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The most prevalent type of alopecia is androgenetic alopecia (AGA), which has a high prevalence but no effective treatment.
Elevated dihydrotestosterone (DHT) level in the balding area was usually thought to be critical in the pathophysiology of AGA. The
canonical Wnt/β-catenin signaling pathway plays a key role in promoting hair follicle development and sustaining the hair follicle
cycle. Adipose-derived stem cell exosomes (ADSC-Exos) are widely used in the field of regenerative medicine due to the advantages
of being cell free and immune privileged. Still, few studies have reported the therapeutic effect on hair disorders. As a result, we
sought to understand how ADSC-Exos affected hair growth and explore the possibility that ADSC-Exos could counteract the hair-
growth-inhibiting effects of DHT. This research using human hair follicle organs, in vitro dermal papilla cells, and in vivo animal
models showed that ADSC-Exos not only encouraged healthy hair growth but also counteracted the inhibitory effects of DHT on
hair growth. Additionally, we discovered that ADSC-Exos increased Ser9 phosphorylated glycogen synthase kinase-3β levels and
facilitated nuclear translocation of β-catenin, which may have been blocked by the specific Wnt/β-catenin signaling pathway
inhibitor dickkopf-related protein 1. Our findings suggested that ADSC-Exos are essential for hair regeneration, which is antici-
pated to open up new therapeutic possibilities for clinical alopecia, particularly for the treatment of AGA.

1. Introduction

Alopecia is a common disease affecting more than half of
the global population, of which androgenetic alopecia (AGA)
is the most common type [1]. The prevalence of AGA ranged
30%–70%. The disease has a great negative impact on patients’
external image, mental health, life, and work [2]. The treat-
ment of AGA is still a global problem that attracts blooming
interest in research. Oral finasteride and topical minoxidil are
still the main treatments for AGA. However, long-term use of
finasteride has a potential risk of sexual dysfunction, and
irritation of minoxidil also affects patient compliance. There-
fore, it is encouraged to develop new generative strategies that
antagonize androgens, activate Wnt/β-catenin pathway, and
restore the normal hair follicle cycle with lasting effectiveness
and few side effects.

At present, the exact etiology and mechanism of AGA are
still unclear, and it is generally believed that genetic factors,
locally increased androgen levels and overexpression of
androgen receptor (AR) play significant roles in the patho-
genesis of AGA [3–5]. Under the action of type II-5α reduc-
tase, testosterone is transformed into dihydrotestosterone
(DHT) with higher activity and binds to AR, leading to the
onset of AGA. Hair follicles show periodic development
rules, including three stages: anagen, catagen, and telogen.
The duration of hair follicles in AGA patients is gradually
shortened in anagen, while the duration of telogen is pro-
longed, and the hair follicles are progressively miniaturized
and eventually lead to alopecia [6, 7]. The pathways involved
in regulating hair follicle cycle development mainly include
Wnt/β-catenin, transforming growth factor-β (TGF-β), bone
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morphogenetic protein (BMP), sonic hedgehog (SHH) etc.
Among them, Wnt/β-catenin signaling pathway is essential
in hair follicle morphogenesis and primary hair follicle for-
mation [8, 9]. Wnt signaling is a highly conserved pathway
that is essential for the development and homeostasis of
multicellular organisms [10]. Glycogen synthase kinase-3β
(GSK-3β), which plays a pivotal role in the regulation of
self-renewal and function of cell populations [11], can be
negatively regulated by Wnt signaling through phosphoryla-
tion at residue Ser9, which in turn leads to β-catenin stabili-
zation [12]. This signaling pathway is regulated by the
stabilization and translocation of the key signal transducer
β-catenin to the nucleus, where it regulates the expression of
renewal and proliferation genes [13]. Current studies suggest
that DHT inhibition of the Wnt/β-catenin pathway is a key
pathological process in the pathogenesis of AGA; therefore,
in this study we targeted the Wnt/β-catenin signaling path-
way to explore new therapeutic options for AGA.

Dermal papilla cells (DPCs) are the “command center” of
hair follicle generation and cycle transformation. DPCs
locate at the base of hair follicles and is a crucial element
in hair follicle development and regeneration. As important
markers of DPCs and indicators of hair-inducing ability,
alkaline phosphatase (ALP), and versican induce follicle
formation when specially highly expressed in DPCs of hair
follicles during the anagen phase [14–16]. The expression and
secretion of various hair follicle inductive molecules in DPCs
have been reported to describe the hair inducibility of DPCs
[17]. It expresses AR, receives stimulation from DHT and
other factors, and regulates other hair follicle cells in a para-
crine manner. Recent studies have shown an interaction
between DHT and Wnt/β-catenin signaling pathway in the
pathogenesis of AGA [18–20]. DHT treatment downregulates
the classical Wnt pathway in DPCs and inhibits hair follicle
growth. Activating the Wnt signal could restore the DHT-
impaired hair follicle inductive ability in DPCs. Therefore,
effective activation of the classical Wnt pathway will become
a key target in the treatment of AGA.

