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ABSTRACT
Objective  Myopia is the refractive error that shows the 
highest prevalence for younger ages in Southeast Asia 
and its projection over the next decades indicates that this 
situation will worsen. Nowadays, several management 
solutions are being applied to help fight its onset and 
development, nonetheless, the applications of these 
techniques depend on a clear and reliable assessment of 
risk to develop myopia.
Methods and analysis  In this study, population-based 
data of Chinese children were used to develop a machine 
learning-based algorithm that enables the risk assessment 
of myopia’s onset and development. Cross-sectional data 
of 12 780 kids together with longitudinal data of 226 kids 
containing age, gender, biometry and refractive parameters 
were used for the development of the models.
Results  A combination of support vector regression 
and Gaussian process regression resulted in the best 
performing algorithm. The Pearson correlation coefficient 
between prediction and measured data was 0.77, whereas 
the bias was −0.05 D and the limits of agreement was 
0.85 D (95% CI: −0.91 to 0.80D).
Discussion  The developed algorithm uses accessible 
inputs to provide an estimate of refractive development 
and may serve as guide for the eye care professional 
to help determine the individual best strategy for 
management of myopia.

INTRODUCTION
Already in 2012, the WHO declared visual 
impairment as major health issue, while 
uncorrected refractive errors cover 43% 
of these impairments.1 Since then, uncor-
rected refractive errors still appear on the 
list of major causes for visual impairments.2–5 
Myopia shows considerable variation in prev-
alence among children of different ethnic 
origins, geographic locations and ages.6 A 
recent review on the prevalence of myopia 
on children worldwide pointed out a myopia 
prevalence of 60% in Asiatic countries, with 
the eastern region being the most affected 
with prevalence values of 73%. In European 
countries, the study showed a 40% of myopia 
prevalence, while 42% in North American 
children. On the contrary, African and 

South American countries showed myopia 
prevalence under 10% in children.7 Myopia 
prevalence is also estimated to increase world-
wide within the next decades.8 9

Some biometric components of the eye 
influence refractive errors. Among the most 
common are the corneal shape, the crystal-
line lens shape and thickness and the axial 
length of the eye. Regarding the axial length, 
myopia may be developed when the eye grows 
to an extent that overruns the focal length 
of the eye,10 in case of relaxed accommoda-
tion. In some cases, when the length of the 
eye is superior or equal to 26 mm, additional 
complications must be considered, such as 
glaucoma, retinal detachment or myopic 
maculopathy.11–13 The risk for these complica-
tions might be reduced by evaluating the risk 
of myopia onset and accordingly, applying an 
appropriate and prompt management. The 
age of myopia onset and its progression rate 
are of great importance for the evaluation 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Percentile curves are currently used to statistically 
compute the further progression of (spherical equiv-
alent) refractive errors and axial length and for this 
approach, a big data approach is needed to get a 
distribution that represents a population.

WHAT THIS STUDY ADDS
	⇒ The conduction of large cross-sectional studies or 
the analysis of retrospective data of a given popula-
tion is time and cost intensive. The study investigat-
ed how machine learning-based algorithms perform 
in the computation of refractive errors over time, 
based on different input variables.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The use of machine learning to research and devel-
op algorithms for the prediction of refractive errors 
will help to generate algorithms for a high-quality 
prediction of refractive development with only a 
small subset of data needed compared with the sit-
uation before.
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of high-myopia risks and eventual complications.13 14 A 
wide number of variables that influence its onset and 
progression has been suggested, but only a hand full of 
them are frequently named. Among these parameters 
are the gender, age, ethnicity, behaviour and parental 
myopia.2 14–21 Regarding proper and prompt manage-
ment, several options have been identified to delay 
myopia onset or slow myopia progression, such as more 
time spent outdoors, less near-work time, topical atro-
pine treatments, optical interventions, among others.21–25 
To better assess and predict the individual risk of myopia 
development, different strategies have been devel-
oped and explored, for example, percentile growth 
curves or artificial intelligence for growth curve estima-
tion. Recently, growth curves of refractive power and 
axial length have helped to reference kids on different 
populations to make an estimate on the eventual devel-
opment.13 26–30 The use of artificial intelligence in the 
prediction of refractive error prediction might give bene-
fits when compared with the statistical approach by using 
percentile curves, but needs research and development 
as indicated by Foo et al,31 therefore, the present study 
investigates the application of artificial intelligence for 
the prediction of refractive errors and discusses its impli-
cations in the fields of optometry and ophthalmology.

