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Abstract
Background  The MYH7 gene, which encodes the slow/ß-cardiac myosin heavy chain, is mutated in myosin storage 
myopathy (MSM). The clinical spectrum of MSM is quite heterogeneous in that it ranges from cardiomyopathies to 
skeletal myopathies or a combination of both, depending on the affected region. In this study, we performed clinical 
and molecular examinations of the proband of an Iranian family with MSM in an autosomal dominant condition 
exhibiting proximal muscle weakness and dilated cardiomyopathy.

Methods  Following thorough clinical and paraclinical examinations, whole-exome sequencing `was performed 
on the proband (II-5). Pathogenicity prediction of the candidate variant was performed through in-silico analysis. 
Co-segregation analysis of the WES data among the family members was carried out by PCR-based Sanger 
sequencing.

Results  A novel heterozygous missense variant, MYH7 (NM_000257): c.C1888A: p.Pro630Thr, was found in the DNA 
of the proband and his children and confirmed by Sanger sequencing. The in-silico analysis revealed that p.Pro630Thr 
substitution was deleterious. The novel sequence variant fell within a highly conserved region of the head domain. 
Our findings expand the spectrum of MYH7 mutations.

Conclusions  This finding could improve genetic counseling and prenatal diagnosis in families with clinical 
manifestations associated with MYH7-related myopathy.
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Introduction
Myosin, which is a highly conserved protein in all eukary-
otic cells, is not only the major constituent of skeletal 
muscle thick filaments but also a crucial element for body 
movement and heart contractility. It contains two elon-
gated globular heads connected to a long helical coiled 
coil (the myosin rod). This hexameric protein consists of 
two myosin heavy chain (MyHC) subunits and four light 
chain subunits. Each head, or subfragment 1 (S1), is com-
prised of approximately 850  N-terminal residues of one 
MyHC and one of each light chain. The heads, including 
actin and ATP-binding regions, are liable for the force 
transduction properties of myosin [1]. The N-terminal 
region of the myosin rod, designated as subfragment 2 
(S2), joins S1 to the filament backbone. The myosin rod is 
a parallel α-helical coiled-coil dimer of the C-terminal of 
MyHC tails. The larger C-terminal part of the rod, named 
“light meromyosin (LMM)”, lies along the thick filament 
axis and mediates filament assembly [2]. The LMM also 
provides sites for the binding of myosin-associated pro-
teins like myomesin 1, myosin-binding protein C and H, 
M-protein, and titin.

There are three major MyHC isoforms expressed in 
human limb skeletal muscles. MyHC IIx, coded by MYH1 
as a member of the MYH gene family, is expressed in fast, 
glycolytic, type 2B muscle fibers. MyHC IIa, encoded by 
MYH2, is expressed in fast, intermediate, type 2 A muscle 
fibers. Slow/ß-cardiac MyHC (MyHC I), encoded by the 
MYH7 gene, is expressed in slow, oxidative, type 1 muscle 
fibers. It is also expressed in the ventricles of the heart 
[3]. Located on chromosome 14, the MYH7 gene (OMIM 
# 160,760) contains approximately 22,883  bp, includ-
ing 41 exons [4]. Pathogenic mutations in MYH7 have 
been reported to cause a wide range of clinical expres-
sions ranging from hereditary skeletal muscle diseases, 
including Laing distal myopathy [5] and myosin storage 
myopathy (MSM) with or without cardiac involvement, 
to isolated cardiomyopathies such as dilated cardiomyop-
athy [6], hypertrophic cardiomyopathy [7], and left ven-
tricular non-compaction cardiomyopathy [8], depending 
on the residue of MYH7 that is affected [9]. MYH7 muta-
tions are reported in 14–25% of all cardiomyopathy cases 
[10].

MSM (OMIM #608,358), also known as “hyaline body 
myopathy”, is a rare, congenital myopathy identified 
by subsarcolemmal accumulations of myosin in type 1 
skeletal muscle fibers resulting in the weakness of the 
scapula, limb, and distal muscles. This myopathy was 
first described by Cancilla et al. [11] as “familial myopa-
thy with probable lysis of myofibrils of type I fibers” in 
1971. Following the molecular nosologic identification 
of the mutation Arg1845Trp in the rod region of MYH7, 
Tajsharghi et al. [1] proposed the unifying term “myosin 
storage myopathy” for this disease in 2003. Although the 

disease is inherited in an autosomal dominant or reces-
sive fashion [12–14], a few sporadic cases with no previ-
ous family history have been reported [1, 15]. The onset 
is generally in childhood, but it may be manifested much 
later in middle age. Mutations causing MSM are located 
in the distal end of the tail of MyHC I (exons 37–40 of 
MYH7) [3]. The clinical manifestations of the disease are 
highly variable among affected individuals, ranging from 
no weakness to severe impairment of ambulation [1, 9, 
11, 15–23] even within the same family [9, 17, 20]. Fur-
ther, it has been reported that many patients with MSM 
suffer from delayed motor milestones and usually pres-
ent with proximal muscle weakness in the four limbs, dif-
ficulties in climbing stairs, or running and waddling gait 
[24].