Exosomes (Exos) are a kind of membranous vesicles with
a diameter range 30–150 nm and can be secreted by most cell
types [21]. Exos carry various bioactive substances such as
lipids, nucleic acids, and proteins, which participate in inter-
cellular communication and regulate cell biological activity
[22] While maintaining the same biological activity as the
source cells, exosomes can overcome the shortcomings
of stem cell therapy and are stable and easy to preserve.
More importantly, they can be commercially produced in
large quantities, avoiding multiple invasive procedures,
and demonstrating promising clinical translation prospects.
Adipose-derived stem cells (ADSCs), the most easily obtained
mesenchymal stem cells, are essential components of the
microenvironment around hair follicles. ADSCs play a vital
role in the hair cycle process, stimulating DPCs and promot-
ing the normal hair follicle cycle [23, 24]. Studies have shown
that ADSCs can secrete various cytokines to promote hair
growth. The treatment of AGA with ADSCs conditioned
medium and local injection of stromal vascular fraction rich
in ADSCs showed good hair growth effect [25–27]. ADSC-Exos

have been widely studied and proved to have strong potential in
regenerative medicine, such as nourishing nerve tissue, improv-
ing liver fibrosis, promoting bone regeneration, promoting
wound healing, and improving angiogenesis etc. [28–31].
ADSC-Exos play a role in treatingmany physiological processes
and diseases by activating theWnt/β-catenin signaling pathway
[32–34]. However, few studies have reported on the therapeutic
effects of ADSC-Exos in AGA.

In this study, we hypothesized that ADSC-Exos had the
same hair growth-promoting activity as ADSCs and could
antagonize the inhibitory effect of DHT on hair follicle
growth. We also aimed to clarify whether the activation of
Wnt/β-catenin signaling pathway played an important role
and explore the underlying mechanism, to develop new
strategies for AGA cell-free therapy.

2. Materials and Methods

2.1. Cell Culture and Identification

2.1.1. Adipose-Derived Stem Cells. Human ADSCs were iso-
lated from the subcutaneous fat of patients with liposuction,
which was consented in accordance with the Ethics Commit-
tee at The Third AffiliatedHospital of Sun Yat-SenUniversity.
The chopped fat tissue was digested with 0.2% collagenase
type I (Sigma, USA) at 37°C for 30min. After being centri-
fuged at 1,000 rpm for 3min, cell precipitates were resus-
pended in DMEM with low glucose (1.0 g/L), containing
10% FBS and 1% penicillin–streptomycin, and cultured at
37°C in an incubator of 5% CO2. The medium was replaced
for 48 hr. Passage 3 ADSCs were used for the following experi-
ments. The identification procedure of ADSCs is detailed in
the supplementary materials.

2.1.2. Dermal Papilla Cells. Human DPCs (ScienCell, USA)
were purchased from Science Cell Research Laboratories.
According to the instructions, DPCs were cultured in mes-
enchymal stem cell culture medium (ScienCell, USA) con-
taining 5% exosome-free FBS, 1% penicillin–streptomycin,
and 1% stem cell growth factor in a 5% CO2 incubator at
37°C. The cell passage number 3 was used in this study [35].

2.2. Exosomes Isolation and Identification.We used ultracen-
trifugation in this study to isolate exosomes as previously
reported [21, 36]. In brief, when the confluence of ADSCs
reached 75%–85%, the medium was replaced with exosome-
free serum medium and cultured for 48 hr. Conditioned
media was collected to centrifugate at 300 g for 10min,
2,000 g for 20min, and 10,000 g for 30min at 4°C to remove
cells and debris; afterward, the supernatant was filtered through
a 0.22 µm filter (Merck Millipore, USA). Subsequently, the fil-
tered medium was ultracentrifuged at 100,000 g, 70min twice
and exosomes were resuspended with PBS and stored in−80°C
for the following experiments.

The particle size and concentration of exosomes were
measured by nanoparticle tracking analysis (NTA) with
Nanosight NS300 (Malvern, England). Exosome morphol-
ogy was observed and photographed under the transmission
electron microscopy (TEM) (JEM-1200EX, Japan), accord-
ing to previously reported protocol [37]. The specific positive
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markers of exosomes TSG101, CD9, and CD81 (Abcam,
USA) were detected by the western blotting.

2.3. Exosomes Labeling and Uptake Assay. As recommended,
exosomes derived from ADSCs were labeled with the green
fluorescence dye PKH67 (Sigma-Aldrich, Germany). Then,
the PKH67-labeled Exos were obtained after ultracentrifuged
again at 100,000 g for 70min to remove excess dye. For the
internalization assay, DPCs were incubated with PKH67-
labeled exosomes for 24 hr and the results were evaluated
by confocal laser scanning microscopy.

2.4. Cell Proliferation Assay. The proliferation of DPCs and
chondrocytes stimulated by Exos was evaluated by cell
counting kit-8 (CCK-8) (Dojindo, Japan). In brief, DPCs
were seeded in 96-well plates (5,000 cells/well). After cell
adherence, DPCs were divided into ADSC-Exos groups of
0, 5, 10, 20 μg/mL or control, DHT (10−5mol/L), Exos and
DHT+Exos groups and treated for 72 hr. Then, 10 μL CCK-8
solution was added to each well for 2 hr at 37°C. The optical
density (OD) at 450 nm absorbance values was measured to
evaluate the cell proliferation.

