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Abstract

Variation in the rates and characteristics of germline and somatic mutations across the genome of an organism is informative about DNA 
damage and repair processes and can also shed light on aspects of organism physiology and evolution. We adapted a recently devel
oped method for inferring somatic mutations from bulk RNA-seq data and applied it to a large collection of Arabidopsis thaliana acces
sions. The wide range of genomic data types available for A. thaliana enabled us to investigate the relationships of multiple genomic 
features with the variation in the somatic mutation rate across the genome of this model plant. We observed that late replicated regions 
showed evidence of an elevated rate of somatic mutation compared to genomic regions that are replicated early. We identified tran
scriptional strand asymmetries, consistent with the effects of transcription-coupled damage and/or repair. We also observed a negative 
relationship between the inferred somatic mutation count and the H3K36me3 histone mark which is well documented in the literature of 
human systems. In addition, we were able to support previous reports of an inverse relationship between inferred somatic mutation 
count and guanine-cytosine content as well as a positive relationship between inferred somatic mutation count and DNA methylation 
for both cytosine and noncytosine mutations.
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Introduction
In animals, mutations in somatic cells have been implicated in the 
development of cancer and age-related conditions, such as neuro
degenerative disorders (Greenman et al. 2007; Kennedy et al. 2012; 
Martincorena and Campbell 2015; Vijg and Dong 2020). While ani
mal physiology constitutes a collection of mutually interdepend
ent systems, plants have long been understood as a series of 
largely independent repeating units that can compete with one 
another (Whitham and Slobodchikoff 1981). As a result, in plants, 
the literature has tended to focus on the intraorganismal hypoth
esis. This hypothesis posits that high cellular variation facilitates 
intraorganismal selection enabling plant adaptation to changing 
environments (Whitham and Slobodchikoff 1981), conferring, for 
example, resistance to herbivores (Padovan et al. 2015) and herbi
cides (Michel et al. 2004). In addition, in animals, owing to early 
segregation of the germline, somatic mutations are not inherited 
by offspring. Although not without dispute (Lanfear 2018), there 
is a general consensus that plants undergo germline segregation 
later in the development cycle (Whitham and Slobodchikoff 
1981; Burian 2021). This implies that many somatic mutations 
may occur prior to germline segregation and can, thus, be inher
ited by progeny (Burian 2021). Under such models, somatic muta
tions can generate important genetic variation that enables 

selection both among cell lineages within individual plants and 
among offspring (Burian 2021). Consequently, understanding the 
rate, characteristics and effect of somatic mutations can shed 
light on their relevance to both plant physiology and evolution.

Late segregation of the germline in plants offers significant ad
vantages for the study of somatic mutation accumulation as new 
leaves and new roots at the terminal branch have an equal separ
ation age from the common embryo and therefore can be com
pared easily to identify the number of mutations since 
embryonic formation (Wang et al. 2019). Furthermore, the lifecycle 
of plants like Arabidopsis thaliana is amenable to the method of 
propagation by single seed descent, thereby facilitating the study 
of somatic mutation accumulation almost entirely in the absence 
of selection (Weng et al. 2019); this approach has been utilized re
cently by Monroe et al. (2022) to demonstrate the relationship be
tween epigenetic factors and (somatic) mutation accumulation in 
A. thaliana and further challenge the theory of mutation as a ran
dom process with respect to its consequences (Monroe et al. 2022). 
Liu and Zhang have questioned the findings of this study citing in
flated mutation rates owing to the inclusion of dubious mutation 
candidates (Liu and Zhang 2022). Our study complements that of 
Monroe et al. (2022) by adapting a recently developed method for 
inferring somatic mutations from RNA-seq data (García-Nieto 
et al. 2019). This method, developed by García-Nieto et al., which 
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applies a range of computational filters to distinguish sequencing 
errors, transcriptional errors and other artifacts from true somat
ic mutations, has been applied to understand variation in somatic 
mutation processes across human tissues (García-Nieto et al. 
2019). We have adapted this method by introducing additional fil
ters designed to eliminate further sources of artifacts, such as 
polynucleotide-associated mutation candidates, thereby addres
sing some of the cited shortcomings of the existing studies (Liu 
and Zhang 2022). We applied the adapted pipeline to RNA-seq 
data from 671 leaf tissue accessions from the A. thaliana 1001 
Epigenomes Project (Kawakatsu et al. 2016; 1001 Genomes 
Consortium 2016). Each accession pertains to multiple leaf sam
ples from a single individual. A consistent procedure was used 
for all accessions; in particular, each accession is derived from 
ten rosette leaves frozen immediately prior to bolting. Using a pe
nalized generalized linear modeling framework, we assessed the 
relationships between the inferred somatic mutation count and 
the rich set of genomic features available for A. thaliana, including 
epigenomic and replication timing data as well as the gene expres
sion information provided by the RNA-seq data itself. We found 
that transcriptional strand, replication timing, and the presence 
of certain histone marks are predictive of somatic mutation abun
dance. Our results support and extend the recently reported re
sults of Monroe et al. (2022), without being subject to the same 
potential biases resulting from polynucleotide-associated muta
tion candidates. Consequently, they shed further light on the gen
omic features that influence the rate at which mutations 
accumulate in plants.

Materials and methods
Data download
RNA-Seq samples were downloaded from the Sequence Read 
Archive (SRA) website under accession number SRP074107 using 
the sra-toolkit (Leinonen et al. 2011). The associated md5sum 
was checked for each of the individual sample runs before pro
ceeding with analysis. These sample run FASTQ files were then 
concatenated into each of their respective 671 sample accessions 
using information from the associated metadata file. An imputed 
VCF file (Arouisse et al. 2020) of A. thaliana strains was downloaded 
from https://doi.org/10.6084/m9.figshare.11346893.v1.

