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In Brief
PaxDb is a comprehensive
metaresource of protein
abundance data across multiple
organisms and tissues. Here, we
describe the latest version 5.0,
for which we have improved data
standardization and expanded
the number of individual
datasets, organisms, and tissue
groups, as well as the overall
proteome coverage. We also
present a comparative analysis
of PaxDb human tissue
proteomes against HPA and
GTEx. Lastly, using PaxDb as
reference, we uncovered a
previously undescribed
evolutionary trend in the amino
acid composition in Fungi.
Highlights
• PaxDb offers reference protein abundance data for an unrivaled collection of species.

• The PaxDb human dataset aligns with benchmarks derived from two leading resources.

• PaxDb data unveils a consistent evolutionary trend of sulfur avoidance in yeast.
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Qingyao Huang , Damian Szklarczyk, Mingcong Wang, Milan Simonovic, and
Christian von Mering*
The “Protein Abundances Across Organisms” database
(PaxDb) is an integrative metaresource dedicated to pro-
tein abundance levels, in tissue-specific or whole-
organism proteomes. PaxDb focuses on computing best-
estimate abundances for proteins in normal/healthy con-
texts and expresses abundance values for each protein in
“parts per million” in relation to all other protein molecules
in the cell. The uniform data reprocessing, quality scoring,
and integrated orthology relations have made PaxDb one
of the preferred tools for comparisons between individual
datasets, tissues, or organisms. In describing the latest
version 5.0 of PaxDb, we particularly emphasize the data
integration from various types of raw data and how we
expanded the number of organisms and tissue groups as
well as the proteome coverage. The current collection of
PaxDb includes 831 original datasets from 170 species,
including 22 Archaea, 81 Bacteria, and 67 Eukaryota. Apart
from detailing the data update, we also present a
comparative analysis of the human proteome subset of
PaxDb against the two most widely used human proteome
data resources: Human Protein Atlas and Genotype-
Tissue Expression. Lastly, through our protein abun-
dance data, we reveal an evolutionary trend in the usage
of sulfur-containing amino acids in the proteomes of
Fungi.

Biological processes are regulated at multiple levels.
Although many cellular changes are clearly detectable already
at the transcriptome level, it is the protein level that most
accurately reflects the cellular state since proteins act as the
direct executors of biological functions. Apart from a protein’s
expression level, further regulatory potentials lie in its post-
translational modifications, subcellular localizations, and bio-
logical contexts. In a complex multicellular organism with a
system of coordinated organs, protein expression patterns
largely conform to the specific requirements and activity of the
tissue or organ. Furthermore, protein expression profiles can
differentiate between healthy and disease states, providing
important markers and targets for diagnosis and treatment.
Thus, systematic measurements of protein expression

levels facilitate both the understanding of fundamental
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biological processes and the design of new therapeutic
strategies. Proteomics data collections have seen exponen-
tial growth in the last decade. Along with the data growth,
analytical instrumentation and data processing methodolo-
gies for quantitative proteomics have rapidly progressed.
Mass-spectrometry–based measurements provide the bulk
of protein quantifications, with multiple workflows and mo-
dalities from stable isotope labeling to label-free quantifica-
tion, from targeted, data-dependent acquisition (or shotgun)
to data-independent acquisition modes, and involving mul-
tiple ion trap technologies—time-of-flight (1), linear quadru-
pole ion trap (2), and Orbitrap (3)—in terms of instrument
configuration. For downstream data processing, a number of
quantification software packages evolved with multiple
pipelines to tackle different challenges in each experiment
set-up, with the most prominant ones being MaxQuant (MQ)
(4) and Proteome Discoverer (Thermo Fisher Scientific). A
plethora of file formats are produced; input and output data
at several levels of processed information are recorded in
various forms with overlapping information content (5).
Despite efforts to create a unified data standard with mzML
(6) and mzTab (7), the legacy of viable file formats continues
to create challenges for integrating and standardizing the
existing data.
The PaxDb database (Protein Abundances Across Organ-

isms) is an integrative metaresource dedicated to absolute
protein abundance levels in whole organism or tissue-specific
proteomes (8, 9). PaxDb focuses on creating a consensus
view on normal/healthy proteomes and expresses abundance
values in “parts per million” (ppm) in relation to all other protein
molecules in the sample. Since the last PaxDb update, the
proteomics community has grown continuously: roughly 1000
projects per month are submitted to ProteomeXchange, the
largest centralized platform for MS-derived primary data
submission (10), involving PeptideAtlas (11), PRIDE (12), iProX
(13), and jPOST (14) among others. For the latest version 5.0
of PaxDb, we have further improved data integration by
extending the types of raw data imported from the various
repositories and by expanding the number of organisms and
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PaxDb v5.0 (Protein Abundances Across Organisms Database)
tissue groups as well as the proteome depth of previously
covered organisms.
Using earlier versions of PaxDb as a reference, scientists