2.5. Cell Migration Assay. In this study, scratch wound healing
assay was used to assess the effect of exosomes on the migra-
tion ability of DPCs. DPCs were seeded into 6-well plates
(5× 105 cells/well). When the confluence reached about 90%,
uniform scratch wounds were scraped by a 200μL sterile
pipette tip. Subsequently, gently wash away the scratched cells
with PBS, and add medium containing different concentra-
tions of ADSC-Exos, DHT (10−5mol/L), Exos, and DHT
+Exos or vehicle. Images were observed and taken by micro-
scope at 0, 12, 24, and 48hr after scratching.

2.6. Western Blot. Western blot analysis was performed as a
standard protocol. Exosomes, cells, or dorsal skin tissue were
lysed by RIPA on ice, and then the protein concentration was
measured by a BCA Protein Assay Kit (Thermo Fisher
Scientific, USA). The primary antibodies were as follows:
anti-phospho-GSK-3β (Ser9) (1 : 7,000, Rabbit monoclonal),
anti-GSK-3β (1 : 7,000, Rabbit monoclonal), anti-β-catenin
(1 : 7,000, Rabbit monoclonal), anti-Versican (1 : 2,000, Rabbit
monoclonal), anti-ALP (1 : 1,000, Rabbit monoclonal), anti-
GAPDH (1 : 10,000, Rabbit monoclonal), anti-CD9 (1 : 500,
Rabbit monoclonal), anti-CD81 (1 : 500, Rabbit monoclonal),
anti-TSG101 (1 : 2,000, Rabbit monoclonal), and anti-calnexin
(1 : 3,000, Rabbit monoclonal) (Abcam, USA).

2.7. Hair Follicles Separation and Organ Culture. HFs were
separated according to a previous study by Langan et al. [38].
In short, after the scalp was cleaned, it was divided into a
single hair follicle. The hair follicle was cut off at the
dermal–subcutaneous fat junction under a dissecting micro-
scope (Leica Microsystems, Germany). Isolated hair follicles
were carefully transferred to supplemented Williams’ E
medium. The medium was serum-free William’s E Medium
(Gibco, USA) containing 10 μg/L hydrocortisone (MP Bio-
medicals, USA), 10mg/L insulin–transferrin–selenium, 2mM
L-glutamine (Gibco, USA), 2mM HEPES (Gibco, USA), and
1% antibiotics (streptomycin and penicillin, Gibco, USA).

Mediums were replaced every other day. Suspensions were
cultured in 5% CO2 incubator at 37°C.

After 24 hr of culture, hair follicles at anagen stage VI
were selected in this study (Figure S2) [39]. Subsequently,
HFs were treated with ADSC-Exos of different concentra-
tions and 10−5mol/L DHT. The vehicle group was consid-
ered as the negative control group. HFs morphology was
imaged using an inverted microscope; the hair shaft elonga-
tion was measured every other day, and the mean of hair
shaft growth was reckoned.

2.8. Immunofluorescence. Cultured HFs were cut into 3 μm
paraffin sections and put on standard microscope slides.
Paraffin sections with complete structures were selected
and dewaxed. Then, the slides were repaired using EDTA
solution (pH 9.0), blocked with goat serum, and incubated
with primary antibodies against Ki67, β-catenin, GSK-3β,
and Ser9 phosphorylated glycogen synthase kinase-3β
(pGSK-3β) (Abcam, UK) overnight at 4°C. Secondary anti-
bodies (goat anti-rabbit, Abcam, UK) were added and incu-
bated in the dark for 1 hr. The slides were washed with PBST
three times and incubated with 4′, 6-diamidino-2-phenylin-
dole (DAPI; Beyotime Biotechnology, China) in the dark for
10min. The images were acquired under a fluorescence
microscope. ImageJ software (NIH, Bethesda, MD, USA)
was used to transform the obtained images into grayscale
images, and the average fluorescence intensity was measured.

2.9. In Vivo Tracking Experiment. The animal use protocol
listed below was reviewed and approved by the Institutional
Animal Care and Use Committee, Jenio Biotech Co., Ltd.
Exosomes labeled with DiR were used for fluorescence signal
tracking on an In Vivo Imaging System (IVIS). Six 7-week-old
male C57BL/6 mice were randomized into two groups: PBS
(control) group and ADSC-Exos/DiR group. DiR-labeled
ADSC-Exos or PBS was subcutaneously injected to the dorsal
skin after back depilation. Fluorescence images were taken at
0.5, 24,48, and 72hr by the VISQUE InVivo Smart-LF
Compact Preclinical in (Vie-work, South Korea). The results
were analyzed using MISE software, and data are expressed as
meansÆ SD radiant efficiency (photons/s/cm2/sr).

2.10. Hair Growth In Vivo. Male 7-week C57BL/6 mice were
purchased from Charles River (Beijing, China). After accli-
matization for 7 days, the dorsal hair of each mouse was
clipped to an area of about 2× 4 cm followed by depilation.
The mice were divided into six groups: PBS group (negative
control); minoxidil group (3% minoxidil, positive control);
Exos group; DHT group (10−5mol/L DHT, AGA group);
and DHT+Exos group (AGA treatment group), DHT
+minoxidil group, six mice in each group. Each mouse
was uniformly injected subcutaneously on the depilated
back with a total volume of 300μL/each (evenly injected at
12 points), and minoxidil was administered topically. The
mice were photographed on days 0, 6, 12, 18, and 21, and
the changes of skin color and hair growth in the hair loss area
on the back of the mice were recorded.