RNA-seq alignment
The TAIR10 genome was indexed using the STAR aligner (Dobin 
et al. 2013) genomeGenerate command. Given that the reads were 
100 base pairs in length, the genomic sequence around the anno
tated junction was specified (–sjdbOverhang 99) and owing to the 
small nature of the TAIR10 genome, the indexing string was spe
cified as 12 (–genomeSAindexNbases 12). Reads were then mapped 
using the following parameters: clipping 6 bases in the 5′ end 
of reads (–clip5pNbases 6), requiring uniquely mapping reads 
(–outFilterMultimapNmax 1), keeping reads with 10 or fewer mis
matches (–outFilterMismatchNmax 10) and less than 10% mis
matches of the read length that effectively mapped to genome 
(–outFilterMismatchNoverLmax 0.1). After mapping, samtools (Li 
et al. 2009) was used to convert the resulting SAM files to binary 
format (BAM) and to index the resulting BAM files before PCR du
plicates were removed using the approach outlined by 
García-Nieto et al. (2019). Coverage maps were then created with 
samtools (Li et al. 2009) for all of the individual files, extracting po
sitions with a base quality greater than a Phred score of 29 and a 
coverage of 40 reads or greater.

Main somatic mutation calling pipeline
The somatic mutation procedure borrows heavily from the pipe
line developed by García-Nieto et al. (2019); what follows in this 
subsection is largely analogous to their approach; however, there 
are several adaptations detailed in the below.

The somatic mutation calling pipeline can be split into 3 sec
tions after mapping. These include: (1) selecting genomic posi
tions with two base calls, (2) removal of germline variants, and 
(3) filtering out variants that are not likely to represent true som
atic mutations.

Genomic positions selection
Genomic positions with 2 base calls were identified and extracted 
from the BAM files for all nuclear and organellar chromosomes. 
Only the positions for the nuclear DNA were extracted and used 
for downstream analysis. Given the potential for sequence errors, 
strict coverage and quality thresholds were established. These in
cluded a coverage cutoff of 40 reads and a sequence quality 
threshold equal to or greater than a Phred score of 30. In addition, 
positions wherein the minor allele count was less than 6 reads 
were discarded.

Removal of germline variants
With a view to further reducing the influence of false positives, 
using the associated imputed VCF file (Arouisse et al. 2020), all an
notated germline variant positions were excluded from further 
analysis.

Artifact filtering
Identifying DNA variants from RNA-seq data poses some pro
blems including the removal of false sources of somatic mutation 
calls. To overcome these issues, we adapted García-Nieto et al.’s 
(2019) pipeline to remove potential sequencing errors, RNA editing 
events, mapping errors around splice junctions, polynucleotide- 
associated mutations, and other sequencing/mapping biases: 

• Blacklisted regions: Data were extracted from Yu et al. (2019)
to define blacklisted regions in the TAIR10 genome. The 
authors defined a blacklist of genomic regions with systemat
ically high signal in ChIP-seq samples. These blacklisted re
gions were converted to BED format, and somatic 
mutations called within these regions were removed.

• RNA edits: RNA editing is a transcript-based layer of gene 
regulation. Meng et al. (2010) conducted a study into the 
RNA editing of nuclear transcripts in A. thaliana. The RNA edi
ted positions that this group identified were mapped to the 
TAIR10 genome annotation, converted to BED format and 
somatic mutations called at these positions were removed.

• Splice junction artifacts: Splice junctions are difficult to re
solve during mapping because a gap has to be introduced in 
reads spanning a splice junction to map it to the correspond
ing exons in the genome. García-Nieto et al. (2019) observed 
that the mutation rate was higher close to annotated exon 
ends and it stabilized at approximately 7 bp away from the 
exon end across all tissues. Hence, mutations present less 
than 7 bp away from an annotated exon end were removed. 
The splice junctions were identified using two different 
methods: (1) using the exon boundaries present in the 
TAIR10 GFF3 file and (2) using boundaries estimated using 
the STAR aligner for each accession; positions that were pre
sent within 7 base pairs to these junctions were filtered out.

• Sequencing errors: Further filters were included that elimi
nated candidate mutations with a probability of sequencing 
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error of at least 0.01%. This probability was calculated using 
the upper tail of the binomial distribution where the number 
of successes is the number of reads supporting the alternate 
allele, the number of events is the coverage in that position, 
and the probability of success is the conservative assumption 
of P-value equal 0.001 which equals the cutoff of Phred score 
30 during the first part of the pipeline.

• Variant allele frequency (VAF): The study conducted by 
García-Nieto et al. (2019) observed an enrichment of variants 
having a VAF greater than 0.9 only in mutation calls from 
RNA-seq data but not from matched DNA-seq data. Using a 
conservative binomial approach, we removed all candidate 
mutations where Binomial(K ≤ k; n, 0.5) > 0.05; here, k repre
sents the accessionwise number of reads supporting a vari
ant allele and n represents the accessionwise number of 
reads supporting a variant allele or reference allele. 
Effectively, this approach allowed us to filter out candidates 
where the observed allele counts are consistent with a true 
VAF in the vicinity 0.5 or higher (potentially corresponding 
to a missed germline variant).

• Further filters: For the following filters, a Mann–Whitney U 
test was performed and if the P-value was less than 0.05, 
the mutations were excluded. All these tests were performed 
using bcftools mpileup (Danecek et al. 2021). 

1) Read position bias test was applied to the positions in the 
read supporting the alternate allele vs the positions sup
porting the reference allele.

2) Mapping quality bias test was applied comparing map
ping quality scores of the base calls supporting the alter
nate allele vs the mapping quality scores of reads 
supporting the reference allele.

3) Sequence quality bias test was applied comparing se
quencing quality scores of base calls supporting the alter
nate allele vs the scores of base calls supporting the 
reference allele.

4) Strand quality bias test was applied comparing strand 
bias of bases supporting the reference and alternate allele

5) Variant distance bias test was applied identifying low or 
high mean pairwise distances between the alternate allele 
positions in the reads supporting it.

• Polynucleotide regions: It has been reported that poly
nucleotide regions are a common source of error in 
Illumina sequencing projects (Liu and Zhang 2022). With a 
view to eliminating these kinds of errors, we filtered any re
maining candidate mutations that were within 20 base pairs 
of a run of at least seven instances of the same nucleotide 
(Liu and Zhang 2022).