have already modeled fundamental biological processes
(15–19), formed hypothesis about stoichiometry in complexes
(20, 21), studied tissue-specific functionalities (21–23), and
verified new MS techniques and methodology (24, 25). Indeed,
the overall protein abundance landscape is likely reflecting a
fundamental, cross-species, structural and functional equilib-
rium (8). Proteins at the high end of the abundance distribu-
tions are particularly informative for evolutionary studies: their
synthesis brings a significant cost to the organism, and they
are observed to be coded more compactly, to have fewer in-
trons, and to be subject to heavier codon optimizations
(26–29). As the biosynthetic energy costs of the various amino
acids differ by as much as 7-fold, energetic effects—but also
nutrient and element availability—shape the general direction
of amino acid evolution (30–32). Episodes of nitrogen (N) limi-
tation likely have lead plants to reduce the overall nitrogen
presence in their proteome as compared with animal pro-
teomes (33). Iron (Fe) limitation prompted most marine organ-
isms to develop an iron-free version of ferredoxin, flavodoxin,
as an electron transfer agent in their biochemical reactions (34,
35), and in extreme environments, a clade of Procholorococcus
permanently lost ferredoxin in addition to losing 10% Fe con-
taining proteins (36). Sulfur (S) is somewhat less studied. It is
present in only two amino acids’ side chains, cysteine and
methionine. Nevertheless, it has been shown that the effect of
a single amino acid substitution involving sulfur is visible to
selection in more than half of the proteome in a yeast model
(37). While previous studies reached their conclusion through
observations in a limited number of species and proteomics
datasets, the PaxDb resource has the advantage of its large
collection of protein abundance data with associated orthology
relationships. Here, we use these data to present evidence of a
strong and wide-spread sulfur avoidance at evolutionary
timescales, in an entire clade of Fungi species.
EXPERIMENTAL PROCEDURES

PaxDb Data

All data contained in PaxDb are derived from public repositories,
open-access publications, or publicly accessible data supplements.

Abundance Data Inherited From PaxDb v4–Protein records in
PaxDb are generally based on the same genome versions and iden-
tifier namespaces as those in the STRING database (38), including
one-to-one mappings to Uniprot IDs. PaxDb v4 corresponds to
STRING v10.0, whereas the updated PaxDb v5.0 corresponds to
STRING v11.5 (38). Wherever genome annotations and protein se-
quences change between major PaxDb releases, the corresponding
protein records are remapped to the newest annotation.

For datasets quantified by spectral counting, a recomputation is
performed on the updated species’ complete proteome. For datasets
consisting of protein identifiers and abundances, the protein names
are remapped to the latest name-spaces using the identifier
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collections maintained by STRING, which provide identifier mappings
for a total of 278 identifier systems.

Dataset Collection–Since 2014, the ProteomeXchange Consortium
(10, 39) has become a centralized platform for MS proteomics data
sharing. The selection of projects to be imported into PaxDb is based
on project metadata and text mining of publications. The metadata of
the projects were downloaded through the ProteomeXchange API,
including project ID, species, year, keywords, list of files with exten-
sion, among other information. A full-text search was performed on all
PubMedCentral publications, and those containing identifiers starting
with PXD or RPXD were retrieved. Combining the project metadata
and publication information, the relevant projects were manually
selected with priority for highly cited publications and organisms not
yet included in PaxDb. Keywords involving disease conditions, sub-
cellular compartments, exclusively posttranslational modification or
protein identification, virus, secretome, interactome, and metabolome
were excluded.

During the project selection, the abundance data were downloaded
from the supplementary tables in 98 publications.

An additional 421 project IDs were selected, and their files were
downloaded from ProteomeXchange. The file extensions which were
further processed included csv, xls/x, mzid, mgf, mzML, mzTab, msf,
and txt.