2.11. Histological Analysis. For histology, the dorsal skin of
mice was harvested and fixed in 4% paraformaldehyde at 4°C,
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and then the samples were embedded in paraffin blocks. The
section thickness of paraffin blocks was 5 µm. Hematoxylin
and eosin (HE) staining was for histological analysis of hair
growth in vivo. Skin thickness and HFs number were deter-
mined using Image-Pro Plus software. All of these were taken
from representative regions (at least three fields).

2.12. Cell Immunofluorescence Assay. After pretreating the
cell crawls with 0.1% gelatin, they were carefully placed
into 12-well plates with forceps. Inoculate the DPCs into
the 12-well plate and culture overnight to make the cells
adhere to the wall. DPCs were successively divided into
ADSC-Exos concentration groups of 0, 5, 10, and 20 μg/mL
and control group, DHT (10−5 mol/L) group, dickkopf-
related protein1 (DKK1) group, Exos group, DHT+ Exos,
and DHT+DKK1+ Exos group and treated for 24 hr.
Cells were fixed with 4% paraformaldehyde, treated with
0.3% TritonX-100 to permeabilize the cell membrane for
20min. Diluted β-catenin (5% BSA, dilution 1 : 300) primary
antibodywas added and placed at 4°C overnight. The next day,
add fluorescent secondary antibody and incubate at room
temperature for 1 hr. Finally, add an appropriate amount of
DAPI staining solution and incubate for 10min to avoid light
at room temperature. Select the proper channel under a fluo-
rescent microscope to observe and acquire images.

2.13. ELISA. DPCs were seeded into 6-well plates at a density
of 2.5× 105 cells per well. After 24 hr, the culture medium
was changed and the cells were pretreated with ADSC-Exo or
PBS for 12 hr, then followed by stimulation with DHT. The
conditional culture medium at 48 hr was collected, centrifu-
gated at 2,000 g for 10min to remove precipitate and then
stored in −20°C for further experiment. Different groups of
DPCs supernatants were used to culture the HaCaT cells to
explore the effect of substances secreted byDPCs on keratinocyte
differentiation. The concentrations of IGF-1 and HGF in the
supernatant of DPCs were determined by ELISA kits (Boster,
Wuhan, China) following the manufacturer’s instructions. The
OD was measured at 450nm by a microplate reader.

2.14. RNA Isolation and Quantitative Real Time-Polymerase
Chain Reaction (PCR). Total RNA was extracted from differ-
ent groups of DPCs and HaCaT cells with an RNA extraction
kit (HaiGene Biotech, China) and cDNA was synthesized by
the reverse transcription (Takara, Dalian, China). Quantita-
tive PCRs were performed as indicated (Takara, Dalian,
China). The primer sequences used are shown in Table S2.

2.15. Statistics. Data were performed with SPSS 20.0 statisti-
cal software and presented as meanÆ SD. All experiments
were done at least three times. Multiple comparisons among
≥3 groups were performed using one-way ANOVA. The
differences were considered statistically significant when
P<0:05.

3. Results

3.1. Characterization of ADSCs and ADSC-Exos. The extracted
cell types were identified according to the three criteria defin-
ing ADSCs proposed by the International Federation for

Adipose Therapeutics and Science and the International Soci-
ety for Cellular Therapy: (1) plastic adherence, (2) cell surface
markers, and (3) differentiation potential [40, 41]. The posi-
tive markers of CD13, CD44, CD73, CD90, and CD105 were
highly expressed, while the negative markers of CD11b, CD34,
and CD45 were almost not expressed (Figure 1(a)). In terms
of cell morphology and plastic adherence ability, ADSCs were
spindle-shaped and showed adnexal growth, which was
consistent with the morphology of mesenchymal stem cells
(Figure 1(b)). The cells we isolated differentiated into adi-
pocytes, osteoblasts, and chondroblasts (Figure 1(c)–1(e)).
According to the previous studies by Zhao et al. [36], TEM,
western blot, and NTA were used to characterize the puri-
fied nanoparticles from ADSCs. ADSC-Exos under TEM
were completed in shape, showing a spherical or round
cup shape (Figure 1(f)). ADSC-Exos had higher expression
of CD9, C81, and TSG101 proteins compared with ADSCs
cell lysates, but did not express the cytoplasmic endoplasmic
reticulum protein Calnexin (Figure 1(g)). The main particle
size peak of NTA exosomes was around 120nm, which was
in the range of 30–150 nm (Figure 1(h)).

3.2. ADSC-Exos Increase the Proliferation,Migration, andHair
Inducibility of DPCs. Confocal immunofluorescence imaging
showed that PKH67 labeled ADSC-Exos could aggregate in
DPCs (Figure 2(a)). These results indicate that ADSC-Exos
can be successfully ingested and internalized by DPCs.

To investigate the effects of different concentrations of
ADSC-Exos on the proliferation activity of DPCs, DPCs
were treated with 0,5, 10, and 20 μg/mL ADSC-Exos. Com-
pared with the control group, ADSC-Exos group showed
higher proliferation, and the promoting effect increased
with the increase of concentration within a certain range,
showing concentration dependence. However, when the con-
centration reached 20 μg/mL, the promoting effect was not as
significant as 10 μg/mL, indicating that 10 μg/mL is the most
suitable concentration (Figure 2(b)). Similar results were
obtained for the effect of ADSC-Exos on the migration
capacity (Figures 2(c) and 2(d)) and hair-inducing ability
of DPCs (Figure 2(e)–2(h)). ALP and Versican, as important
markers of hair inducibility, were significantly elevated after
treatment of ADSC-Exos (Figures 2(e) and 2(f)). Similarly,
qPCR and ELISA results revealed that ADSC-Exos increased
expression and secretion of hair follicle inductive molecules
in DPCs (Figures 2(g) and 2(h)). Moreover, cell-free medium
from exosomes-pretreated DPCs possessed stronger ability to
induce differentiation of keratinocytes (Figure S4). Thus,
ADSC-Exos promote the proliferation, migration, and hair
inducibility of DPCs and 10 μg/mL was an appropriate
concentration.