• Repeated mutation filter: After performing the above steps 
we removed any remaining candidate mutations that were 
repeated (i.e. a mutation was called at the same locus) by 
two or more accessions, under the assumption that these 
are likely to be were missed germline variants or other arti
facts. In particular, the method excludes variants that are ob
served in multiple accessions provided that the variants pass 
all previous filters (genomic positions selection, removal of 
germline variants, prior artifact filtering, etc.).

• Outliers: After repeated mutations had been removed, under 
the conservative assumption that the accessions were 
problematic and with a view to preventing abnormally high 
mutation accessions from dominating the mutational profiles, 
we further excluded any mutation candidates arising from 

outlier accessions using a groupwise interquartile range ap
proach. In particular, we partitioned the accessions into four 
evenly spaced groups based on the total depth of coverage in 
each accession and calculated quantiles for the number of 
mutations in each group; using these groups, we excluded 
from further analysis any mutations from accessions where 

ma < Q25%
D(a) − 1.5 × IQRD(a) or ma > Q75%

D(a) + 1.5 × IQRD(a) (where 

ma is the mutation count in accession a, Q p%

D(a) is the pth percent

ile corresponding to the group to which accession a belongs 
and IQRD(a) is the interquartile range corresponding to the 

group to which accession a belongs); we also excluded muta
tions belonging to an extreme-value accession forming a single
ton group.

• UTR/Exon overlapping mutations: Given that the mutations 
are derived from RNA-seq data, we only retained mutations 
that overlap unambiguous UTR/exonic regions as per the 
TAIR10 A. thaliana annotation; we define unambiguous re
gions as UTR/exonic regions from a given gene that do not 
overlap with other UTR/exonic regions from different genes.

Repeated mutation modeling
With a view to modeling repeated mutations, for each basewise lo
cus, l, with nonzero depth of coverage in at least one accession, we 
recorded the number of accessions with nonzero depth of cover
age at locus l, cl, and computed the sum of depths of coverage at 
locus l across all accessions, dl. We then modeled the mutation 
count at each locus with a Poisson distribution such that E[ml ]

cl
= 

exp(α + β × log( dl
cl

)) where ml corresponds to the across-accession 
mutation count at locus l and α and β are model intercept and 
slope parameters, respectively.

Entropy calculation
For each repeated mutation, we computed 
−
􏽐

b∈{A,C,G,T}\{r} p(b)logp(b), where r is the reference allele and p(b) 
denotes the probability of base b, computed as the number of ac
cessions where the alternate allele is b divided by the total number 
of accessions that the mutation appears in.

Effective gene length calculation
Given that there are more positions at which a mutation can occur 
in longer genes, we included effective gene length as an offset in 
our modeling approach. Specifically, to characterize effective 
gene length in the genewise context, effective gene length for 
gene g, bg, was defined as the number of UTR/exonic positions (nu
cleotidewise) for which there is expression and which pass all 
quality filters implemented during the somatic mutation calling 
phase for at least one accession. Furthermore, this calculation is 
base-aware in the sense that only positions that are relevant to 
the mutation type are considered in the calculation; for example, 
for the C>T mutation type where the cytosine resides on the tem
plate strand, only positions that comprise a C on the template 
strand are incorporated into the computation of effective gene 
length for gene g (i.e. bg = |

􏽓
a∈A,p∈P {p ∣ 1filters(ga,p) = 1}| where a ∈ 

A corresponds to accession a, p ∈ P corresponds to position p (nt) 
in gene g and 1filters(ga,p) is an indicator function that takes on a va
lue of 1 when the position p in accession a passes all filters).

Normalized transcriptional depth calculation
Like effective gene length, increased depth (i.e. number of reads 
overlapping a given position) increases the ability to detect somatic 
variants (i.e. increased power to detect lower frequency variants). To 
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account for this effect, we included the natural logarithm of the 
genewise normalized depth as a control covariate in our modeling 
approach. Specifically, to characterize aggregate depth in the gene
wise context, depth for gene g, dg, was defined as the sum of the nu
cleotidewise depths summed across all accessions and all UTR/ 
exonic positions corresponding to gene g. We define normalized 
depth for gene g, d∗g, as the quotient of the unnormalized depth dg 

and effective gene length bg (i.e. dg

bg
). As for effective gene length, 

this calculation is base-aware in the sense that only positions that 
are relevant to the mutation type are considered in the calculation; 
for example, for the C>T mutation type where the cytosine resides 
on the template strand, only positions that comprise a C on the tem
plate strand are incorporated into the computation of depth for gene 
g (i.e. d∗g = 1

bg

􏽐
a∈A,p∈P da,p × 1 filters(ga,p), where a ∈ A corresponds to 

accession a, p ∈ P corresponds to position p (nt) in gene g, da,p repre
sents the unnormalized depth for position p in accession a and 
1 filters(ga,p) is an indicator function that takes on a value of 1 when 
the position p in accession a passes all filters).

Transcriptional strand derivation
Given that all analysis is conducted in the genewise context, we 
were able to assess transcriptional strand asymmetry. All muta
tions are characterized in the context of the six primitive muta
tion types (C>A, C>G, C>T, T>A, T>C, T>G); as a result a 
mutation is said to occur on the template strand if the associated 
reference cytosine or thymine resides on the strand opposite the 
gene and a mutation is said to occur on the coding strand if the as
sociated reference cytosine or thymine resides on the same strand 
as the gene. The resulting information was then supplied and pro
cessed as detailed in the statistical modeling procedure.