Protein-Centric Data Processing–From publication supplements,
abundance reports already aggregated to the protein level were
mapped to the common identifier space using global alias file from
STRING database. To recover any unmapped entries, additional steps
were taken. In particular, protein IDs in the International Protein Index
namespace (closed with its last update in September 2011) system
were converted to UniProt ID with the mapping file (last release 2014-
01) from UniProt Archive (UniParc). The converted Uniprot IDs as well
as other unmapped IDs were searched through the NCBI E-utilities
(40) to fetch their protein sequences. These sequences were blasted
against the updated species proteomes and mapped via reciprocal
best-hit matching (requiring a minimum 90% sequence identity in both
directions). For datasets reporting protein abundances in the form of
ortholog IDs from a closely related species (because mass spec-
trometry libraries and databases were available there), protein records
were also blasted against the original species’ proteome and mapped
via reciprocal best-hit matching.

In bulk-download files from ProteomeXchange, most protein-
centric data are in the MQ output format “proteinGroup.txt” (4). Any
“CON_” (contaminant) or “REV_” (reversed sequence) entries were
excluded from protein Groups files, while all other protein names were
mapped as described above. The intensity value for each protein entry
was extracted, and the molecular weight and the theoretically
observable peptides were calculated from the protein sequence. Then,
the intensity-based absolute quantification was calculated, using
Method #4 described in (41). Specifically, the relative abundance of a
given protein was calculated by dividing the sum of its precursor
peptide intensities by the count of peptides theoretically observable
from a complete trypsin digestion of the protein sequence.

Peptide-Centric Data Processing–Wherever available, peptide-
centric data were preferred over protein-centric data, and peptide-
intensity data were preferred over peptide-count data, for all down-
stream data processing. From msf files, target and decoy peptides
were separated. The false discovery rate score threshold was set to
0.01 to filter the valid target peptides. The peptide intensities were
extracted for further processing. All imported peptide data were then
further processed with the pipeline described in study by Weiss et al.
(42). In detail, the relative abundance of a given protein was deter-
mined by normalizing the sum of each constituent peptide's quantity
(peak intensity or spectral counts)-length product by the total cor-
rected length of theoretically observable peptides.
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Data Quality Control and Dataset Integration–Since interacting
pairs of proteins tend to be expressed at broadly similar abundance
ranges, global protein–protein interaction information can be used to
derive an estimate of data quality for each dataset (8). For version 5.0
of PaxDb, all interacting protein pairs are retrieved from STRING v11.5
(38). For each dataset to be imported into PaxDb, the absolute log
abundance ratios of interacting protein pairs are computed, and the
median is taken. Then, the same operation is executed 500 times for
the same dataset but with shuffled protein labels. The z-score of the
observed median against the distribution of medians after label
shuffling is termed “interaction z-score,” with a larger value indicative
of better overall data quality.

In case more than one independent dataset is available for a given
organism or tissue group, an “integrated” dataset is generated by
weighted averaging. The estimation of the weights is iterative: the
datasets are sorted by their interaction z-scores; the highest-scoring
dataset receives a weight of 100%. Next, starting from the second-
best to the lowest-scoring dataset, each new dataset is integrated
with the previously merged datasets using ten equally spaced weights
from 0 to 100%. The integration attempt with the highest score is
selected.

Metadata Standards–Each dataset’s metadata, such as the or-
ganism name, taxonomy identifier (NCBI taxonomy (43)), tissue, tissue
ontology ID, publication/source, PubMed ID, and quantification
method (free text) are collected and made available via the website as
well as the download files. Wherever possible, tissues are encoded
with one of the following ontology systems: Uber-anatomy ontology
(44), Plant Ontology (45), Cell Line Ontology (46), Cell Ontology (47),
and The BRENDA Tissue Ontology (48).

Human Proteome Comparisons

Data Collection–The Human Protein Atlas (HPA) normal tissue data
based on version 21.1 and Ensembl version 103.38 was downloaded.
Twenty-three tissues were subsequently mapped to their corre-
sponding PaxDb tissue categories with identical labels for all but two
tissues (“heart muscle,” “saliva gland” in HPA and HEART, SALIVA
SECRETING GLAND in PaxDb, respectively).

Genotype-Tissue Expression (GTEx) proteome data were collected
from Supplemental Table S2 (protein level) from (49). For each organ
group, the GTEx consortium had quantified between 2 and 11
selected proteome samples per organ by mass spectrometry. The
GTEx organ information of these samples was extracted and mapped,
resulting in 13 PaxDb-matched organ groups. For the transcript
expression data, gene-level transcripts per million values were
downloaded from the GTEx portal from Analysis V8 (dbGaP Accession
phs000424.v8.p2), involving 17,384 samples per organ. Fifteen organ
groups were matched to PaxDb. For each organ group, the global
means per gene across all samples was used.