3.3. ADSC-Exos Promote Hair Follicle Growth and Prolong
Anagen in Organ Culture.Human scalp hair follicle culture is
a good organ model for hair preclinical studies. Thus, it has
been widely used to assess the hair growth promoting effect
of various factors. In order to investigate the effects of
ADSC-Exos on the growth of human hair follicles, human
hair follicles were cultured with 5, 20, and 80 μg/mL ADSC-
Exos. The results showed that the hair follicle growth was
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FIGURE 1: Identification of ADSCs and ADSC-Exos. (a) Detection of surface markers of ADSCs by flow cytometry. (b) Cell morphology of
human adipose stem cells, scale bar: 200 μm. (c) Lipogenic differentiation (Oil Red O staining), scale bar: 100 μm. (d) Osteogenic differentia-
tion (alizarin red staining), scale bar: 100 μm. (e) Chondrogenic differentiation (alcian blue staining), scale bar: 100 μm. (f ) Morphology of
ADSC-Exos observed by transmission electron microscopy, scale bar: 100 nm. (g) Detection of exosome surface markers by western blot.
(h) ADSC-Exos particle size distribution by NTA.
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good and the hair shaft was prolonged. Compared with the
control group, the hair shaft elongation and average growth
rate in all exosome groups increased in a concentration-
dependent range, among which 80 μg/mL ADSC-Exos had
the most apparent promoting effect (Figures 3(a) and 3(b),
Table S1).

The morphological changes in the hair papilla and hair
matrix area can be used to distinguish the anagen and
regression phases of the hair follicles. In the early stage
of catagen, hair follicles undergo a series of morphological
changes, such as thinning of the hair matrix, more elliptic
dermal papilla and decreased melanin [39]. The control
group entered the regression phase from the 6th day, the
hair matrix became fine, the melanin decreased, and the
dermal papilla was separated from the hair fiber and hair
matrix on the 8th day. While the 20 and 80 μg/mL ADSC-
Exos group hair follicles began to gradually develop
catagen-like morphological changes until the 10th day

(Figure 3(c), Figure S3), implying that ADSC-Exos treat-
ment could stimulate hair growth of scalp hair follicles and
delayed hair follicle degeneration.

Ki67 is a proliferative nuclear antigen reflecting cell pro-
liferation [42]. Hair matrix keratinocytes are a group of
rapidly proliferating cells. In anagen, Ki67+ hair matrix ker-
atinocytes proliferate and differentiate into various hair fol-
licle cells to achieve hair stem extension, while in the resting
phase, Ki67 is almost not expressed [39]. Therefore, the pos-
itive proportion of Ki67 in the hair matrix is an important
indicator in evaluating the proliferation of hair follicles. The
expression of Ki67 in hair follicles was significantly increased
after ADSC-Exos treatment. The proportion of Ki67+ cells
was 32.1% in the control group, and the proportion of Ki67+
cells in 5 μg/mL (40.5%), 20 μg/mL (60.3%), and 80 μg/mL
(77.8%) ADSC-Exos groups was significantly increased,
among which 80 μg/mL groups had a most significant pro-
moting effect (Figures 3(d) and 3(e)).
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These results indicate that ADSC-Exos can significantly
promote the hair shaft elongation, prolong hair follicle ana-
gen, and expedite hair follicle growth.

3.4. ADSC-Exos Antagonizes the Inhibitory Effect of DHT on
DPCs and Hair Follicles. Given the central role of DHT in
AGA in vivo and the inhibitory effect in vitro [43, 44], we
further investigated whether ADSC-Exos could antagonize
the inhibitory effect of DHT and thus treat AGA. The DPCs
were divided into the control group, DHT group, Exos
group, and DHT+Exos group. CCK-8 experiment showed
that after the addition of ADSC-Exos, the proliferation activ-
ity of DPCs in the DHT+Exos group was significantly
higher than that in the DHT group (Figure 4(a)). Similar
results were obtained in the scratching experiments. In the
ADSC-Exos treatment group, cells on both sides of the
scratch were completely fuzed at 48 hr. The migration rate
was 73.2% in the DHT+Exos group and 64.5% in the con-
trol group, and only 45% in the DHT group. The migration
activity was significantly improved in the DHT+Exos group
compared to the DHT group (Figures 4(b) and 4(c)).