Given that the conventional approaches to the study of 
gene mutations are time-consuming and costly, currently, 
the next-generation sequencing [25]-based method has 
been widely used to identify the causative variants of 
many single-gene disorders. We herein describe an Ira-
nian family with an autosomal dominantly inherited pat-
tern of MSM presenting with slowly progressive muscle 
weakness and dilated cardiomyopathy associated with 
the MYH7 (NM_000257): c.C1888A: p.Pro630Thr dis-
closed by whole-exome sequencing. This family remark-
ably widens the genotypic and phenotypic variability 
of MSM, manifesting the first report of this variant in 
MYH7-related myopathy with a somewhat distinct phe-
notype from Iran. The identification of disease-causing 
variants in a particular population plays an important 
role in the development of the molecular diagnosis of 
such disorders.

Materials and methods
Ethics approval and consent to participate
The present study was performed in accordance with the 
Declaration of Helsinki and approved by Rajaie Cardio-
vascular Medical and Research Center (approval number: 
IR.RHC.REC.1399.019). Written informed consent was 
obtained from all participants for their participation and 
publication of this report.

Family recruitment and clinical presentations
Three generations of an Iranian family recruited for this 
study are presented in Fig.  1A. The proband (II-5) was 
a 51-year-old man, who was described as being healthy 
until age 47. He stated that he had experienced signs of 
slowly progressive muscle weakness, heart rhythm prob-
lems, and extreme shortness of breath since age 47 years. 
These were worsened during the following four years. 
Despite the presence of muscle weakness, fatigue, and 
exercise intolerance with respiratory distress, he had no 
accurate neuromuscular or cardiological investigation up 
to the age of 50. A history of taking a statin, which was 
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discontinued, was reported by him. The proband (II-5) 
had an asymptomatic daughter (Fig. 1A: III-1, 21 years of 
age), an asymptomatic son (Fig. 1A: III-2, 15 years of age), 
and also four siblings (II-1, II-2, II-3, and II-4 aged 64, 61, 
58, and 55 years, respectively) all without symptoms of 
muscle or cardiac disease. Unfortunately, the individu-
als II-1, II-2, II-3, and II-4 were not available to study the 
clinical and genetic status. Physical examination showed 
the presence of proximal weakness in the lower limbs and 
mild scapular winging. He also had some difficulty climb-
ing stairs and lifting his arms above his head. In terms 
of diagnostic studies, at 51 years of age, the creatine 
phosphokinase level was elevated to 634 U/L (reference: 
0–195). Additionally, high levels of lactate dehydrogenase 
(295 U/L; normal: 135–225 U/L) and aldolase (7.5 IU/L; 
normal: 1.5–8.1 IU/L) were found in the proband (II-5). 
The proband (II-5) was positive for Mi-2a (1+), PL-7 (2+), 
and RO-52 (2+) in a specific myositis panel. He under-
went an extensive clinical investigation, including Pompe 
disease (MIM #232,300) screening, spiral multi-slice lung 
computed tomography (CT) scanning, electromyogra-
phy/nerve conduction studies, muscle biopsies, and mag-
netic resonance imaging (MRI) on both thighs. Muscle 
biopsy was performed by open technique and the sam-
ple was frozen in isopentane cooled in liquid nitrogen. 

Frozen sections were stained by Hematoxylin and eosin, 
Modified Gomori Trichrome, PAS, PAS + diastasis, Oil 
red O, Congo red, NADH-TR, SDH, COX, COX + SDH 
and ATPase reactions. These workups led to a diagnosis 
of myopathy in the proband (II-5).

