreatic beta cells (Newgard and McGarry 1995).These re-
sults show that we can identify connected pathways that give 
rise to distinct phenotypes and to distinguish subnetworks in a 
branching system that have discreet biological outcomes.

Enriched phenotypes can be used to identify genes 
that are causally connected to a pathway
To test our ability to identify genes that are not conventionally 
associated with a pathway but that are causally connected to it 
by shared phenotypes, we used enriched phenotypes in the 
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gluconeogenesis pathway to search for transcription factor genes 
whose variants were associated with these same phenotypes. 
Bmal1 (Li et al. 2018) Cebpa (Pedersen et al. 2007), Cebpb 
(Arizmendi et al. 1999), and Foxa2 (Zhang et al. 2005; Puigserver 
and Rodgers 2006), either have a direct or indirect effect on the ex-
pression of gluconeogenesis genes. Several genes, such as Ncoa3 
(York and O’Malley 2010) and Pparg (Semple et al. 2006), are also 
connected in less direct ways to gluconeogenesis and may be con-
nected to other pathways causally connected to gluconeogenesis 
such as glucagon signaling and lipid metabolism. Some genes, 
like Ppara, regulate gluconeogenesis as well as other related, 
connected metabolic processes like lipid metabolism 
(Rakhshandehroo et al. 2007). Our results are consistent with a 
complex regulation of gluconeogenesis where a variety of tran-
scription factors act together both directly and indirectly to coord-
inate metabolism depending on specific contexts (Pei et al. 2006; Li 
et al. 2018; Qu et al. 2021; De Sousa-Coelho et al. 2023).

In an extension of previous work demonstrating that pheno-
types can be used to predict GO annotations, our work further 
shows the integrated nature of phenotypic analysis and function-
al inference (Ascensao et al. 2014). With the exception of 2 tran-
scription factors, Ppara and Foxo1, none of the genes we 
identified by shared phenotypes were yet annotated to gluconeo-
genesis GO terms even though 6 of them were annotated to the 
phenotype term “abnormal gluconeogenesis” (MP:0003383). 
Although it is serendipitous that some of the transcription factors 
had not yet been annotated to GO based on phenotypes associated 
with gluconeogenesis, this suggests that genes were not “selected” 
with a preexisting annotation focus on gluconeogenesis. Instead, 
it shows that phenotypes can be used to inform us about gene 
function and that gene function may be useful for inferring 
phenotypes.

We hypothesize that as we integrate models of additional regu-
latory processes with models of metabolism, we will be able to dis-
criminate among the networks that these transcription factors 
modulate and identify specific gene targets within them. 
Concatenation of regulatory and housekeeping processes will en-
able construction of vast network hairballs; the limited study de-
scribed here suggests that it may be possible to manage and 
interpret them to generate integrated models of cell physiology 
useful for modeling and experimental design.

Limitations of our current approach and future 
directions
To increase the sensitivity of our search for abnormal phenotypes 
associated with pathways, we have grouped the effects of all para-
logs that normally mediate each activity in glycolysis, gluconeo-
genesis, and pyruvate metabolism. Despite this grouping, known 
tissue- and process-specific effects, such as the impact of glycoly-
sis defects on red cell function and sperm cell maturation and 
function, and of gluconeogenesis defects on glucose homeostasis 
can be detected above background significance levels (Table S1). 
Nevertheless, we have missed other known effects, such as the 
opposing effects of variant forms of GCK (human)/Gck (mouse— 
MGI:1270854) that have abnormally high and low affinities for glu-
cose on insulin secretion in response to varying blood glucose le-
vels. This result suggests that our analysis could be refined further 
by taking into account the nature of the alleles that result in mu-
tant phenotypes, the background strains on which alleles are pre-
sent, and the physiological conditions in which phenotypes are 
measured. We also failed to observe red blood cell phenotypes 
for all genes required for conversion of glucose to pyruvate. 
These failures have several possible explanations. First, the T
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collection of known genetic variants is far from saturating, and 
phenotypic characterization of existing variants has not been ex-
haustive. Second, many variants in these genes are likely to be in-
compatible with early embryonic development, so their effects on 
postnatal functions would not be detectable. Third, most of the 
steps of glycolysis are mediated by sets of paralogous genes that 
differ from one another in their regulation and their tissue- 
specific expression, but it is plausible that phenotypes due to var-
iants in 1 member of a set could be masked by even low level ex-
pression of other (wild-type) set members.