We continue to explore the therapeutic effect of ASDC-Exos
on AGA in hair follicles. After the addition of ADSC-Exos, the
hair follicle growth of the DHT+Exos group was significantly
improved compared with the DHT group (Figure 4(d)–4(f),
Figure S3, and Table S1). In the DHT group, the hair matrix
area began to thin on the 4th day, with degenerative changes
and gradual separation of the dermal papilla from the hair
fibers and hair matrix, while the control group and the
DHT+ Exos group entered the degeneration stage from
the 6th day. Similar results were obtained with Ki67 immu-
nofluorescence staining of hair follicles to detect the prolif-
eration of hair matrix keratinocytes. Compared with the
control group, the proportion of Ki67+ of matrix keratino-
cytes was increased in the Exos group (69.4%) but signifi-
cantly decreased in the DHT group (12.5%). There was no
significant difference between the DHT+Exos group (39.7%)

and the control group (33.1%). The proliferation activity of
hair matrix keratinocytes in the DHT+Exos group was sig-
nificantly higher than that in the DHT group (Figures 4(g)
and 4(h)).

These results indicate that ADSC-Exos antagonizes the
inhibitory effect of DHT on hair follicle growth and restores
normal hair follicle growth.

3.5. ADSC-Exos Increase Skin Thickness and the Number of Hair
Follicles, Accelerating the Telogen-to-Anagen Transition. We
detected the retention of ADSC-Exos in C57BL/6 mice using
DiR-labeled ADSC-Exos in vivo fluorescence imaging and
determined the interval of administration is 48 hr. (Figure S1)

To determine whether ADSC-Exos can induce hair regen-
eration and antagonize the inhibitory effect of DHT in vivo,
we used 7-week-old male C57BL/6 mice to simulate the AGA
model by subcutaneous injection of DHT. 7-week-old C57BL/
6 mice entered the synchronous telogen after depilation and
the skin was pink during the rest period, while the skin grad-
ually darkened with a new anagen initiation [45]. The mice
were treated with 3%Minoxidil (positive control) [46], DHT,
Exos, DHT+Exos, DHT+Minoxidil, and control (vehicle,
negative control).

As shown in Figure 5(a), the skin of the Exos group
became diffuse gray on the 6th day, and a considerable part
of the skin of the minoxidil group became gray, indicating
that it gradually entered anagen, while the skin of mice in
other groups remained pink. On Day 21, hair was completely
regenerated in the Exos group, the hair growth of mice in the
Exos andminoxidil groups was significantly better than in the
control group, and hair regrowth in the DHT group was
significantly inhibited, but the hair in the DHT+Exos and
DHT+Minoxidil group was improved compared with the
DHT group. Besides, the skin thickness and hair follicle num-
ber in all groups were measured (Figure 5(b)–5(e), Figure S5).
Compared with the control group, the skin thickness and the
number of hair follicles were clearly increased in the Exos and
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minoxidil groups, and the increase was more pronounced in
the Exos group than in the minoxidil group.

These results suggest that ADSC-Exos can effectively
promote the transition from telogen to anagen and induce
hair regeneration in mice, and the effect is superior to that of
minoxidil. After DHT treatment, the telogen of mice was
prolonged and the entry into the anagen was delayed, which
was similar to that of AGA. However, after ADSC-Exos
treatment, the inhibitory effect of DHT on hair follicle
growth could be partially reversed and normal hair follicle
growth was restored.

3.6. ADSC-Exos Activates the Wnt/β-Catenin Pathway by
Promoting pGSK-3β (Ser9) and β-Catenin Expression and
β-Catenin Nuclear Translocation. The Wnt/β-catenin signal-
ing pathway is a key pathway in hair follicle formation,
development, and regeneration. To clarify the potential
mechanism of ADSC-Exos therapeutic effect, we examined
the changes of theWnt/β-catenin signaling pathway in DPCs
and hair follicles after ADSC-Exos treatment. Western blot
results showed that compared with the control group, the
expression of pGSK-3β and β-catenin increased significantly
with ADSC-Exos treatment, 10 μg/mL is a more appropriate
concentration (Figures 6(a) and 6(b)). Immunofluorescence
results suggested that β-catenin was mainly expressed in the
cytoplasm of DPCs in the control group, while the total β-
catenin expression was higher in each ADSC-Exos concen-
tration group and was expressed more concentrated in the
nucleus (Figure 6(c)). We also obtained consistent results in
immunofluorescence experiments on hair follicles (Figure 6(d)–
6(g)). The above results suggest that ADSC-Exos activates the
Wnt/β-catenin signaling pathway.

3.7. ADSC-Exos Antagonizes the Inhibitory Effect of DHT by
Activating the Wnt/β-Catenin Pathway. Previous studies
found that DHT in AGA patients downregulated the Wnt/
β-catenin pathway in hair follicles in the alopecia area [43].
To further confirm the effect of ADSC-Exos on Wnt/β-cate-
nin signaling pathway, DKK1, a commonly used inhibitor of
this pathway, was used. DKK1 can enhance the β-catenin
degradation complex to activate GSK-3β, reduce the level
of pGSK-3β, reduce the stability of β-catenin, promote its
degradation and inhibit its nuclear transfer. Compared
with the control group, the phosphorylation levels of GSK-
3β (pGSK-3β/GSK-3β) in the DHT and DKK1 groups were
significantly decreased, which was increased considerably in
the Exos group, and there was no significant difference
between the DHT+Exos and DKK1+Exos groups and the
control group (Figures 7(a) and 7(b)). In addition, the effect
of ADSC-Exos on DHT can be partially inhibited by DKK1
(Figure S6). Consistent results were also obtained in cellular
immunofluorescence. In the control group, β-catenin was
mainly expressed in the cytoplasm of DPCs, and a small
amount of β-catenin was expressed in the nucleus β-catenin
expression was significantly reduced in the DHT and DKK1
groups, and was almost absent in the nucleus, while β-cate-
nin was mainly expressed in the nucleus in the Exos group.
Compared with DHT group, the expression of β-catenin was
increased in DHT+Exos groups, which was inhibited by

DKK1 to a certain extent (Figure 7(c)). In addition, immu-
nofluorescence staining showed that DHT decreased the
expression of β-catenin in mice skin, which could be partly
restored by ADSC-Exos treatment (Figure 7(d)). Therefore,
these results revealed that ADSC-Exos antagonize the
inhibitory effect of DHT by activating the Wnt/β-catenin
pathway.