METHODS
Data and subjects
The study was a community-based cross-sectional data 
collection. Every child available was included in the 
study. Participants signed an informed consent before 
the data collection and all procedures performed were in 
accordance with the Declaration of Helsinki. Patients or 
the public were not involved in the design, or conduct, or 
reporting, or dissemination plans of our research.

The data was collected by the Wuhan Center for Adoles-
cent Poor Vision Prevention and Control in Wuhan, 
China. Data from 12 780 kids that consisted of eye infor-
mation on spherical power (spherical component of the 
refractive error) and biometrical parameters, together 
with age and gender was used. The biometrical parame-
ters included the axial length, corneal radius (mean of 
the flattest and steepest radii), lens thickness and ante-
rior chamber depth. Spherical refraction was collected 
using the Topcon CV-3000 autorefractor (Topcon, 
Tokyo, Japan). All autorefractive measurements were 
performed while subjects were under cyclopaedia 
(cyclopentolate at 0.5%, applied four times each for 5 
min). Biometric data was collected using the Lenstar LS 
900 SN 1914, V.1.1.0 (Haag-Streit AG, Koeniz, Switzer-
land). The data was separated into two, a cross-sectional 
(12 554 kids) and a longitudinal (226 kids), data sets. 
The cross-sectional data set was divided into 48.2% of 
girls and 51.8% of boys and their age ranged from 5 
to 16 years. Their spherical refraction was −0.93±1.85 D 
(SD) for the girls and −0.88±1.83 D (SD) for the boys, 
while their age was 9.99±2.47 years (SD) and 9.90±2.48 
years (SD), respectively. The longitudinal data set was 

divided into 40.7% girls and 59.3% boys and measure-
ments were taken in three separate visits. Each dataset 
was used for the training of separate regression models. 
For the validation, a separated longitudinal data set of 
81 kids that consisted of the same named parameters 
was used.

Development of algorithm and modelling
The development of the complete prediction algorithm 
and the modelling was performed using MATLAB, 
V.R2018a (MathWorks, Natick, Massachusetts, USA). 
In the specific case of modelling, supervised machine 
learning from the Regression Learner Application found 
at the Statistics and Machine Learning Toolbox V.11.3 
was used.

The algorithm was defined as the set of code lines and 
models that in combination allowed the spherical refrac-
tion prediction. The intention was to take as inputs 
only the age, gender and spherical power and deliver as 
output the spherical power as a function of the age. This 
definition ensured the development of an algorithm 
that may be deployed in several applications without the 
need to measure many eye variables, that is, biometric 
parameters. The same applied for the models trained 
and used on the algorithm. To keep the models with 
the less possible independent variables, only variables 
that were significant and of common use for eye care 
professionals were taken. The initial independent vari-
ables evaluated to be fitted on the models were the age, 
gender, axial length of the eye, corneal radius, anterior 
chamber depth and lens thickness. However, only the 
age, gender, spherical power and axial length to corneal 
radius ratio (Axl/Cr) were defined as commonly used 
variables.

Statistical analysis and validation
The statistical evaluations were performed using 
MATLAB, V.R2018a (MathWorks, Natick, Massachusetts, 
USA). Stepwise multiple regressions were performed to 
identify whether the independent variables were of signif-
icance for the model. The performance of the prediction 
model was evaluated using Bland-Altman plots to evaluate 
the bias and limits of agreement. Moreover, scatter plots 
and the Pearson correlation coefficients (r2) between 
prediction and measured data were also evaluated.32