As in all bioinformatics approaches, our analyses are limited by 
the data available. We chose well-studied pathways for this work 
to test whether when the data exist, we can use those data to gen-
erate specific conclusions. In cases where phenotypic data are not 
available or comprehensive for a large number of genes in a path-
way or the pathway is not well-defined, our approach will be lim-
ited due to lack of enrichment or multiple genes showing the same 
phenotype and phenotypes may be missed. There will be a “tip-
ping point” in which enough genes in a pathway will be annotated 
to a phenotype to result in a significant enrichment or will give a 
clear indication that disturbing the pathway results in a pheno-
type. However, once the “tipping point” is reached, we can predict 
that perturbing the other genes in the causal chain will result in 
the same phenotype.

Relating biochemical pathways to phenotypes associated with 
specific genes provides a tool to predict and test the effects of gen-
etic or pharmacological manipulation on the physiology of an or-
ganism. Identifying the elements of pathways, including ones 
with complicated structures, that result in a phenotype should 
better support targeted approaches to modify the pathways and 
change phenotypic outcomes. Beyond the classic approach of pro-
viding exogenous sources of key molecules missing due to a gene 
defect, we can envision strategies to manipulate pathways that 
are hypermorphic and are deleterious to an organism, with 
pharmacologic inhibitors or RNAi methods. Finally, these types 
of analyses may help us to dissect the complex interactions of 
drugs with biochemical pathways to better understand mechan-
isms and potential side effects that could be addressed with 
co-therapies. For example, metformin is one of the primary phar-
maceuticals used to treat type 2 diabetes. Metformin lowers glu-
coneogenesis in the liver, but its actions are complex and not 
completely understood (Rena et al. 2017; Flory and Lipska 2019). 
As we further enrich our representation of glucose metabolism 
to include metabolic and regulatory networks, it might be possible 
to perform a detailed analysis of the effects (phenotypes) of met-
formin treatment in mice and compare that to network analysis 
similar to the ones we performed in this work. The comparison 
can be used to identify potential branches in the network where 
metformin acts by looking for shared or unique phenotypes.

The available mouse phenotyping data themselves present 
some limitations. Different mutations in the same gene can 
have variable phenotypes due to the molecular nature of the mu-
tation (e.g. null or knockout vs point mutation, or isoform-specific 
mutations). Mutations may be hypomorphic, gain or loss of func-
tion or even silent in the absence of an inducer or stressor. 
Phenotypic variability due to strain-specific variants in the mouse 
experimental genetic background can contribute to conflicting re-
sults when the data is inferred at the gene level (Perry et al. 2020). 
Genetic sex, microbiota, and parental origin (imprinting) can also 
influence phenotypes. Outliers in the data should be assessed for 
these potential causes in variability.

In summary, we have shown that we can convert a set of hu-
man biochemical pathways to corresponding pathways in the 

laboratory mouse. We can then take advantage of the rich genetic 
work that has been done in the mouse to analyze and determine 
the phenotypic consequences of perturbations of genes in those 
pathways. In this way, we integrate the information about human 
biology from Reactome with model organism biology from MGI. 
We envision that this approach can be extended to other metabol-
ic processes and other model organisms and the study of 
pathway-phenotype connections can be used not only to under-
stand the similarities of the pathways but as a testing ground 
for manipulation of pathways in more experimentally tractable 
organisms than human.

Data availability
Full results of our analyses are given in Tables 1–4 and in the 
Supplementary Files for this paper. The full Reactome and MGI 
data sets are freely available to all users at www.reactome.org
and https://www.informatics.jax.org/, respectively.

Supplemental material available at GENETICS online.

Acknowledgments
We dedicate this paper to the memory of Michael Ashburner. The 
work described here comes out of projects he helped to initiate 
and guide, and we benefitted immeasurably from his support.

Funding
This work was supported by NIH grants U41 HG002273 and U24 
HG012212 (GO Consortium), U24 HG012198 (Reactome), U24 
HG002223 (WormBase), U41 HG000330 (The Mouse Genome 
Database), and U24 HG011851 (Pathways2GO).