Data Analysis–The HPA normal-tissue protein data were first
filtered by the “Reliability” parameter: proteins in the “Uncertain”
category were removed. The four protein levels: “Not detected,”
“Low,” “Medium,” and “High” were then used for the compari-
son. A one-way ANOVA was performed for each tissue with
PaxDb abundance ppm values, using HPA protein level as
groups.

The PaxDb human proteome data (excluding GTEx experi-
ments) were compared against GTEx RNA and protein datasets.
A tissue-specific z-score was calculated for each gene and each
tissue in PaxDb integrated data and GTEx data to represent
relative protein expression (49). The Pearson correlation was
calculated for z-scores between the tissue datasets. The Pear-
son’s correlation coefficients of organ groups from both PaxDb
and GTEx were hierarchically clustered using average linkage to
generate a heatmap.
Proteome Evolution in Fungi

Orthology and Protein Domain Matching–One hundred seventy-
nine Fungi species as well as five reference species from other
Eukaryotic clades (Homo sapiens, Drosophila melanogaster, Caeno-
rhabditis elegans, Plasmodium falciparum, and Dictyostelium dis-
coideum) were included in the study. The “Simple Modular
Architecture Research Tool” (50) was used to assign annotated do-
mains to all encoded proteins in their genomes. Orthology relations
between the genes in these species were retrieved from EggNOG
version 5.0 (51). For all matched domain pairs between a reference
species and a given Fungi species of interest, pairwise global
sequence alignments were performed with EMBOSS-needleall (52)
using the Needleman–Wunsch alignment algorithm (53). The domain
pairs were filtered for at least 40% sequence identity, and only the
highest-scoring alignment pair was considered in case multiple do-
mains of the same type were annotated for any of the two orthologous
sequences.

Amino Acid Usage Ratios Between Fungi and Reference Pro-
teomes–For each orthologous protein pair, the amino acid usage was
assessed within the aligned domain sections, and a ratio was
computed. Only those orthologous pairs in which both proteins
registered at least one amino acid of interest were considered. In
cases where the orthology relation was complex (i.e., where paralo-
gous proteins are annotated in one or both of the organisms), the
orthologous group was also not considered. For each species pair
(Fungi species versus reference species), the protein abundance
values were taken from the orthologous protein in S.cerevisiae, using
its WHOLE ORGANISM integrated data. A Spearman’s rank correla-
tion was then calculated between the amino acid usage ratios and
protein abundances. For the visualizations in Evolution of Sulfur-
Containing Amino Acids section, the data points were binned in six
equally sized groups for the violin plots, and a linear regression was fit
over all data points.

A taxonomy tree visualization was created for the 179 Fungi species
according to the NCBI taxonomy database (43), using the interactive
Tree Of Life (54) online tool. A heatmap was then added to the tree,
visualizing the Spearman’s ρ values for each comparison between a
Fungi species and a reference species.
RESULTS

Data Update

The current PaxDb version 5.0 has nearly doubled its data
content with respect to the number of datasets, as well as
the number of organisms covered (Fig. 1A). The PaxDb data
integration pipeline involves a keyword-based discovery
search for suitable projects and/or publications and auto-
matic data processing for multiple input formats down-
loaded from repositories. Two hundred seventy-seven of the
410 newly imported datasets were derived from open-
access publications’ supplementary files (“Curated”), and
133 were from data repositories (“Repository”). From a data
processing point of view, 297 of the datasets were passed
through our protein-centric import pipeline, which involves
protein name mapping and where necessary also mapping
via protein sequence comparison. In addition, 113 datasets
were passed through the peptide-based import pipeline.
Twenty-five of the latter were processed from msf files, and
the rest from plain text inputs (Fig. 1B). Supplemental Figure
S1 shows the dataset composition on three aspects using
Mol Cell Proteomics (2023) 22(10) 100640 3
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FIG. 1. PaxDb v5.0 data overview. A, comparison to the previous version (v4.1), in terms of number of organisms, publications, original and
integrated datasets, peptide spectrummatches (PSMs), and proteins covered; B, origins and input formats of newly acquired datasets in v5.0; C,
interaction consistency scores and proteome coverage for newly added as well as existing datasets. D, PaxDb 5.0 contains 170 species
spanning three domains of life. Gray lines represent 61 species already existing in v4.1, and red lines represent 109 newly added species in v5.0.
The associated bar plots indicate the number of datasets per species (Gray: existing; Red: new datasets). PaxDb, “Protein Abundances Across
Organisms” database.
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metadata from ProteomeXchange (for publication date and
MS instruments) as well as processing software (from
dataset-associated publication). The newly included original
datasets were published between 2013 and 2021. The MS
instrumentation was dominated by Q Exactive, followed by
Orbitrap Fusion Lumos, LTQ Orbitrap Elite, LTQ Orbitrap,
Orbitrap Fusion, and LTQ. Of the datasets for which pub-
lished methods were available, the majority were processed
using MQ or Proteome Discoverer.
Based on the protein interaction information derived from