4. Discussion

AGA as a common disease, has a severe impact on the men-
tal health of patients. Current treatments are difficult to meet
the needs of patients due to various limitations. In this study,
we found that ADSCs-Exos antagonized the inhibitory effect
of DHT on hair follicle growth by activating Wnt/β-catenin
pathway and promoting hair regrowth (Figure S7).

Studies have shown that ADSCs can secrete various
growth factors, and the application of adipose-derived stem
cells, conditioned medium, and stromal vascular fraction
rich in ADSCs in the treatment of alopecia has been reported
continuously [23, 25, 47]. However, previous studies on the
promotion of hair growth by adipose stem cells are mainly
cells and conditioned media without the relevant mechanism
of action, and there are limitations of stem cells and culture
media therapy, such as immune rejection, short survival
time, and low overall content. Therefore, ADSCs-Exos used
in this study can overcome the above limitations. ADSCs
were isolated from adipose tissue by classical enzyme diges-
tion method and the ultra-centrifugation method was used to
obtain exosomes and identified them by morphology, parti-
cle size, and surface markers, which was consistent with
previously reported results [21, 41]. This indicated that we
successfully isolated and cultured ADSCs and obtained pure
ADSCs-Exos. Its advantages of mass production and less
ethical restrictions laid a reliable foundation for subsequent
clinical transformation therapy and tissue engineering.

DPCs are the regulatory center of hair growth, and the
proliferation of DPCs is necessary for hair follicle morpho-
genesis and growth. Extracellular vesicles from mouse bone
marrow mesenchymal stem cells could promote the prolifer-
ation and migration of DPCs, and their promoting effect was
dose-dependent in extracellular vesicles [48]. In our study,
ADSC-Exos promoted hair growth in a concentration-
dependent manner within a certain concentration range,
which was consistent with the previous results. When the
concentration is too high, its promoting effect is weakened.
Likewise, we cultured human hair follicles with different
concentrations of ADSC-Exos and found that ADSC-Exos
promotes the proliferation of hair matrix keratinocytes and
prolongs the hair follicle anagen phase, which leads to the
lengthening of the hair shaft. Within a certain concentration
range, the higher the concentration of ADSC-Exos, the more
obvious the promotion effect. However, the appropriate con-
centration of ADSC-Exos for promoting human hair follicle
growth has not been explored yet. Other cell-derived exo-
somes also have suitable concentrations for hair follicle
growth promotion [49]. In our study, 80 μg/mL of ADSC-
Exos was the most suitable promotion concentration. We
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speculate that there are also a range of appropriate action
concentrations for exosomes, which may be related to the
limited number of corresponding receptors in the effector
cells, and when saturation is reached, increasing the concen-
tration does not lead to further positive effects. In addition,
differences in suitable concentrations may be related to dif-
ferent cell types or quantification methods. Different adapta-
tion concentrations also exist at the cellular, organ, and in
vivo levels.

At present, only a few studies on hair growth promotion
by ADSC-Exos have been reported [43−45]. They have only
been explored at the single cellular level or at the animal level
under normal hair growth conditions. However, studies on
specific hair loss diseases are still scarce. DHT is a critical
factor that inhibits hair growth and leads to AGA, and many
studies have used DHT to study the related mechanism and
treatment of AGA [18, 44], the most common hair loss type.
This study established an AGA model with 10−5mol/L DHT
[18, 50] at multiple levels in cells, organs, and in vivo to
explore whether ADSC-Exos could antagonize the inhibitory
effect of DHT on hair growth and achieve the treatment of
AGA. We treated DPCs and hair follicles in vitro with DHT,
which inhibited the proliferation and migration of DPCs,
inhibited the growth of hair follicles and the proliferation
of matrix keratinocytes, and shortened the growth period.
Treatment with ADSC-Exos could effectively reverse the
inhibition effect. We also obtained similar results in
C57BL/6mice. ADSC-Exos had better hair growth promotion
results than minoxidil, which were considered a positive con-
trol. After DHT treatment, hair growth was inhibited, the
growth period was shortened, and the resting period was
prolonged, which can better reflect the pathological state of
AGA. After ADSC-Exos treatment, skin thickness and hair
follicle number were increased in C57BL/6 mice, and the hair
cycle was promoted to transition from telogen to anagen.