Conflicts of interest
The author(s) declare no conflict of interest.

Literature cited
Adeva-Andany MM, González-Lucán M, Donapetry-García C, 

Fernández-Fernández C, Ameneiros-Rodríguez E. Glycogen me-
tabolism in humans. BBA Clin. 2016;5:85–100. doi:10.1016/j. 
bbacli.2016.02.001.

Alberti KG. The biochemical consequences of hypoxia. J Clin Pathol 
Suppl (R Coll Pathol). 1977;11(1):14–20. doi:10.1136/jcp.s3-11.1.14.

Arizmendi C, Liu S, Croniger C, Poli V, Friedman JE. The transcription 
factor CCAAT/enhancer-binding protein beta regulates gluco-
neogenesis and phosphoenolpyruvate carboxykinase (GTP) gene 
transcription during diabetes. J Biol Chem. 1999;274(19):13033–-
13040. doi:10.1074/jbc.274.19.13033.

Ascensao JA, Dolan ME, Hill DP, Blake JA. Methodology for the infer-
ence of gene function from phenotype data. BMC Bioinformatics. 
2014;15(1):405. doi:10.1186/s12859-014-0405-z.

Astapova I. Role of co-regulators in metabolic and transcriptional ac-
tions of thyroid hormone. J Mol Endocrinol. 2016;56(3):73–97. doi:
10.1530/JME-15-0246.

Balakrishnan R, Harris MA, Huntley R, Van Auken K, Cherry JM. A 
guide to best practices for Gene Ontology (GO) manual annota-
tion. Database (Oxford). 2013;2013:bat054. doi:10.1093/ 
database/bat054.

Barton AR, Hujoel MLA, Mukamel RE, Sherman MA, Loh P-R. A spec-
trum of recessiveness among Mendelian disease variants in UK 

14 | D. P. Hill et al.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad152#supplementary-data
http://www.reactome.org
https://www.informatics.jax.org/
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad152#supplementary-data
https://doi.org/10.1016/j.bbacli.2016.02.001
https://doi.org/10.1016/j.bbacli.2016.02.001
https://doi.org/10.1136/jcp.s3-11.1.14
https://doi.org/10.1074/jbc.274.19.13033
https://doi.org/10.1186/s12859-014-0405-z
https://doi.org/10.1530/JME-15-0246
https://doi.org/10.1093/database/bat054
https://doi.org/10.1093/database/bat054


Biobank. Am J Hum Genet. 2022;109(7):1298–1307. doi:10.1016/j. 

ajhg.2022.05.008.
Bello SM, Eppig JT, the MGI Software Group. Inferring 

gene-to-phenotype and gene-to-disease relationships at Mouse 
Genome Informatics: challenges and solutions. J Biomed 
Semant. 2016;7(1):14. doi:10.1186/s13326-016-0054-4.

Bello SM, Perry MN, Smith CL. Know your model: a brief history of 
making mutant mouse genetic models. Lab Anim (NY). 2021; 
50(10):263–266. doi:10.1038/s41684-021-00853-5.

Bello SM, Smith CL, Eppig JT. Allele, phenotype and disease data at Mouse 
Genome Informatics: improving access and analysis. Mamm 
Genome. 2015;26(7–8):285–294. doi:10.1007/s00335-015-9582-y.

Blake JA, Baldarelli R, Kadin JA, Richardson JE, Smith CL, Bult CJ, 
Anagnostopoulos AV, Beal JS, Bello SM, Blodgett O, et al. Mouse 
Genome Database (MGD): knowledgebase for mouse–human 
comparative biology. Nucleic Acids Res. 2021;49(D1):D981–D987. 
doi:10.1093/nar/gkaa1083.

Bulusu V, Prior N, Snaebjornsson MT, Kuehne A, Sonnen KF, Kress J, 
Stein F, Schultz C, Sauer U, Aulehla A. Spatiotemporal analysis of 
a glycolytic activity gradient linked to mouse embryo mesoderm 
development. Dev Cell. 2017;40(4):331–341.e4. doi:10.1016/j. 
devcel.2017.01.015.

Chourpiliadis C, Mohiuddin SS. Biochemistry, gluconeogenesis. In: 
StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.