Replication timing calculation
Arabidopsis thaliana replication timing data pertaining to early and 
late phases were obtained from CyVerse (Concia et al. 2018; 
Williams 2022). In order to characterize replication timing signal 
in the genewise context, the replication timing signal for gene g 
was defined as the log2 sum of the late-to-early bedGraph region 
signal ratios scaled by the length of their overlap with UTR/exonic 
regions of g and subsequently normalized by the sum of the 
lengths of UTR/exonic regions of g (i.e. for each region r ∈ R in 
the corresponding bedGraph files for replication timing, 

log2

􏽐
r∈R

(Lr
Er

)or,g

lg

􏼒 􏼓

, where Er and Lr correspond to the early and late 

replication signal, respectively, at region r, or,g is the length over

lap (bp) of region r with gene g and lg is the length of gene g (nt)).

Histone mark, DNA methylation, and DNA 
accessibility calculation
Histone mark distribution data for H3K14ac, H3K23ac, H3K27ac, 
H3K27me1, H3K27me3, H3K36ac, H3K36me3, H3K4me1, 
H3K4me2, H3K4me3, H3K56ac, H3K9ac, H3K9me1, H3K9me2, 
H4K16ac histone marks were downloaded as bigWig files from 
the Plant Chromatin State Database (Liu et al. 2018). From here 
we converted all bigWig files to bedGraph format using 
bigWigToBedGraph (Kent et al. 2010). Characterization of histone 
mark signal in the genewise context was performed in an analo
gous way to that of replication timing. The signal of histone 
mark h for gene g was defined as the sum across replicates and 
across regions of the histone mark bedGraph region signals scaled 
by the length of their overlap with UTR/exonic regions of g and 
subsequently normalized by the sum of the lengths of UTR/exonic 

regions of g (i.e. 

􏽐
f∈Fh ,r∈Rh,f

sh,f ,roh,f ,r,g

lg 
where sh,f ,r corresponds to the sig

nal (normalized to lie in [0, 1]) for replicate file f ∈ Fh for histone 
mark h at region r ∈ Rh,f , oh,f ,r,g is the length of the overlap (bp) of 

region r for replicate file f for histone mark h with gene g and lg 

is the length of gene g (nt)).
Data for DNA methylation (MeDIP) and DNA accessibility 

(ATAC-seq) were also downloaded as bigWig files from the Plant 
Chromatin State Database (Liu et al. 2018). From here, data were 
processed as per histone mark processing above.

Statistical model specification
We model the genewise (i.e. aggregated across UTR/exonic re
gions) count of somatic mutations using a Poisson distribution. 
In particular, we model the expected count of somatic mutations 
independently for each of the the six primitive mutation types 
(C>A, C>G, C>T, T>A, T>C, T>G) as a function of a number covari
ates such that for each mutation type

E[mn]
bn

= exp{α + κlog(d∗n) + [1t=template(tn), Xn] · [γ, β]}

⇒E[mn] = bn × d∗κn × exp{α + [1t=template(tn), Xn] · [γ, β]}
(1) 

For this model, α, κ, and γ represent an intercept and two covariate 
coefficients respectively and β represents a vector of covariate coef
ficients; mn represents the somatic mutation count for observation 
n, bn (which acts as an offset) and d∗n represent the effective gene 
length and normalized depth for observation n respectively; 
1t=template(tn) represents the indicator function that takes on a value 

of 1 when, for observation n, the transcriptional strand tn is the tem
plate strand and 0 otherwise and Xn represents a vector of 
covariates for observation n including guanine-cytosine (GC) con
tent, replication timing, DNA accessibility, DNA methylation and 
the various histone marks; all of these covariates are scaled to 
have zero-mean and unit variance. The structure of the model takes 
into account that the number of mutations observed in a given gene 
(across all accessions) is expected to increase proportionally to the 
effective gene length, bn. The model also allows for a relationship be
tween the number of mutations observed in a given gene (across all 
accessions) and the normalized depth, d∗n: when 0 < κ < 1 (which is 
the case for all the above analyses), the expected somatic mutation 
count increases as a function of normalized depth (d∗n) but at a de
creasing rate. We fitted the model with a cross-validation tuned 
LASSO penalty (Tibshirani 1996) applied to the parameters κ, γ, 
and β using the glmnet package (Friedman et al. 2010).

Results
Initial filtering identifies putative somatic 
mutation candidates
To explore the landscape of somatic mutation in A. thaliana, we 
modified a computational pipeline, developed by García-Nieto 
et al., designed to infer somatic mutations from human RNA-seq 
data (García-Nieto et al. 2019) (see “Materials and methods”). We ap
plied the modified pipeline to RNA-seq data derived from 671 A. 
thaliana accessions from the 1001 Epigenomes Project 
(Kawakatsu et al. 2016; 1001 Genomes Consortium 2016). In total, 
before filtering, we identified 4,856,981 candidate mutations 
across all accessions and across all mutation types; of these, fewer 
than 5% (235,380, 4.85%) of candidates were retained after filter
ing as per the initial pipeline filters (i.e. prior to removal of re
peated mutations and removal of mutations belonging to outlier 
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accessions) (Fig. 1) (see “Materials and methods”). It has been re
ported that polynucleotide regions are a common source of error 
in Illumina sequencing projects (Heydari et al. 2019) and this was 
highlighted as a potential issue in a recent study of somatic muta
tions in A. thaliana (Monroe et al. 2022), with the suggestion that 
these data included several thousand dubious mutations located 
in the vicinity of poly(A) or poly(T) tracts (Liu and Zhang 2022). 
Consequently, as part of our initial filtering procedure, we supple
mented the pipeline of García-Nieto et al. (2019) with a dedicated 
filter designed to remove mutations within 20 base pairs of 
a run of at least seven instances of the same nucleotide (Liu 
and Zhang 2022) (see “Materials and methods”). Before filtering, 
282,439 candidate mutations were flagged as polynucleotide- 
associated; approximately 89.59% (253,033) of these candidates 
were coincident with at least one other filter flag leaving 29,406 
candidates uniquely flagged by the polynucleotide-associated 
mutation filter.