In addition, a validation was performed that compared 
results of the developed algorithm with the prediction 
of two already available solutions for the prediction of 
myopia, namely the Myopia Calculator (Brien Holden 
Vision Institute, Sydney, Australia) and the MyAppia 
(MyopiaCare by Eyetific, Renens, Switzerland). The 
statistical test used to evaluate for normal distribution 
and to compare the distributions between the solutions 
were performed using the Kolmogorov-Smirnov test and 
the Wilcoxon signed-rank test from Matlab. Differences 
were considered statistically significant when the associ-
ated p values were lower than 0.05.
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RESULTS
Selection of variables
A forward stepwise regression was performed to evaluate 
the predictors eligible for the trained models. The eval-
uation added to the trained model variables that would 
fulfil a threshold p value of 0.06. A separated evaluation 
was performed using the cross-sectional and the longi-
tudinal data sets. For the cross-sectional data set, two 
dependent variables were tested, namely the sphere (D) 
and the Axl/Cr. When the sphere was the dependent 
variable, the independent variables inputted were the 
age, gender, Axl/Cr, anterior chamber depth and lens 
thickness. In case the Axl/Cr was the dependent variable, 
the independent variables inputted were the age, gender, 
sphere, anterior chamber depth and lens thickness. For 
the longitudinal data set, the procedure was the same as 
when using the cross-sectional data, the only difference 
was that the output dependent variable was also added as 
the input independent variable measured at baseline. For 
the forward stepwise regression using the cross-sectional 
data, the evaluation showed that all inputted parame-
ters were of significance for both tested models. For the 
forward stepwise regression using the longitudinal data, 
the evaluation showed that when the output was the Axl/
Cr, the sphere, Axl/Cr and anterior chamber depth were 
of significance for the tested model. When the output was 
the sphere, the Axl/Cr, the sphere and the lens thickness 
were of significance for the tested model. Specific values 
for the F-Stat and p values of all evaluations are provided 
in the online supplemental material S1.

The model was developed to allow eye care profes-
sionals to evaluate the risk of children regarding their 
onset and/or progression of myopia in children feasible 
input variables. This led to a final selection of age, gender, 
refractive error and Axl/Cr.

Prediction algorithm and validation of performance
After definition of the significant variables, a training of 
all 19 regressions available in Matlab V.R2018a (Math-
Works, Natick, Massachusetts, USA) was performed for 
each differently defined combination of inputs and 
outputs. This was done for evaluation of the default 
performance delivered by Matlab for each regression and 
consequently, the best models were selected for each data 
set and input–output combination. Afterwards, from the 
selected regressions, a hyperparameter optimisation was 
performed including a separate performance evalua-
tion using a separated dataset to avoid overfitting. The 
final model selection was done when the validation using 
the separate dataset showed values for the coefficient of 
determination (R2) and for the root mean squared error 
(RMSE) that were comparable to the values delivered 
after training. The details on the hyperparameter optimi-
sation can be found in the online supplemental material, 
S2.

For a prediction algorithm which takes as input the 
age, gender and sphere and outputs the sphere as a func-
tion of the age, different combinations of regressions and 

data sets were tested. Tables 1 and 2 show the best model 
that resulted from the training of cross-sectional and 
longitudinal data, using different inputs and outputs. 
The column that shows the best regression on tables 1 
and 2 specifies the name of the model together with the 
coefficient of determination (R2) and RMSE delivered 
after training.

A total of five models resulted from the training of 
cross-sectional and longitudinal data. Whereas for the 
models trained using cross-sectional data, the output was 
obtained for the same input age, for the models trained 
with longitudinal data the output was obtained for a 
future age (age+n). From the five models, only model 5 
fulfilled the definition of input and output (input: age, 
gender and sphere and output: sphere at age+n). Thus, 
the models from 1 to 4 were combined in such a way that 
this definition was fulfilled.

The performance of the combined models and of 
model 5 was evaluated using the longitudinal data of 81 

Table 1  Best regression model obtained for the use of 
cross-sectional data and specified input and output

Cross-sectional data

Given 
number Input

Best regression (from 19 
trained)

Output (at 
age)

1 Age, 
gender, 
sphere

GPR—Sq-exponential
R2: 0.79
RMSE: 0.06 D

AxL/Cr

2 Age, 
gender, 
AxL/Cr

GPR—Matern
R2: 0.78
RMSE: 0.87 D

Sphere

Axl/Cr, axial length to corneal radius ratio; D, diopter; GPR, 
Gaussian process regression; R2, coefficient of determination; 
RMSE, root mean squared error; Sq-exponential, square 
exponential.