STRING v11.5 (38), we computed a quality score for each
dataset (see Data Quality Control and Dataset Integration
above). This “interaction consistency” score serves as a
quality evaluation metric as benchmarked in (8). The inte-
gration pipeline relies on this score to weigh each dataset.
Out of various weighting ratios, the dataset with the highest
score is selected as the integrated dataset (i.e., the best-
estimate weighted combinations per species or tissue
group). For example, the quality score and proteome
coverage of 10 original human liver datasets range from 2 to
29.7 and from 12% to 52% respectively, while the human
liver (integrated) dataset scores 30 with 80% proteome
coverage.
Since genome annotations and name-spaces continually

evolve, the datasets from version 4 of PaxDb also needed to
be remapped and/or requantified. The scores were found to
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be mostly improved after the version update, when using the
same STRING protein network as reference. For the integrated
datasets, the interaction z-scores and proteome coverage
nearly always increased when new datasets were added (see
Fig. 1C for a comparison of for 93 integrated datasets with
their counterparts in version 4). For existing integrations where
no new datasets were added, the scores remained largely
unchanged. However, with the inclusion of new datasets, the
scores generally improved.
The 170 species in version 5.0 of PaxDb span the Archaea,

Eukaryota, and Bacteria domains (Fig. 1D). The number of
Archaea species increased from 1 to 22. While more species
are included in Bacteria, Eukaryota encompasses a larger
number of datasets owing to the diverse tissue-differentiated
measurements. The top five species in terms of the number
of datasets are H. sapiens (249), A. thaliana (59), M. musculus
(106), and D. rerio (27). While ample datasets exist for these
species and a few other model organisms, 104 species are
represented by one dataset only (Supplemental Fig. S2A). On
the species-tissue level of complex organisms, the most tis-
sue groups exist in H. sapiens (64), followed by M. musculus
(47), A. thaliana (15), and D. rerio (13). Also, 143 out of 235
species-tissue groups consist of only one dataset, while
datasets accumulate in frequently studied tissues and spe-
cies, for example human cell lines (61), human liver (11), and
mouse liver (8) (Supplemental Fig. S2B).
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E. coli, H. sapiens, and B. subtilis rank highest in proteome
coverage, with S. cerevisiae, P. falciparum, D. melanogaster,
B. burgdorferi, H. pylori 26695, S. pombe, and M. musculus
trailing closely, each covering over 90% of their proteome
(Supplemental Fig. S2C). In 63 out of 170 species, at least one
dataset covers 50% proteome. On the species-tissue level of
complex organisms, in 35 species-tissue groups, the prote-
ome coverage exceeds 50%, most of them from H. sapiens,
followed by T. aestivum root (77%), A. thaliana root (53%), and
mouse cerebellum (51%) (Supplemental Fig. S2D).

Comparison to Other Human Proteome Resources

To independently assess the validity of PaxDb data, it was
compared to two comprehensive gene expression resources
focusing on H. sapiens: the GTEx project as well as the HPA,
both of which contain tissue-specific protein expression data.
Genotype-Tissue Expression–Both RNA-level and protein-