Wnt/β-catenin signaling pathway plays a crucial role in
hair follicle morphogenesis and regeneration [10]. β-Catenin
activity in the dermal papilla regulates hair morphogenesis
and regeneration, and the Wnt/β-catenin signaling pathway
is essential for coordinating mesenchymal–epithelial cell sig-
nal interaction of the hair follicles [51]. Activation of Wnt/β-
catenin pathway can prevent β-catenin degradation and
transport β-catenin to the nucleus, promote the expression
of growth-related genes, and play an important role in the
initiation of anagen [7]. In addition, DHT inhibition of Wnt/
β-catenin pathway is a key pathological process in the path-
ogenesis of AGA. It has been reported that umbilical cord
and adipose mesenchymal stem cell exosomes promote
wound healing and angiogenesis by activating the Wnt/β-
catenin signaling pathway [52, 53]. In addition, dermal exo-
somes promote hair regeneration by regulating β-catenin
signaling [54, 55]. After ADSC-Exos treatment, we found
that the level of a key molecule of Wnt/β-catenin pathway,
pGSK-3β increased, and β-catenin also showed higher total
level and nuclear translocation level, suggesting that the
activation of Wnt/β-catenin signaling pathway may be
related. DHT downregulates the protein expression of this
pathway, which is similar to DKK1, a specific inhibitor of

Wnt/β-catenin signaling pathway. The addition of ADSC-
Exos can partially offset the inhibitory effect of DHT and
DKK1 on Wnt/β-catenin signaling pathway. It was con-
cluded that ADSC-Exos targeting the main pathological
processes and key signaling pathways of AGA is expected
to be a better therapeutic strategy. ADSC-Exos contain a large
number of functional substances such as RNAs, proteins, and
lipids, which mediate the wound repair accelerating, hair
growth promotion, and immunomodulatory effects in the
various reports [28, 56, 57]. Exosomes-mediated transfer of
active ingredients to target cells has been shown to play a
crucial role in these effects. Deleted Deleted However, which
component in ADSC-Exos may play a role in activatingWnt/β-
catenin signaling pathway still remains unspecified and needs
further exploration. Even though numerous previous studies
have shown that a variety of effective substances (e.g., miR-
424-5p, miR-1260b, miR-127-3p, miR-218-5p, miR-22-5p,
miR-181a-5p, and miR-148b-3p [54, 58]; protein Hic-5,
UBR2, and STAT1 [59–65]) in exosomes from the different
sources can regulate the Wnt/β-catenin signaling pathway,
single miRNA or protein from exosomes might not
completely recapitulate the regulatory effects. Therefore, in
the present study, instead of exosomal miRNAs or proteins,
we used exosomes as a whole to investigate the therapeutic
effects on AGA.

There are also some limitations to our study. Aside from
the Wnt/β-catenin signaling pathway, ADSC-Exos may pro-
mote hair growth via a variety of other pathways such as
angiogenesis, immunomodulation, the TNF-α pathway,
and so on. This study, however, provides a strong theoretical
support as well as an important preclinical foundation for
ADSC-Exos treatment of AGA. It is expected to provide a
type of AGA cell-free therapy that is suitable for both men
and women and has fewer side effects. It will be the basis for
a more in-depth mechanism study of ADSC-Exos in the
future.

5. Conclusions

ADSC-Exos can enhance hair follicle induction ability,
extend the hair follicle growth period, and promote hair
regeneration. ADSC-Exos can promote hair growth by acti-
vating Wnt/β-catenin pathway, antagonize the inhibitory
effect of DHT on hair follicle growth, and restore normal
hair follicle growth, potentially opening up a new treatment
avenue for AGA.
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Supplementary Materials

Figure S1: retention of ADSC-Exos in C57BL/6mice. Figure S2:
qualitative morphological criteria to distinguish between
anagen VI and catagen. In hair follicle organ culture anagen
VI hair follicles show a hair matrix with a larger volume, a
dermal papilla which is more onion-shaped and a melanin
content which is maximal whereas catagen hair follicles have
a thinner hair matrix, a dermal papilla which is often more
oval and reduced melanin content. The melanin content of
anagen hair follicles is higher than in catagen follicles. The
percentage of Ki67+ cells of hair matrix keratinocytes in ana-
gen VI hair follicles is significantly augmented. Figure S3: (a)
the whole picture of hair shafts of Figures 3(c) and 4(f ).
Figure S4: HaCat cells were cultured with conditioned
medium fromDPCs treated with ADSC-Exos. Differentiation
markers KRT40, MSX2, KRT5, and KRT15 were detected
by qPCR; N= 3, ∗P<0:05, ∗∗P<0:01, and ∗∗∗P<0:001.
Figure S5: HE images with a full review of the injection
sites of Figures 5(b) and 5(c). Figure S6: ADSC-Exos par-
tially reverses the inhibitory effect of DHT on pGSK-3β.
Figure S7: graphical abstract: ADSC-Exos were isolated
from human adipose-derived stem cells by ultracentrifuga-
tion. ADSC-Exos promote the proliferation, migration and
hair inducibility of DPCs, enhance the elongation of human
hair follicles and accelerated telogen-to-anagen transition of
C57/BL6 mice. ADSC-Exos counteracted the inhibitory
effects of DHT on hair growth. Additionally, ADSC-Exos
increased Ser9 pGSK-3β levels and facilitated nuclear trans-
location of β-catenin, which indicated that ADSC-Exos

antagonize the inhibitory effect of DHT on hair follicle
growth by activating Wnt/β-catenin pathway. Table S1:
the measurement of hair shaft elongation for Figures 3(a)
and 4(d) (mm). Table S2: the sequences of the primers.
(Supplementary Materials)
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