Table 2  Best regression model obtained for the use of 
longitudinal data and specified input and output. The table 
shows Support Vector Machines SVM as the best model.

Longitudinal data

Given 
number Input

Best regression 
(from 19 trained)

Output (at 
age+n)

3 Age, gender, 
sphere

SVR—Linear
R2: 0.57
RMSE: 0.09 D

AxL/Cr

4 Age, gender, 
AxL/Cr

SVM—Quadratic
R2: 0.57
RMSE: 1.33 D

Sphere

5 Age, gender, 
sphere

SVR—Linear
R2: 0.77
RMSE: 0.97 D

Sphere

Axl/Cr, axial length to corneal radius ratio; D, diopter; R2, 
coefficient of determination; RMSE, root mean squared error; 
SVM-Quadratic, quadratic support vector machine; SVR, linear 
support vector regression.

https://dx.doi.org/10.1136/bmjophth-2023-001298
https://dx.doi.org/10.1136/bmjophth-2023-001298
https://dx.doi.org/10.1136/bmjophth-2023-001298
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subjects measured two times and that were not included 
in the training. Figure 1 shows the input, algorithms and 
output that resulted from the combination of the trained 
models. Additionally, the right column shows the valida-
tion values obtained using the longitudinal data.

The algorithms are listed from top to bottom, starting 
with the algorithm that showed the lower Pearson correla-
tion coefficient (r2) on the validation and ending with 
the algorithm that showed the highest r2. Additionally, 
information on the algorithm bias and limits of agree-
ment are shown. Regarding the bias, all values improved 
as the r2 also improved, excepting from the algorithm 
at the bottom that showed the second highest bias. This 
could be explained due to the use of only one model and 
the relatively low number of data used on the training of 
this model (226 kids). This effect was a decision criterion 
for leaving this algorithm out of the options.

From the three remaining algorithms, the combination 
of linear support vector regression and Matern Gaussian 
process regression resulted with the lowest bias and best 
limits of agreement. More details on this performance 
evaluation can be seen on figure 2. The figure shows on 
the left side the prediction as a function of the measured 
true data for the two available data points of each kid 
(n:162). The Pearson correlation value between predic-
tion and measurement was r2: 0.77, whereas the total 
sample size of 162. On the right side, the Bland-Altman 

plot shows the difference between prediction and 
measurement as a function of their mean. The obtained 
bias value of −0.05 D (p:0.14) is shown and the limits of 
agreement for all ages pooled of 0.85 D (95% CI: −0.91 
to 0.80D) is also shown.

A slight refraction-dependent bias can be observed 
on the Bland-Altman plot. For mean refractive errors 
approaching emmetropic values, the difference between 
prediction and measurement seems to be higher than 
for myopic values ranging from −2.00 to −4.00 D. For an 
eventual application of the algorithm, this kind of bias 
can be compensated by fitting a linear regression on the 
data set and applying the slope value on the predictions.

Comparison to available solutions
The selected algorithm was compared with the Myopia 
Calculator (Brien Holden Vision Institute, Sydney, 
Australia) and the MyAppia (MyopiaCare by Eyetific, 
Renens, Switzerland). The longitudinal data set of the 81 
kids used for the performance evaluation was also used 
to generate predictions of refractive power using both 
solutions. The absolute difference between the predicted 
and measured true data was calculated. Figure 3 shows 
boxplots for the absolute differences obtained for each 
solution. On each box, the central line indicates the 
median absolute error, and the box indicates the 25th 
and 75th percentile. The error bars are extensions to the 

Figure 1  Input, algorithms and output resulting from the combination of the trained regression models. Additionally, the right 
column shows the validation values r2 for Pearson correlation coefficient, Bias and limits of agreement, obtained for each 
algorithm. Axl, axial length; Cr, corneal radius; R2, coefficient of determination; RMSE, root mean squared error; SVR-linear, 
linear support vector regression; SVM-quadratic, quadratic support vector machine; GPR- Sq exponential, square exponential 
gaussian process regression; GPR- Matern, matern gaussian process regression;
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most extreme data points that are not considered outliers, 
whereas the outliers are marked by the ‘+’ symbol.