level data from GTEx samples were used. The PaxDb abun-
dances and GTEx protein-level data were directly compared.
FIG. 2. Human proteome quantifications across distinct database
Atlas and GTEx data. A, Spearman’s correlation between PaxDb abunda
cerebral cortex and skin. B, Pearson’s correlation for tissue specific abu
with PaxDb tissues marked with “P” and GTEx tissues with “G.” C, signifi
type. D, two examples of protein abundance distributions stratified by HP
ANOVA p-values as depicted in C. GTEx, Genotype-Tissue Expression;
ganisms” database.
For the matched labels, the Spearman’s correlation ρ ranged
from 0.76 for cerebral cortex to 0.42 for skin (Fig. 2A). Due to
the ubiquitous core biological processes, proteome-wide
abundance has been observed to highly correlate across
different tissue origins (55). Nevertheless, when comparing
PaxDb and GTEx protein expression, the correlation coeffi-
cient ρ was higher for matching tissue pairs than nonmatching
ones (Supplemental Fig. S3B). From PaxDb version 4 to 5,
correlation increased regardless of whether the pairs were
matching, due to the increased dataset score and proteome
coverage (Supplemental Fig. S3, B and C). As nonmatching
tissue pairs could still show correlation, particularly in cases
where the tissues do not exhibit tissue-specific patterns, we
use the tissue specificity z-score as described in (49) for the
all-against-all comparison between PaxDb and GTEx in
Figure 2B. The tissue specificity z-score was calculated per
gene to represent a gene-level signature per organ group for
both GTEx and PaxDb. The “signatures” from both resources
were clustered by their pairwise Euclidean distance, and a
resources. PaxDb quantifications are compared to Human Protein
nces and GTEx protein abundances, shown for two example tissues:
ndances in PaxDb against GTEx protein with clustering dendrogram,
cance of abundance separation by HPA group label, per human tissue
A categories (liver and gallbladder), showcasing the highest and lowest
HPA, Human Protein Atlas; PaxDb, “Protein Abundances Across Or-
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heat map was colored by the Spearman correlation co-
efficients. At the protein level, 8 out of 13 matched organ
group pairs between PaxDb and GTEx clustered together,
including adrenal gland, brain cerebral cortex, lung, liver,
pancreas, spleen, thyroid gland, and testis (Fig. 2B). At the
RNA level, 9 out of 15 pairs clustered together, including ad-
renal gland, brain cerebral cortex, colon, esophagus (partially),
fallopian tube, kidney, testis, stomach, and spleen
(Supplemental Fig. S3A). The agreement between GTEx and
PaxDb was stronger for protein data compared to RNA,
despite the markedly smaller sample size in protein data. T
tests for in-group and out-group Euclidean distances showed
significance for both RNA (p-value 2.28 × 10−2) and protein (p-
value 3.64 × 10−5). While over half of the organ pairs
demonstrated similarity both at the protein and at the RNA
levels, others did not. The discrepancy could be due to mul-
tiple tissue lineages within certain organs, such as the stom-
ach, esophagus, and colon, which encompass epithelial and
muscle layers. The proportions of these sampled tissues could
influence the expression landscape. Certain organs, like the
prostate, have previously been reported to be relatively
indiscriminate (49). Furthermore, differences might also result
from lower proteome coverage. For example, the skin dataset
from PaxDb (excluding GTEx) only covered 23% of the pro-
teome, which likely diminished its potential to distinguish tis-
sue types.
Human Protein Atlas–While PaxDb data are almost entirely

derived from MS data, the HPA normal tissue datasets
approximate the protein expression profiles with antibody-
based tissue microarrays. PaxDb computes protein abun-
dance in continuous ppm values, while HPA reports protein
expression in four levels, from “high,” through “medium” and
“low”, to “undetected”. The different characteristics of either
technology may result in systematic biases in the results, but a
global abundance trend is expected to be observable in both.
The overlapping proteins were grouped using HPA abundance
labels, and the distribution of protein abundance based on
PaxDb data was visualized using a kernel density plot, with a
vertical line representing the mean of each group. Two exam-
ples of such plots are shown in Figure 2D. The level of corre-
spondence between PaxDb protein abundances and the HPA
abundance labels is reflected in the label groups’ separation as
well as in their expected relative ordering from low to high. We
analyzed the group differences with one-way ANOVA. Across
the 23 tissues, the ANOVA p-values varied between 1.26 × 10−2

in GALLBLADDER and 6.7 × 10−162 in liver (Fig. 2, C and D).
The order of protein groups ranging from “high” to “unde-
tected” concurred with the PaxDb abundance group averages
for all tissues, except for the GALLBLADDER and HEART.