Somatic mutation candidates are highly recurrent 
across accessions
Over 82% (193,699) of candidate mutations that passed all filters 
were found in more than one accession (i.e. multi-instance) 
(Fig. 2a). Similar mutation repetition was observed in the human 
study performed by García-Nieto et al. García-Nieto et al. (2019)

accounted for this by removing all candidates that appear in at 
least 4% of samples. Even after applying this filter, the rate of mu
tation repetition between accessions is inconsistent with what we 
would expect under a model of independent accumulation of 
somatic mutations; a simple Poisson model (see “Materials and 
methods”) suggests a positive relationship between normalized 
depth of coverage and number of repetitions across accessions, 
but provides a poor fit wherein expected values are consistently 
less than the observed values (Fig. 2b). While the original pipeline 
includes steps to remove inherited germline mutations, the high 
rate at which repeated mutations were observed suggests that a 
large number of inherited germline mutations may remain. Our 
assertion that the set of repeated mutation candidates in our 
Arabidopsis study was enriched for inherited germline mutations 
is strongly supported by the observation that, of the 20,232 gen
omic positions that were mutated in more than one accession, ap
proximately 8% (1,524) featured multiple alternate alleles across 
accessions (Fig. 2c). The alternate allele entropy across these 
loci was much lower than expected by chance (mean observed en
tropy: 0.04, expected entropy: 1.10; see “Materials and methods”) 
(Fig. 2c). Given that the majority of mutations that occur in 
more than one accession are likely to be unwanted artifacts (e.g. 
unannotated inherited germline variants, sequencing/mapping 
errors, etc.), these were removed from further consideration along 

filter

count log2(
observed count

expected count
)

m
ul

ti−
in

st
an

ce
ge

rm
lin

e 
va

ria
nt

bl
ac

kl
is

te
d 

re
gi

on
rn

a 
ed

it
ex

on
 b

ou
nd

ar
y

po
ly

nu
cl

eo
tid

e 
re

gi
on

sp
lic

e 
ju

nc
tio

n 
ST

AR
se

qu
en

ci
ng

 e
rro

r
va

f f
ilt

er
bc

f m
ap

pi
ng

 q
ua

lit
y 

bi
as

bc
f b

as
e 

qu
al

ity
 b

ia
s

bc
f r

ea
d 

po
si

tio
n 

bi
as

bc
f v

ar
ia

nt
 d

is
ta

nc
e 

bi
as

bc
f m

ap
pi

ng
 q

ua
lit

y 
vs

 s
tra

nd
 b

ia
s

0e
+0

0

2e
+0

5

4e
+0

5

−1 0 1 2

Fig. 1. Mutation filter intersections that each account for at least 1% of all mutation filtering.
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with all mutations associated with outlier accessions (Fig. 2d) (see 
“Materials and methods”).

C>T mutations are more abundant than any other 
mutation type
Given that mutations can only be called at sites with nonzero 
depth of coverage, we make a distinction between the annotated 
gene length and effective gene length (i.e. the number of sites in 
a gene with nonzero depth of coverage in at least one accession) 
(see “Materials and methods”). Per gene, we observed higher effect
ive gene lengths for T sites (i.e. sites with nonzero depth of cover
age and a thymine on forward or reverse strand) than C sites (i.e. 
sites with nonzero depth of coverage and a cytosine on forward or 
reverse strand) (Fig. 3a, Table 1); this result is not unexpected gi
ven the mean GC content of the A. thaliana transcriptome (ap
proximately 42% as per the exons considered for analysis). The 
power to detect somatic mutations from sequencing data is also 
a function of the depth of coverage; we note that the per gene 
log normalized depth (see “Materials and methods”) for C sites was 
slightly higher than for T sites (Fig. 3b, Table 1) (i.e. normalized 
for effective gene length, per gene, guanine and cytosine sites 
had more overlapping reads than adenine and thymine sites). 
Notwithstanding the difference in effective gene lengths for T 
and C sites, C>T mutations were the most commonly observed 
mutation among the six primitive mutation types (C>A, C>G, 
C>T, T>A, T>C, T>G), occurring, in total, over 1.5 times more fre
quently than the next most frequent mutation type (T>C) and 
over 4 times more frequently than the least frequent mutation 
type (T>G)) (Fig. 3c,d,e, Table 1).

Mutational signature profiling identifies two 
mutational signatures present in the 1001 
Epigenomes data
Trinucleotide mutational signatures can be predictive of environ
mental exposures. Using a Bayesian multinomial model (Gori and 
Baez-Ortega 2018), we were able to identify two mutational signa
tures (Fig. 4). With respect to reconstruction, the identified signa
tures produced a cosine similarity of approximately 0.58 with the 
observed mutational catalog. In terms of comparison with known 
mutational signatures, the two identified signatures were most 
optimally mapped to SBS5 (signature 1) (0.83 cosine similarity) 
and SBS40 (signature 2) (0.74) as per COSMICv3.2 (Tate et al. 2018).

Both transcriptional strand and replication timing 
are associated with mutation count
We developed a penalized generalized linear modeling framework 
to infer relationships between several genomic features (Fig. 5) 
and somatic mutation count while accounting for the effect of 
depth of coverage on mutation count (see “Materials and methods”, 
Equation 1). Using this framework, we were able to identify a 
positive relationship between normalized depth and expected 
mutation count (Fig. 6b). We identified varying effects of tran
scriptional strand for all six mutation types. In particular, we es
timated positive effect sizes for C>A, C>G and T>A mutations 
such that expected mutation count was higher for instances 
where the cytosine/thymine was on the template strand than 
when the cytosine/thymine was on the coding strand (Fig. 6c) 
(Table 2); in contrast, for C>T, T>C, and T>G mutations, negative 
effect sizes were estimated such that expected mutation count 
was lower in cases where the cytosine/thymine was on the tem
plate strand than when the cytosine/thymine was on the coding 

strand (Fig. 6c) (Table 2). With a view to establishing the relation
ship between replication timing and somatic mutation accumula
tion, we included the genewise normalized replication timing 
signal intensity (log2 quotient of normalised late-to-early signal) 
in the modeling procedure (see “Materials and methods”). For all 
six mutation types we found a positive effect, implying that later 
replicated genes had higher expected mutation counts (Fig. 6c) 
(Table 2).