Cori CF. The glucose-lactic acid cycle and gluconeogenesis. Curr Top 
Cell Regul. 1981;18:377–387. doi:10.1016/B978-0-12-152818-8. 
50028-1.

De Sousa-Coelho AL, Gacias M, O’Neill BT, Relat J, Link W, Haro D, 
Marrero PF. FOXO1 represses PPARα-mediated induction of 
FGF21 gene expression. Biochem Biophys Res Commun. 2023; 
644:122–129. doi:10.1016/j.bbrc.2023.01.012.

de Visser JAGM, Cooper TF, Elena SF. The causes of epistasis. Proc 
Biol Sci. 2011;278(1725):3617–3624. doi:10.1098/rspb.2011.1537.

Dhaliwal G, Cornett PA, Tierney LM. Hemolytic anemia. Am Fam 
Physician. 2004;69:2599–2606.

Felig P. The glucose-alanine cycle. Metabolism. 1973;22(2):179–207. 
doi:10.1016/0026-0495(73)90269-2.

Flory J, Lipska K. Metformin in 2019. JAMA. 2019;321(19):1926–1927. 
doi:10.1001/jama.2019.3805.

Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, 
Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P. 
Glucose-6-phosphatase deficiency. Orphanet J Rare Dis. 2011; 
6(1):27. doi:10.1186/1750-1172-6-27.

Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro 
A, Griss J, Sevilla C, Matthews L, Gong C, et al. The reactome path-
way knowledgebase 2022. Nucleic Acids Res. 2022;50(D1): 
D687–D692. doi:10.1093/nar/gkab1028.

Good BM, Van Auken K, Hill DP, Mi H, Carbon S, Balhoff JP, Albou 
L-Philippe, Thomas PD, Mungall CJ, Blake JA, et al. Reactome 
and the Gene Ontology: digital convergence of data resources. 
Bioinformatics. 2021;37(19):3343–3348. doi:10.1093/ 
bioinformatics/btab325.

Goto T, Ubukawa K, Kobayashi I, Sugawara K, Asanuma K, Sasaki Y, 
Guo Y-M, Takahashi N, Sawada K, Wakui H, et al. ATP produced 
by anaerobic glycolysis is essential for enucleation of human er-
ythroblasts. Exp Hematol. 2019;72:14–26.e1. doi:10.1016/j. 
exphem.2019.02.004.

Gray S, Wang B, Orihuela Y, Hong E-G, Fisch S, Haldar S, Cline GW, 
Kim JK, Peroni OD, Kahn BB, et al. Regulation of gluconeogenesis 
by Krüppel-like factor 15. Cell Metab. 2007;5(4):305–312. doi:10. 
1016/j.cmet.2007.03.002.

Groza T, Gomez FL, Mashhadi HH, Muñoz-Fuentes V, Gunes O, Gunes 
O, Wilson R, Cacheiro P, Frost A, Keskivali-Bond P, et al. The 

International Mouse Phenotyping Consortium: comprehensive 

knockout phenotyping underpinning the study of human dis-
ease. Nucleic Acids Res. 2023;51(D1):D1038–D1045. doi:10.1093/ 
nar/gkac972.

Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in 
metabolism. Immunity, and cancer: unified and diverse mechan-
isms of action. Front Endocrinol (Lausanne). 2021;12:624112. doi:
10.3389/fendo.2021.624112.

Hill DP, D’Eustachio P, Berardini TZ, Mungall CJ, Renedo N, Blake JA. 
Modeling biochemical pathways in the gene ontology. Database. 
2016;2016:baw126. doi:10.1093/database/baw126.

Hoogerland JA, Peeks F, Hijmans BS, Wolters JS, Kooijman S, Bos T, 
Bleeker A, Dijk TH, Wolters H, Gerding A, et al. Impaired 
very-low-density lipoprotein catabolism links hypoglycemia to 
hypertriglyceridemia in glycogen storage disease type Ia. J 
Inherit Metab Dis. 2021;44(4):879–892. doi:10.1002/jimd.12380.

Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo S-H, Partch C, Green CB, 
Zhang H, Takahashi JS. Crystal structure of the heterodimeric 
CLOCK:BMAL1 transcriptional activator complex. Science. 2012; 
337(6091):189–194. doi:10.1126/science.1222804.