To further compare the algorithm with the two avail-
able solutions and given that under absolute values the 
distributions were not normal (Kolmogorov-Smirnov test, 
p<0.001 for all solutions), a Wilcoxon signed-rank test was 
performed. The test showed significantly different distri-
butions between the algorithm and MyAppia (p=0.89), 
whereas there were no significantly different distribu-
tions between the algorithm and the Myopia Calculator 
(p=0.03).

DISCUSSION
The purpose of this study was to develop an algorithm 
for the prediction of spherical power progression, using 
the less possible number of inputs without hindering an 
acceptable performance. Although all the available data 
resulted of significance for the prediction of refractive 
development, the training variables selected were the 
age, sphere, gender and Axl/Cr. Moreover, the resulting 
algorithm with the best performance allowed the use of 
the age, sphere and gender as inputs. This arrangement 

Figure 3  Absolute difference on prediction obtained for the Myopia Calculator, MyAppia and the support vector regression 
and Gaussian process regression (SVR&GPR) algorithm. The central line indicates the median value, whereas the boxes 
indicate the 25th and 75th percentiles.

Figure 2  Validation diagrams for the selected algorithm that combines an linear support vector regression model with a 
Matern Gaussian process regression model. The left diagram shows the prediction as a function of the measured data for the 
total sample size of 162. Pearson correlation value r2 and the sample size of 162 data points are also shown. The right diagram 
shows the difference between prediction and measurement as a function of their mean. Additionally, a bias of −0.05 D (p:0.14) 
and limits of agreement of 0.85 D (95% CI: −0.91 to 0.80) are shown.
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may lead to a flexible application, without the need to 
collect all available biometrical parameters of the eye.

Resulting algorithm
A stepwise multiple regression evaluation delivered the 
variables of significance for the model. Similarly, Magome 
et al33 also used stepwise multiple regression to evaluate 
the significance of biometrical parameters on the predic-
tion of spherical power and found that axial length, 
anterior chamber depth, lens thickness, corneal refrac-
tive power and corneal astigmatism acted as significant 
parameters. In this study, when using the longitudinal 
data set of 226 children, anterior chamber depth and lens 
thickness were not of significance for the tested model 
and these differences in significance might be related to 
the differences in the data sets. As the authors evaluated 
eyes of 617 children from which the SD of the provided 
ocular biometry was <0.5%, the number of subjects and 
stability of measurements might be responsible for these 
differences.33

A combination of linear support vector regression and 
Matern Gaussian process regression delivered the best 
results in terms of bias (−0.05 D) and limits of agreement 
(±0.85 D). The bias obtained can be considered of no 
significance for the optometric practice, since eye care 
professionals assess the refractive powers in ±0.25 D steps; 
however, the limits of agreement of ±0.85 D should be 
improved as more data is available.

Lin et al34 used refraction data of 129 242 individuals 
and trained a random forest model for the prediction of 
high myopia onset. The validation of the model suggested 
a clinically acceptable prediction of high myopia at a 
future point in time, namely, at age 18 years. However, 
for earlier ages like 8 years, 95% of the predicted values 
differed from the true value within 0.5–0.8 D. The differ-
ence to our combination of models might be explained by 
the difference in the amount of data available. Whereas 
the authors had 129 242 individuals and a total of 687 
063 multiple visits records,34 our data consisted of 12 780 
cross-sectional data points and data points of 226 kids 
measured either two or four times. Additionally, the large 
number of data points allowed the training of a single 
model.34 This was not applicable for the current, as the 
data availability was a limitation that forced the training 
of two separated models for the estimation of refrac-
tive error in a future point in time. The combination of 
two models instead of a single model might explain the 
differences in prediction performance between these 
two solutions. Future attempts should try to simplify the 
model into one, to avoid risks of overfitting or contradic-
tory predictions between models.