H3K36me3 is inversely associated with expected 
mutation count for all mutation types
Chromatin modifications have been shown to influence both the 
formation and repair of DNA damage in A. thaliana (Feng et al. 
2017; Monroe et al. 2022). To investigate the relationship between 
histone marks and somatic mutation accumulation, we incorpo
rated the genewise normalized signal intensities for several his
tone marks in the modeling procedure (see “Materials and 
methods”, Equation 1). For all six mutation types, we observed an 
inverse relationship between H3K36me3 and expected mutation 
count (Fig. 6c) (Table 2). Consistent with this observation, 
H3K36me3 also displayed negative partial correlation with muta
tion count (normalized by effective gene length) conditioned on 
log normalized depth of coverage for all mutation types (Fig. 6a). 
While H3K4me1 exhibited a positive relationship with mutation 
count for our multivariate model for all mutation types (Fig. 6c) 
(Table 2), conditioned on log normalized depth of coverage, for 
all mutation types, H3K4me1 displayed negative partial correl
ation with normalized mutation count (Fig. 6a). For all mutation 
types, H3K9me1 exhibited a positive relationship with expected 
mutation count (Fig. 6c) (Table 2). Again, conditioned on log nor
malized depth of coverage, H3K9me1 displayed positive partial 
correlation with normalized mutation count for all mutation 
types (Fig. 6a). As reported in previous studies (Monroe et al. 
2022), we also observed persistent positive and negative relation
ships with expected mutation count for H3K23ac and H3K27ac re
spectively (Fig. 6c) (Table 2) (Monroe et al. 2022). Also, as previously 
reported, for all mutation types, GC content (negative) and DNA 
methylation (positive) were both associated with expected muta
tion count (Fig. 6c) (Table 2) (Monroe et al. 2022).

Relationships between genomic features and 
somatic mutation count are broadly conserved 
across A. thaliana datasets
Monroe et al. (2022) recently published data from mutation accu
mulation lines from four wild type populations from the north and 
south of Europe. Using this data (after removing 
polynucleotide-associated mutation candidates), we implemen
ted an analogous model to that which is described above (exclud
ing covariates for normalized depth of coverage) (see “Materials 
and methods”). This analogous model estimated similar relation
ships for many of the predictor covariates; across all mutation 
type models (C>A, C>G, C>T, T>A, T>C, T>G), we found a strong 
correlation between the estimated parameters for both datasets 
(Pearson r = 0.6730, P−value = <2.2 × 10−16; Spearman ρ = 0.6553, 
P−value = 4.657 × 10−16) (Fig. 6d).

Discussion
In this work, we have adapted an existing framework for inferring 
somatic mutations from RNA-seq data. In addition to annotating 
candidate somatic mutations present in the 1001 Epigenomes 
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Project, we have demonstrated relationships between genomic 
features such as transcriptional strand, replication timing and 
multiple epigenetic modifications with expected somatic muta
tion accumulation via a penalized generalized modeling 

framework. Although we were able to establish relationships be
tween several genomic features and mutation accumulation, it 
is important to acknowledge that the 1001 Epigenomes Project is 
composed of sequencing data from across many different 
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accessions. Inferring somatic mutations from collections of dis
tinct accessions is complicated by the presence of genetic diver
sity across such accessions. Diversity in this context has the 
potential to produce artifacts owing biological factors such as dis
tinct germline variants as well as technical factors such as mapp
ability issues (Kawakatsu et al. 2016; 1001 Genomes Consortium 
2016). It is also worth noting that many of the predictive features 
(replication timing, histone marks, etc.) are of diverse origin and 
not paired to the RNA-seq samples in terms of accession or cell 
type. Notwithstanding this, we note that similar approaches to 
data pairing have been used recently (Monroe et al. 2022). 
Finally, accessions in the 1001 Epigenomes project correspond to 
natural populations and, as such, for these accessions, the effect 
of selection has neither been removed nor controlled (Kawakatsu 
et al. 2016; 1001 Genomes Consortium 2016).

In addition to eliminating erroneous mutation calls (sequen
cing errors, alignment errors, RNA editing site errors, etc.), we 
also endeavoured to distinguish between true somatic mutations 
and other classes of bona fide mutations such as inherited germ
line mutations and de novo mutations. We excluded all candidate 
mutations overlapping annotated germline sites. Furthermore, gi
ven that García-Nieto et al. observed an enrichment of variants 
with high empirical VAFs in RNA-sequencing data but not in 
matched DNA-sequencing data (García-Nieto et al. 2019) and gi
ven that inherited germline and de novo variants should have a 
true VAF of 0.5, we introduced a VAF filtering approach that is de
signed to identify and remove candidate mutations whose true 
VAF is not likely to be less than 0.5. Given that we are using 
RNA-seq experiments to infer VAF, allele specific expression 
may lead to inaccurate VAF estimates resulting in both the reten
tion of false positives and loss of true positives.

In contrast with García-Nieto et al., the original authors of 
the somatic mutation calling pipeline used in this work 
(García-Nieto et al. 2019), we introduce a repeated mutation filter. 
Although in this work we posit that there may be certain local 
properties that influence the somatic mutation rate in certain re
gions of the genome (Feng et al. 2017; Monroe et al. 2022; Chen 
et al. 2012), we don’t expect the effect to be as dramatic as ob
served. Furthermore, given that true somatic mutations should, 
in theory, mutate from a given reference allele to one of the other 
three possible alternate alleles, we would expect higher entropy 
across candidate loci than we actually observe (Weng et al. 2019). 
In a previous study of somatic mutation accumulation in A. thali
ana, the authors similarly identified the phenomenon of repeated 
mutation across Arabidopsis lines propagated by single seed des
cent (Weng et al. 2019). However, the authors dismiss the possi
bility of mutation hotspots, and, instead, reason that their 
observations are owing to accidental splitting of Arabidopsis lines 
(Weng et al. 2019). Removing all somatic mutation candidates 
that are called at the same loci in more than one accession in 
our study dramatically reduces the final number of candidates. 