Jitrapakdee S, Slawik M, Medina-Gomez G, Campbell M, Wallace JC, 
Sethi JK, O’Rahilly S, Vidal-Puig AJ. The peroxisome proliferator- 
activated receptor-gamma regulates murine pyruvate carboxyl-
ase gene expression in vivo and in vitro. J Biol Chem. 2005; 
280(29):27466–27476. doi:10.1074/jbc.M503836200.

Kersten S. Integrated physiology and systems biology of PPARα. Mol 
Metab. 2014;3(4):354–371. doi:10.1016/j.molmet.2014.02.002.

Kingdom R, Tuke M, Wood A, Beaumont RN, Frayling TM, Weedon 
MN, Wright CF. Rare genetic variants in genes and loci linked to 
dominant monogenic developmental disorders cause milder re-
lated phenotypes in the general population. Am J Hum Genet. 
2022;109(7):1308–1316. doi:10.1016/j.ajhg.2022.05.011.

Kingdom R, Wright CF. Incomplete penetrance and variable expres-
sivity: from clinical studies to population cohorts. Front Genet. 
2022;13:920390. doi:10.3389/fgene.2022.920390.

Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir 
E, Wegner K, Aladjem MI, Wimalaratne SM, et al. The systems 
biology graphical notation. Nat Biotechnol. 2009;27(8):735–741. 
doi:10.1038/nbt.1558.

Li J, Lv S, Qiu X, Yu J, Jiang J, Jin Y, Guo W, Zhao R, Zhang Z-N, Zhang 
C, et al. BMAL1 functions as a cAMP-responsive coactivator of 
HDAC5 to regulate hepatic gluconeogenesis. Protein Cell. 2018; 
9(11):976–980. doi:10.1007/s13238-018-0514-y.

Long L, Toda C, Jeong JK, Horvath TL, Diano S. PPARγ ablation sensi-
tizes proopiomelanocortin neurons to leptin during high-fat feed-
ing. J Clin Invest. 2014;124(9):4017–4027. doi:10.1172/JCI76220.

Mirshahi UL, Colclough K, Wright CF, Wood AR, Beaumont RN, 
Tyrrell J, Laver TW, Stahl R, Golden A, Goehringer JM, et al. 
Reduced penetrance of MODY-associated HNF1A/HNF4A var-
iants but not GCK variants in clinically unselected cohorts. Am 
J Hum Genet. 2022;109(11):2018–2028. doi:10.1016/j.ajhg.2022. 
09.014.

Newgard CB, McGarry JD. Metabolic coupling factors in pancreatic 
beta-cell signal transduction. Annu Rev Biochem. 1995;64(1): 
689–719. doi:10.1146/annurev.bi.64.070195.003353.

Pedersen TA, Bereshchenko O, Garcia-Silva S, Ermakova O, Kurz E, 
Mandrup S, Porse BT, Nerlov Cs. Distinct C/EBPalpha motifs regu-
late lipogenic and gluconeogenic gene expression in vivo. EMBO J. 
2007;26(4):1081–1093. doi:10.1038/sj.emboj.7601563.

Pei L, Waki H, Vaitheesvaran B, Wilpitz DC, Kurland IJ, Tontonoz P. 
NR4A orphan nuclear receptors are transcriptional regulators 
of hepatic glucose metabolism. Nat Med. 2006;12(9):1048–1055. 
doi:10.1038/nm1471.