Evolution of Sulfur-Containing Amino Acids in Fungi

The relative frequencies of amino acids in the overall pro-
teome can change at evolutionary timescales (56), and they
are known to differ across organisms in response to
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mutational and environmental processes (57–59). While
inspecting datasets in PaxDb, we noticed that S-containing
amino acids (cysteine and methionine) seemed to be markedly
underrepresented in the proteomes of certain Fungi. On its
own, this observation is difficult to interpret: it could be the
consequence of distinct functional compositions of these
proteomes (e.g., unusual fractions of secreted proteins) or the
result of genome-wide mutational biases, or it could suggest
an adaptive response. To narrow down potential causes, we
compared Fungi proteomes to a varied set of other eukaryotic
proteomes and restricted the comparisons to strictly one-to-
one orthologous gene pairs (Fig. 3). In addition, we further
restricted the analysis to functionally and structurally equiva-
lent parts within these orthologs (i.e., aligned protein do-
mains); doing so should largely cancel out effects caused by
differences in overall proteome functions. Then, to distinguish
genome-wide mutational effects (e.g., G/C content differ-
ences) from potentially adaptive effects, we further stratified
proteins by their absolute abundance levels—adaptive
changes in response to sulfur limitations should be visible
particularly in highly expressed proteins.
We systematically conducted this analysis on the pro-

teomes of 179 Fungi species, for which the encoded pro-
teomes, protein domain compositions and orthology relations
have been established (38, 50, 51). We compared their sulfur
usage against five representative eukaryotes from other
clades, selected for high proteome coverage in PaxDb. The
latter included the human, two animal model organisms
(C. elegans and D. melanogaster) and two unicellular eukary-
otes (P. falciparum and D. discoideum).
When comparing the ratios of S-containing amino acids

across orthologous gene pairs, we observed for the majority
of proteins expressed at low to medium levels, that the overall
usage of sulfur was roughly similar (i.e., the median ratio
centered on 1.0, see Fig. 3). However, remarkably, this ratio
dropped below 1.0 for more strongly expressed, abundant
proteins. This trend is highly significant and is observed
independently both for cysteine as well as for methionine. It
also made no difference whether protein abundance levels
were taken from one or the other of the two organisms (not
shown); the yeast (S. cerevisiae) was taken as a reference for
protein abundances for all subsequent analysis because of its
highest quality and coverage in PaxDb, within the Fungi clade.
Assessing the strength of this effect across all 179 Fungi, a

differential sulfur depletion pattern was observed (Fig. 4).
Separate heatmaps for cysteine and methionine shows co-
ordinated regulation patterns (Pearson’s r ranges between
0.52 and 0.74 against five reference species; Supplemental
Fig. S4 and Supplemental Table S1). While the majority of
Fungi species showed at least some degree of sulfur avoid-
ance against the five reference species, the reduction was the
strongest in the Saccharomycotina order (C in Fig. 4), con-
taining baker’s yeast as well as most other unicellular Fungi
species (i.e., yeasts). Assuming that the observed sulfur
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avoidance in the Saccharomycotina might be adaptive, i.e.,
perhaps related to recurring episodes of sulfur limitation, a
multicellular lifestyle would have been advantageous as it
could provide mobility to escape the limiting environments. In
the Fungi kingdom, the marker for multicellularity is the
development of hyphae, long tubular substrate-seeking ex-
tensions, which allow the organisms to survive and migrate
away from nutrient-poor areas (60). We asked whether other
unicellular yeasts besides Saccharomycotina showed
elevated sulfur avoidance. As the unicellularity in Fungi is not
monophyletic, we marked the unicellularity/multicellularity of
the species in Figure 4 according to MycoBank (61). Although
organisms in the Taphrinomycotina subdivision (B in Fig. 4)
and a few species in the Basidiomycota division (A in in Fig. 4)
are also unicellular, their proteomes did not exhibit similar
levels of sulfur reduction as the Saccharomycotina. Subse-
quently, we explored whether the observed differences could
be accounted for by the GC content. We obtained the median
genome-wide GC% for each fungal species from NCBI
Genome. When considering all species, there appeared to be
a positive correlation between GC% and the sulfur ratio
(Pearson’s r 0.38, p-val 2.3 × 10−7). However, upon excluding
the Saccharomycotina clade, the correlation disappeared
entirely (Pearson’ r 0.01, p-val 0.9). This indicates an associ-
ated effect of the lower GC content of Saccharomycotina
clade. We further investigated the environment/host associa-
tions of the Saccharomycotina and the closely related Taph-
rinomycotina species. Habitat and/or lifestyle information for
Fungi is not systematically available; we approximated it by
the annotated sources of the first isolation of the type strains,
as described in ATCC (https://www.atcc.org, accessed
February 20, 2023); we also marked potential symbiotic life-
styles with “c”, parasites with “p”, and free-living lifestyles with
“f”. For Taphrinomycotina (showing little sulfur avoidance), two
out of six species were parasitic, while for Saccharomycotina
(strong sulfur reduction), 11 out of 33 species were symbionts,
six of which were parasitic. Overall, a clear association of
sulfur avoidance with free-living or parasitic lifestyles was not
observed. As the environments of the isolated type strain
cannot fully represent the major habitat of the species, the
underlying cause of the clade-wide sulfur avoidance was not
established.
DISCUSSION