In their paper, García-Nieto et al. note that they inferred many 
more mutations than a competing methodology designed by 
Yizhak et al. (García-Nieto et al. 2019; Yizhak et al. 2019). Yizhak 
et al. employed a panel-of-normals approach to candidate valid
ation in order to reduce the number of false positives inferred by 
the mutation calling pipeline (Yizhak et al. 2019). Although 
García-Nieto et al. (2019) have endeavored to benchmark the ac
curacy of their method, the decision to only filter out mutations 
that appear in at least 4% of samples may characterize some of 
the distinction between these approaches.

We observed that C>T mutations occurred more frequently 
than other mutation types. It may be that the frequency of 
C>T mutations is owing to ultraviolet light (UV) exposure as 
it has been well documented in the literature that this muta
tion type is induced by exposure to UV light (Brash 2015). 
Furthermore, previous studies of spontaneous mutation in A. 
thaliana support the theory of UV-induced increased frequency 
of somatic C>T mutations (Ossowski et al. 2010). Interestingly, 
very similar transcriptional profiles were identified in a recent 
study of somatic mutation accumulation in human tissues 
perhaps suggesting a pan-eukarya ubiquity to these profiles 
(García-Nieto et al. 2019).

We were able to identify the presence of two C>T heavy muta
tional signatures in the catalog of observed mutations. Although 
resembling SBS5 and SBS40 of the COSMIC database (Tate et al. 
2018), the relevance of human mutational signatures to A. thaliana 
should be kept in mind when interpreting these results.

Evidence of strand-based asymmetry of mutations across or
ganisms has been extensively detailed in the literature (Lobry 
1996; Haradhvala et al. 2016; Oztas et al. 2018) and has previously 
been reported in A. thaliana in the context of UV-induced cyclobu
tane pyrimidine dimers (Oztas et al. 2018). In order to determine, 
more generally, the nature of transcriptionwise strand asym
metry of somatic mutation accumulation in A. thaliana, we incor
porated genewise strand-based information in our modeling 
procedure. Specifically, the genewise template strand and coding 
strand mutation counts were recorded for each mutation type fa
cilitating the use of transcriptional status as a predictor covariate. 
We observed that C>A, C>G, and T>A mutations occurred more 
frequently in cases where the cytosine/thymine resided on the 
template strand and that the opposite was true for C>T, T>C, 
and T>G mutations. Somatic mutation accumulation at regions 
that are unaffected by the transcriptional apparatus can be used 
to determine a set of “control” behaviors, thereby informing on 
the mutation accumulation behavior within transcribed regions 
(Oztas et al. 2018); however, by definition, the coverage of 
RNA-seq data is limited to transcribed regions of the genome, 
and, therefore, provides no information on nontranscribed re
gions. Given this limitation, it is difficult to determine if the asym
metry revealed by this analysis is owing to transcription-coupled 
repair (TCR), so-called “transcription-coupled damage” (i.e. 

Table 1. Results for effective gene length, normalized depth, and mutations for all mutation types.

Mutation Effective gene length (PG) Log normalized depth (PG) Mutations (PG) Normalized mutations (PG) Mutations (T)

C>A 501.6554 8.5612 0.0490 0.0048 994
C>G 501.6554 8.5612 0.0322 0.0033 653
C>T 501.6554 8.5612 0.1364 0.0136 2,768
T>A 658.9079 8.5183 0.0533 0.0053 1,084
T>C 658.9079 8.5183 0.0870 0.0086 1,768
T>G 658.9079 8.5183 0.0320 0.0032 650

PG, per gene; T, total; normalized mutations = mutations
log normalized depth.
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damage initiating on the coding strand) or other latent factors 
(Haradhvala et al. 2016). Notwithstanding this, previous results 
in the literature may be leveraged to develop a hypothesis-by- 
analogy; for example, in agreement with our findings, in humans, 
the UV-damage associated C>T mutation has been shown to 

exhibit strand asymmetry owing to TCR when the cytosine residue 
is located on the template strand (Haradhvala et al. 2016).

In eukaryotes, during S-phase, DNA replication has been 
shown to be a temporally regulated process (Gilbert 2010); more
over, the order of DNA duplication has been shown to be 
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predictive with respect to several cellular properties including 
DNA accessibility as well as gene distribution and function (Woo 
and Li 2012). Our findings suggest that the expected mutation 
count increases in regions that are replicated at later stages of 
the replication timing program. This kind of relationship between 
replication timing and somatic mutation accumulation has been 
widely documented in other organisms, and has, for example, 
been identified in human cancer samples (Woo and Li 2012). 
Given the nature of the data that we are working with, many of 
the hypotheses developed to explain this phenomenon, such as 
perturbations to the nucleotide pool (Tomkova et al. 2018), are un
testable with our data; however, it may be that our findings are 
owing to the functional composition of genes residing in latterly 
replicated loci compared with their early replicated counterparts. 
More specifically, when observed in other organisms, it has been 
suggested that early replicating regions tend to comprise develop
mental genes wherein malfunction of these genes can have pro
found consequences; in contrast, latterly replicated regions have 
been observed to comprise genes with tissue-specific expression 
and, as a result, have less profound consequences when subject 
to mutation (Woo and Li 2012). Furthermore, in A. thaliana, early 
replication timing has been shown to exhibit an inverse relation
ship with accessibility where early replicating regions tend to be 
rich in euchromatin and latterly replicating regions richer in het
erochromatin (Concia et al. 2018). Given that heterochromatin is 
less accessible and, therefore, in theory, less exposed to muta
gens, this phenomenon appears somewhat difficult to explain in 
the context of mutation accumulation; however, it may be that 
this inaccessibility implies that these regions are afforded less ef
ficient DNA repair (Cann and Dellaire 2011). Interestingly, the ob
served relationship between replication timing and mutation 

count persisted when GC content was included in the modeling 
procedure.