GO-CAMs link phenotypes and pathways | 15

https://doi.org/10.1016/j.ajhg.2022.05.008
https://doi.org/10.1016/j.ajhg.2022.05.008
https://doi.org/10.1186/s13326-016-0054-4
https://doi.org/10.1038/s41684-021-00853-5
https://doi.org/10.1007/s00335-015-9582-y
https://doi.org/10.1093/nar/gkaa1083
https://doi.org/10.1016/j.devcel.2017.01.015
https://doi.org/10.1016/j.devcel.2017.01.015
https://doi.org/10.1016/B978-0-12-152818-8.50028-1
https://doi.org/10.1016/B978-0-12-152818-8.50028-1
https://doi.org/10.1016/j.bbrc.2023.01.012
https://doi.org/10.1098/rspb.2011.1537
https://doi.org/10.1016/0026-0495(73)90269-2
https://doi.org/10.1001/jama.2019.3805
https://doi.org/10.1186/1750-1172-6-27
https://doi.org/10.1093/nar/gkab1028
https://doi.org/10.1093/bioinformatics/btab325
https://doi.org/10.1093/bioinformatics/btab325
https://doi.org/10.1016/j.exphem.2019.02.004
https://doi.org/10.1016/j.exphem.2019.02.004
https://doi.org/10.1016/j.cmet.2007.03.002
https://doi.org/10.1016/j.cmet.2007.03.002
https://doi.org/10.1093/nar/gkac972
https://doi.org/10.1093/nar/gkac972
https://doi.org/10.3389/fendo.2021.624112
https://doi.org/10.1093/database/baw126
https://doi.org/10.1002/jimd.12380
https://doi.org/10.1126/science.1222804
https://doi.org/10.1074/jbc.M503836200
https://doi.org/10.1016/j.molmet.2014.02.002
https://doi.org/10.1016/j.ajhg.2022.05.011
https://doi.org/10.3389/fgene.2022.920390
https://doi.org/10.1038/nbt.1558
https://doi.org/10.1007/s13238-018-0514-y
https://doi.org/10.1172/JCI76220
https://doi.org/10.1016/j.ajhg.2022.09.014
https://doi.org/10.1016/j.ajhg.2022.09.014
https://doi.org/10.1146/annurev.bi.64.070195.003353
https://doi.org/10.1038/sj.emboj.7601563
https://doi.org/10.1038/nm1471


Pendse AA, Johnson LA, Tsai YS, Maeda N. Pparg-P465L mutation 

worsens hyperglycemia in Ins2-Akita female mice via adipose- 
specific insulin resistance and storage dysfunction. Diabetes. 
2010;59(11):2890–2897. doi:10.2337/db10-0673.

Perry MN, Bello SM, Smith CL. Know your model: why mouse inbred 
strain contribution matters. Lab Anim (NY). 2020;49(5):133–134. 
doi:10.1038/s41684-020-0525-1.

Preidis GA, Kim KH, Moore DD. Nutrient-sensing nuclear receptors 
PPARα and FXR control liver energy balance. J Clin Invest. 2017; 
127(4):1193–1201. doi:10.1172/JCI88893.

Prochownik EV, Wang H. The metabolic fates of pyruvate in normal 
and neoplastic cells. Cells. 2021;10(4):762. doi:10.3390/ 
cells10040762.

Puigserver P, Rodgers JT. Foxa2, a novel transcriptional regulator of 
insulin sensitivity. Nat Med. 2006;12(1):38–39. doi:10.1038/ 
nm0106-38.

Qu M, Qu H, Jia Z, Kay SA. HNF4A defines tissue-specific circadian 
rhythms by beaconing BMAL1::CLOCK chromatin binding and 
shaping the rhythmic chromatin landscape. Nat Commun. 
2021;12(1):6350. doi:10.1038/s41467-021-26567-3.

Rakhshandehroo M, Sanderson LM, Matilainen M, Stienstra R, 
Carlberg C, de Groot PJ, Müller M, Kersten S. Comprehensive ana-
lysis of PPARalpha-dependent regulation of hepatic lipid metab-
olism by expression profiling. PPAR Res. 2007;2007:26839. doi:
10.1155/2007/26839.

Rena G, Hardie DG, Pearson ER. The mechanisms of action of metfor-
min. Diabetologia. 2017;60(9):1577–1585. doi:10.1007/s00125-017- 
4342-z.

Richardson JE, Bult CJ. Visual annotation display (VLAD): a tool for 
finding functional themes in lists of genes. Mamm Genome. 
2015;26(9–10):567–573. doi:10.1007/s00335-015-9570-2.

Ringwald M, Richardson JE, Baldarelli RM, Blake JA, Kadin JA, Smith 
C, Bult CJ. Mouse Genome Informatics (MGI): latest news from 
MGD and GXD. Mamm Genome. 2022;33(1):4–18. doi:10.1007/ 
s00335-021-09921-0.

Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced 
metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004; 
287(3):R502–R516. doi:10.1152/ajpregu.00114.2004.

Rose IA, Warms JV. Control of glycolysis in the human red blood cell. 
J Biol Chem. 1966;241(21):4848–4854. doi:10.1016/S0021-9258(18) 
99643-2.