This update of PaxDb v5.0 reports a nearly three-fold in-
crease in the number of species covered, and a two-fold in-
crease in the number of original datasets and publications.
Decreased evolutionary distances between the species will
enable higher-resolution cross-species comparisons. Likely
due to general improvements of the genome/proteome refer-
ence annotations, the re-mapping of older datasets from the
previous version of PaxDb mostly resulted in dataset quality
improvements.
Using two independent human-centered data collections—

HPA and GTEx, we verified the overall data quality of PaxDb,
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https://www.atcc.org


FIG. 4. Patterns of reduced sulfur content in Fungi proteomes. The proteomes of 179 Fungi (rows) are compared to the proteomes of five
reference organisms from other Eukaryotic clades (columns). Each tile in the heatmap indicates the strength of the negative correlation
(Spearman’s ρ) between protein abundance and the sulfur-usage ratio Fungi/Reference. Asterisks indicate the significance (p-value) of the
correlations: *: <0.01, **: <0.001, ***: <0.00001. Each Fungi’s genomic GC-content and multicellularity status are color-labeled on the left of the
heatmap. The Fungi are arranged according to their taxonomic annotations at NCBI (43). The Taphrinomycotina (B) and Saccharomycotina (C)
clades are shown expanded to the right, together with the heatmap colors of the Fungi/human comparisons; the inset includes information on
the environment from which the original type strains were collected. Two Fungi species from the table (P. jirovecii andW. ciferri) are marked; their
detailed correlation data are shown in the inset below, similar to Figure 3.
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in terms of quantitative agreement and dataset tissue
matching. We compared the PaxDb integrated tissue-level
protein abundances with matched GTEx RNA and protein
abundances. While both showed strong correlation between
the matched labels, the protein-level comparison contained
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fewer indiscriminate correlations and more in-group correla-
tions than the RNA-level. Comparisons with antibody-based
protein abundance estimates from HPA reached qualitatively
similar conclusions. Using protein–protein interaction data as
another, independent arbiter of data quality, we show that the
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PaxDb integration of multiple lower-coverage, lower-quality
datasets enhances the data quality and provides a boost to
overall proteome coverage.
By integrating PaxDb data with sequence analysis of

orthologous protein pairs, we discovered an apparent, strong
selection pressure to reduce sulfur usage in abundantly
expressed proteins, in a particular clade of single-celled Fungi.
One of the conceivable selection pressures causing this effect
would be a recurring sulfur limitation in the environment.
Experimentally induced sulfur depletion was shown to trigger
an alternative proteome state, resulting in 30% reduction in
sulfur usage in Fungi (62) and 45% reduction in a green alga,
Chlamydomonas reinhardtii (63). Besides such transient re-
sponses to acute sulfur limitations in the environment, more
prolonged sulfur limitation may also have resulted in adaptive
changes in the genome. Baudouin-Cornu et al. (64) showed,
for example, that sulfur assimilatory enzymes in yeast and
E. coli are themselves encoded using remarkably little cysteine
and methionine. Comparison of Cyanobacteria strains isolated
from sulfur-rich and sulfur-poor environment showed adaptive
eradication of cysteine and methionine in phycobilisome, the
light-harvesting proteins and the major cellular component, in
response to sulfur depletion (65). Another possible selective
pressure against sulfur usage relates to oxidative toxicity.
Unwanted disulfide bonds may be formed under oxidative
stress, impacting protein folding and activity (66). If the or-
ganisms were exposed to oxidative stresses through their
evolution, it could explain the reduction of cysteine (but not
methionine) in their protein sequences.
However, why the Saccharomycotina in particular would

show a reduced use of sulfur in their proteome remains un-
clear. The habitat ranges and ecological strategies of many
Fungi are described only anecdotally, and even less is known
about any present or past episodes of sulfur limitations.
Nevertheless, Fungi are known to be able to assimilate sulfur
from a number of sources, both of biotic and abiotic origin
(67). Perhaps this diversity of assimilatory toolkits is a sign for
past episodes of sulfur limitation. Future growth in the avail-
ability of genome sequences will allow this phenotype to be
mapped with ever increasing resolution.
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