Other studies, such as Rampat et al,34 investigated the 
prediction of subjective refraction using aberrometry eye 
data from 3.729 individuals and machine learning. The 
results suggested an acceptable prediction of subjective 
refraction from polynomial wavefront data. However, 
unlike in the current study and by Lin et al34 and Rampat 
et al,35 authors studied refractive development always for 

a present point in time and not for a projected time. To 
our best knowledge, the presented study and the study 
by Lin et al34 study showed for the first time that big data 
and machine learning can be used to support prediction 
of myopia prognosis of Asiatic children on a future point 
in time.

Comparison with available solutions
The performance of the algorithm was compared with 
the Myopia Calculator (Brien Holden Vision Institute, 
Sydney, Australia) and the MyAppia (MyopiaCare by 
Eyetific, Renens, Switzerland). A slightly better perfor-
mance was obtained when the algorithm was compared 
with the MyAppia and similar performance when the 
algorithm was compared with the Myopia Calculator. 
Saunders et al36 evaluated the prediction of the Myopia 
Calculator using available data from 80 European kids. 
The results showed that for kids with age between 9 
and 10 years, 58% of the predictions were overrated as 
myopic, whereas 26% were categorised erratically. For 
older kids aged between 12 and 13 years, the progress of 
their refractive power was more likely to be in accordance 
with the prediction. They concluded that overestimations 
were more likely for younger kids with lower myopic 
error and suggested to handle predictors with care. In 
this study, longitudinal data of 81 Asiatic kids were used 
for the comparison of the three solutions; however, the 
dependency of prediction on age could not be evalu-
ated due to the small number of data sample used for 
the comparison and their inhomogeneous age distribu-
tion. Another difference worthwhile to mention is that 
whereas the MyAppia and Myopia Calculator can only 
take as input myopic refractive data, our solution can also 
consider data from hyperopic kids. This option may be of 
help for the eventual prognosis of myopia onset.

Limitations
The validation of this study was performed using longi-
tudinal data of 81 kids. The age and refractive power 
distribution of the 81 kids was not homogeneously distrib-
uted, leading to the only alternative to evaluate the error 
on prediction by pooling for all ages available. Future 
developments should validate for each age, separately. 
In addition, the training was performed with a combina-
tion of cross-sectional and longitudinal data. For a better 
performance on the prediction of spherical power devel-
opment, big data on longitudinal measurements might 
be used.

An additional limitation was the fact that refractive 
power progression depends on several more param-
eters, for example, parental myopia, near-work time 
and time spent outdoors. Thus, algorithms that do not 
consider these variables must be taken with specific care. 
Furthermore, the pace of refractive development and/
or progression is still not fully understood and may vary 
among kids. Hence, although growth curves and predic-
tion algorithms might be useful to reference the kid 
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within a population, they must be used only as a refer-
ence and not as a unique tool for risk assessment.

Moreover, although artificial intelligence may be 
gaining strength in healthcare fields such as ophthal-
mology,31 the by-products of this technique must be 
handled with care. As time passes, different circum-
stances influence the lifestyle of people, and this might 
lead to changes in visual health. Wang et al37 showed how 
the COVID-19 confinement affected the myopia develop-
ment and its onset, accounting for a significant myopic 
shift on Chinese children aged between 6 and 8 years. 
Additionally, technological changes and always more 
common use of devices on the eye’s proximity might also 
lead to impacts on visual health. McCrann et al38 studied 
the use of smartphones as a possible risk factor of myopia 
and found that myopic participants used almost two times 
more smartphone data than non-myopes. Social changes 
affecting visual health raise the need to gradually collect 
data and constantly update the prediction models.

CONCLUSION
The present study showed that using machine learning 
and large data of Chinese kids, an algorithm for the 
prediction of spherical power as a function of the age 
could be developed. The algorithm that showed an 
acceptable performance consisted of a support vector 
regression and a Gaussian process regression. The 
performance evaluation covered a correlation between 
prediction and measured true data of 0.77, a bias of −0.05 
D and a limit of agreement of ±0.85 D. Moreover, the 
inputs selected for the algorithm, that is, age, gender 
and spherical power, are inputs which can normally be 
accessed by eye care professionals or parents. This may 
allow a flexible application of the algorithm and might 
support eye care professionals to evaluate the prognosis 
of refractive errors on kids.
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