Sasaki T, Okuda M, Hong TW, Watanabe Y, Takahashi Y, Shimizu M, 
Yamauchi Y, Sato R. Sesamin and hepatic metabolites derived 
from sesamin and episesamin antagonize farnesoid X receptor 
and reduce the expression of gluconeogenesis-related genes. J 
Nutr Sci Vitaminol (Tokyo). 2022;68(1):55–64. doi:10.3177/jnsv. 
68.55.

Schiaffino S, Blaauw B, Dyar KA. The functional significance of the 
skeletal muscle clock: lessons from Bmal1 knockout models. 
Skelet Muscle. 2016;6(1):33. doi:10.1186/s13395-016-0107-5.

Semple RK, Chatterjee VKK, O’Rahilly S. PPAR gamma and human 
metabolic disease. J Clin Invest. 2006;116(3):581–589. doi:10. 
1172/JCI28003.

Smith CL, Eppig JT. The Mammalian Phenotype Ontology as a unify-
ing standard for experimental and high-throughput phenotyping 
data. Mamm Genome. 2012;23(9–10):653–668. doi:10.1007/ 
s00335-012-9421-3.

Smith CL, Goldsmith CA, Eppig JT. The Mammalian Phenotype 

Ontology as a tool for annotating, analyzing and comparing 
phenotypic information. Genome Biol. 2005;6(1):R7. doi:10.1186/ 
gb-2004-6-1-r7.

Takeuchi Y, Yahagi N, Aita Y, Murayama Y, Sawada Y, Piao X, Toya 
N, Oya Y, Shikama A, Takarada A, et al. KLF15 enables rapid 
switching between lipogenesis and gluconeogenesis during fast-
ing. Cell Rep. 2016;16(9):2373–2386. doi:10.1016/j.celrep.2016.07. 
069.

Teshigawara K, Ogawa W, Mori T, Matsuki TY, Watanabe E, 
Hiramatsu R, Inoue H, Miyake K, Sakaue H, Kasuga M. Role of 
Krüppel-like factor 15 in PEPCK gene expression in the liver. 
Biochem Biophys Res Commun. 2005;327(3):920–926. doi:10. 
1016/j.bbrc.2004.12.096.

TeSlaa T, Bartman CR, Jankowski CSR, Zhang Z, Xu X, Xu X, Xing X, 
Wang L, Lu W, Hui S, et al. The source of glycolytic intermediates 
in mammalian tissues. Cell Metab. 2021;33(2):367–378.e5. doi:10. 
1016/j.cmet.2020.12.020.

The Gene Ontology Consortium. Expansion of the Gene Ontology 
knowledgebase and resources. Nucleic Acids Res. 2017;45(D1): 
D331–D338. doi:10.1093/nar/gkw1108.

Thomas PD, Hill DP, Mi H, Osumi-Sutherland D, Van Auken K, 
Carbon S, Balhoff JP, Albou L-P, Good B, Gaudet P, et al. Gene 
Ontology Causal Activity Modeling (GO-CAM) moves beyond GO 
annotations to structured descriptions of biological functions 
and systems. Nat Genet. 2019;51(10):1429–1433. doi:10.1038/ 
s41588-019-0500-1.

Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde 
Margaret D., Taylor LR, Wilson DR, Darlington GJ. Impaired en-
ergy homeostasis in C/EBP alpha knockout mice. Science. 1995; 
269(5227):1108–1112. doi:10.1126/science.7652557.

Way JM, Harrington WW, Brown KK, Gottschalk WK, Sundseth SS, 
Mansfield TA, Ramachandran RK, Willson TM, Kliewer SA. 
Comprehensive messenger ribonucleic acid profiling reveals 
that peroxisome proliferator-activated receptor gamma activa-

tion has coordinate effects on gene expression in multiple 
insulin-sensitive tissues. Endocrinology. 2001;142(3):1269–1277. 
doi:10.1210/endo.142.3.8037.

Xu X, Shi X, Chen Y, Zhou T, Wang J, Xu X, Chen L, Hu L, Shen X. 
HS218 as an FXR antagonist suppresses gluconeogenesis by inhi-
biting FXR binding to PGC-1α promoter. Metab Clin Exp. 2018;85: 
126–138. doi:10.1016/j.metabol.2018.03.016.

Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Hirota 
K, Ishida J, Fukamizu A. Bile acids regulate gluconeogenic gene 
expression via small heterodimer partner-mediated repression 
of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004; 
279(22):23158–23165. doi:10.1074/jbc.M314322200.

York B, O’Malley BW. Steroid receptor coactivator (SRC) family: mas-
ters of systems biology. J Biol Chem. 2010;285(50):38743–38750. 
doi:10.1074/jbc.R110.193367.

Zhang L, Rubins NE, Ahima RS, Greenbaum LE, Kaestner KH. Foxa2 
integrates the transcriptional response of the hepatocyte to fast-
ing. Cell Metab. 2005;2(2):141–148. doi:10.1016/j.cmet.2005.07. 
002.

Editor: A. Baryshnikova

16 | D. P. Hill et al.

https://doi.org/10.2337/db10-0673
https://doi.org/10.1038/s41684-020-0525-1
https://doi.org/10.1172/JCI88893
https://doi.org/10.3390/cells10040762
https://doi.org/10.3390/cells10040762
https://doi.org/10.1038/nm0106-38
https://doi.org/10.1038/nm0106-38
https://doi.org/10.1038/s41467-021-26567-3
https://doi.org/10.1155/2007/26839
https://doi.org/10.1007/s00125-017-4342-z
https://doi.org/10.1007/s00125-017-4342-z
https://doi.org/10.1007/s00335-015-9570-2
https://doi.org/10.1007/s00335-021-09921-0
https://doi.org/10.1007/s00335-021-09921-0
https://doi.org/10.1152/ajpregu.00114.2004
https://doi.org/10.1016/S0021-9258(18)99643-2
https://doi.org/10.1016/S0021-9258(18)99643-2
https://doi.org/10.3177/jnsv.68.55
https://doi.org/10.3177/jnsv.68.55
https://doi.org/10.1186/s13395-016-0107-5
https://doi.org/10.1172/JCI28003
https://doi.org/10.1172/JCI28003
https://doi.org/10.1007/s00335-012-9421-3
https://doi.org/10.1007/s00335-012-9421-3
https://doi.org/10.1186/gb-2004-6-1-r7
https://doi.org/10.1186/gb-2004-6-1-r7
https://doi.org/10.1016/j.celrep.2016.07.069
https://doi.org/10.1016/j.celrep.2016.07.069
https://doi.org/10.1016/j.bbrc.2004.12.096
https://doi.org/10.1016/j.bbrc.2004.12.096
https://doi.org/10.1016/j.cmet.2020.12.020
https://doi.org/10.1016/j.cmet.2020.12.020
https://doi.org/10.1093/nar/gkw1108
https://doi.org/10.1038/s41588-019-0500-1
https://doi.org/10.1038/s41588-019-0500-1
https://doi.org/10.1126/science.7652557
https://doi.org/10.1210/endo.142.3.8037
https://doi.org/10.1016/j.metabol.2018.03.016
https://doi.org/10.1074/jbc.M314322200
https://doi.org/10.1074/jbc.R110.193367
https://doi.org/10.1016/j.cmet.2005.07.002
https://doi.org/10.1016/j.cmet.2005.07.002

	Biochemical pathways represented by Gene Ontology-Causal Activity Models identify distinct phenotypes resulting from mutations in pathways
	Introduction
	Materials and methods
	Genes used in GO-CAM models
	Genes used for phenotype enrichment analysis
	Analysis of transcription factors that correspond to phenotypes enriched in the gluconeogenesis gene set

	Results
	Creation and validation of mouse GO-CAM models
	Related biological pathways are associated with related but distinct sets of specific phenotypes
	Phenotypes associated with specific pathways can be used to identify transcription factors causally related to the pathway

	Discussion
	Reactome GO-CAMs can bridge the biology of model organisms and humans
	Phenotype enrichment analysis of pathway-specific gene lists identifies and distinguishes pathway-specific phenotypes
	Enriched phenotypes can be used to identify genes that are causally connected to a pathway
	Limitations of our current approach and future directions

	Data availability
	Acknowledgments
	Funding
	Conflicts of interest
	Literature cited