We were able to infer relationships between certain histone 
modifications and expected mutation count. For example, we es
timate an inverse relationship between H3K36me3 and expected 
mutation count for all six mutation types. It has been documented 
in the literature that H3K36me3 regulates mismatch repair in hu
man studies (Li et al. 2013) and that reduced H3K36me3 is 
associated with low DNA repair efficiency (Sun et al. 2020); further
more, H3K36me3 has also been associated with transcription- 
coupled repair in human studies (Huang et al. 2018). While we 
note that H3K36me3-mediated mismatch repair in humans is fa
cilitated by the PWWP domain in MSH6 that recognizes 
H3K36me3 (Li et al. 2013), suggesting limited conservation of 
mechanism, the Tudor-domain-containing plant ortholog of 
MSH6 has been shown to bind H3K36me3 (Zhao et al. 2019, 
2018). A recent study suggests that, in plants, MSH6’s Tudor do
main also appears to target H3K4me1 (Quiroz et al. 2022). 
Interestingly, we observed a positive relationship between muta
tion count and H3K4me1 in our multivariate model. Given the 
positive correlation between H3K4me1 and H3K36me3, it may 
be, for example, that the relationship between H3K4me1 and mu
tation count is obfuscated by the presence of H3K36me3 in the 
multivariate model; in support of this hypothesis, we observed 
an inverse partial correlation between H3K4me1 and normalized 
mutation count conditioned upon log normalized depth (i.e. 
where other histone marks are omitted). In contrast, it may be, 
for example, that the inverse partial correlation between 
H3K4me1 and mutation conditioned upon log normalized depth 
is an artifact of omitting histone marks like H3K36me3. We also 
estimate that H3K9me1 has a positive relationship with expected 
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mutation count for all mutation types. In A. thaliana, H3K9me1 is 
associated with the establishment of heterochromatin (Xu and 
Jiang 2020); again, it may be that inaccessibility inhibits DNA re
pair in these regions (Cann and Dellaire 2011). Interestingly, we 
identified a positive relationship between DNA methylation and 
expected mutation count even in instances where the reference 
base is not cytosine. As well as focal cytosine effects, recent stud
ies suggest that DNA methylation can affect mutability in neigh
boring regions in both germline and soma (Kusmartsev et al. 
2020). In particular, while mutability has been observed as being 
reduced in regions neighboring a methylated cytosine in human 
cells, consistent with our findings, increased mutability has 

been observed in regions neighboring a methylated cytosine for 
A. thaliana and rice, suggesting distinct processes in plant and ani
mal (Kusmartsev et al. 2020).

A recent study of somatic mutation accumulation in A. thaliana 
also sought to explore the relationship between epigenetic fea
tures and (somatic) mutation accumulation in A. thaliana 
(Monroe et al. 2022). Although we view our work as supplementing 
some of the findings of this work, we also make several novel con
tributions. To our knowledge, our work represents the first in
stance of somatic mutation inference from RNA-seq data in 
plants. In terms of inferring somatic mutations, RNA-seq data 
comprise several sources of artifacts not applicable to 
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Fig. 6. a) t-values resulting from partial correlation of each predictor covariate with mutations (normalized by effective gene length) conditioned upon log 
normalized depth. b) Intercept and normalized depth dynamics across interval of normalized depth values for each mutation type as per multivariate 
model. c) Estimated effect sizes for each covariate for each mutation type as per multivariate model; parameter values estimated with a cross-validation 
tuned LASSO penalty. d) Correlation of effect sizes estimated from 1001 Epigenomes (RNA) inferred somatic mutations and European mutation 
accumulation lines (DNA) (Monroe et al.’s data) inferred somatic mutations for each mutation type as per multivariate models.
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DNA-based sequencing methods (RNA editing sites, allele specific 
expression, etc.). Notwithstanding these challenges, these data 
also provide unique opportunities such as identification of very 
low-frequency variants that occur in some highly transcribed, 
highly functional regions of the genome; identification of these 
kinds of variants using, for example, whole genome sequencing 
would require sequencing the genome to potentially unfeasible 
depths. Regarding comparison with recent studies of somatic mu
tation accumulation in A. thaliana, in addition to using orthogonal 
approaches to both somatic mutation calling and epigenomic 
modeling of somatic mutation accumulation, we introduce sev
eral distinct genomic properties into the framework (i.e. transcrip
tional strand, replication timing, etc.). Comparative analyses 
suggest broad agreement between our data and the data of previ
ous studies. In addition, our approach has permitted the identifi
cation of relationships between replication timing and 
transcriptional strand with expected somatic mutation accumu
lation. Given these novel insights as well as the degree of agree
ment on shared properties, our work both supplements existing 
studies and offers novel insight into somatic mutation accumula
tion in A. thaliana.

Data availability
All code used to call and model somatic mutations in A. thaliana is 
available through GitHub (https://github.com/ptrcksn/somatic_ 
arabidopsis).

Supplemental files are available at figshare https://doi.org/10. 
25386/genetics.23451785 [mutations.tsv comprises mutations 
used for modeling; mutational_signatures.tsv comprises muta
tional signatures; model_features.tsv comprises all features (prior 
to mean centering and variance scaling) used for modeling; mod
el_fit.tsv comprises model parameter estimates for all models de
scribed in the manuscript].

1001 Epigenomes RNA-Seq samples are available as FASTQ files 
from the Sequence Read Archive (SRA) under accession number 
SRP074107. An imputed VCF file of A. thaliana strains is available 
from https://doi.org/10.6084/m9.figshare.11346893.v1. A. thaliana 

replication timing data pertaining to early and late phases can 
be obtained as bedGraph files from CyVerse. Histone mark distri
bution data for H3K14ac, H3K23ac, H3K27ac, H3K27me1, 
H3K27me3, H3K36ac, H3K36me3, H3K4me1, H3K4me2, 
H3K4me3, H3K56ac, H3K9ac, H3K9me1, H3K9me2, H4K16ac his
tone marks are available as bigWig files from the Plant 
Chromatin State Database. Data for DNA methylation (MeDIP) 
and DNA accessibility (ATAC-seq) are also available as bigWig files 
from the Plant Chromatin State Database.
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