Whole-exome sequencing
To determine an accurate mutational diagnosis of myop-
athy in this family, WES was implemented just on the 
proband (II-5). Exome was captured using the Agilent 
SureSelect Exome Capture kit (Agilent Inc, Santa Clara, 
California, USA). Then, the sequencing of the enriched 
exon libraries was performed on the Illumina HiSeq 
4000 (Macrogen Inc, Seoul, South Korea). The sequenc-
ing reads were aligned to the human genome reference 
(GRCh37 build) by the BWA (v07.17) tool [26]. Next, 
single-nucleotide polymorphisms/small insertion and 
deletion (SNP/InDel) was called by applying the GATK 
(v4.1.4.1) tool with the result file of mapping (BAM). 
Marking and removing duplicates were performed by 
SAMtools (in GATK package) [27], followed by recalibra-
tion and SNP/InDel calling. For filtering and prioritiza-
tion, the variants with a minor allele frequency (MAF) 
more than 0.05 in the 1000 Genomes Project, gno-
mAD (v2.1.1), and ExAC databases [25] were removed. 

Fig. 1  The image presents pedigree, sequencing chromatograms, myosin structure, and conservation analysis in a family affected by MYH7 mutation. (A) 
Family pedigree of an Iranian family with myopathy: The family investigated in this study consists of 3 generations and 17 members. Only the proband 
(II-5) is affected (pointed with an arrow). (B) The snapshot of the sequencing reads: The proband (II-5), his daughter (III-1), and his son (III-2) carry the 
c.C1888A: p.Pro630Thr variant in a heterozygous status. The black arrow shows the location of the mutated nucleotide. (C) The illustration of the myosin 
domains. (D) The 3D structure of the native and mutated myosin was built using UniProt (https://www.uniprot.org/). The location of the p.Pro630Thr vari-
ant is shown on the head portion of myosin. (E) The evaluation of the amino-acid evolutionary conservation using CLUSTALW (https://www.genome.jp/
tools-bin/clustalw): As depicted, the position of this mutation is highly conserved during evolution
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Prediction tools such as CADD, SIFT, PolyPhen-2, 
PROVEAN, FATHMM, and GERP++ were used for pre-
dictive analytics. Accordingly, the variant that was inter-
preted to be pathogenic in at least four algorithms was 
considered for confirmation/segregation analysis.

Polymerase chain reaction (PCR) and segregation analysis
The variant of the MYH7 gene was sequenced by the 
PCR and Sanger sequencing method. The primer pairs 
were designed and validated using Primer3 (v.04.0) 
(http://bioinfo.ut.ee/primer3-0.4.0/) and BLAST (https://
www.ncbi.nlm.nih.gov/tools/primer-blast/index.
cgi?LINK_LOC=BlastHome). forward: 5’TATATTGAC-
CATAGAGCAGAA3’ and reverse: 5’TTGCCCTTCT-
CAATAGCTGCAG3’. PCR was performed on a 
SimpliAmp™ Thermal Cycler (Thermo Fisher Scientific), 
with 100 ng DNA, 10pmol/L of primers, 1.5 mmol/L of 
MgCl2, 200 mmol/L of dNTP, and 1 U Taq DNA poly-
merase (Amplicon, UK). Then incubation was carried out 
at 95 °C for 5 min, 35 amplification cycle (30 S at 95 °C, 
30 S at 62 °C, and 30 S at 72 °C). Sanger sequencing was 
done using the BigDye Terminator v3.1 Cycle Sequencing 
Kit (Life Technologies; Thermo Fisher Scientific, Shang-
hai, China) on the ABI Sequencer 3500XL PE (Applied 
Biosystems, CA, USA).

Results
Pompe disease evaluation/screening
At age 51, the α-1, 4-glucosidase activity of the proband 
(II-5) was 6.7 in units of µmol/L/h, above the cut-off 
value (> 2.0). Therefore, Pompe disease was unlikely in 
the proband (II-5).

MRI and CT scan findings
The MRI findings of the proband (II-5), performed at age 
51, showed dilated cardiomyopathy. The proband (II-5) 
also underwent a CT scan of his lungs at age 51. Minimal 
ground-glass opacities were evident in the lower lobes bilat-
erally, with prominence on the right side. There was no 
evidence of other pathologic findings in the parenchyma 
of both lungs. Mild pleural effusion was seen bilaterally, 
with prominence on the right side. MRI on both thighs, 

performed at age 51, showed diffuse atrophy and fat deposi-
tion in the semitendinosus, semimembranosus, biceps fem-
oris, and soleus muscles.

Electrodiagnostic findings
The results of the electrodiagnostic testing of the proband 
(II-5), performed at age 51, are presented in Table 1  A-D. 
Based on the provided nerve conduction study (NCS) 
and electromyography (EMG) results indicate diminished 
amplitudes, mildly decelerated conduction velocities, and 
increased insertional activity, positive sharp waves, and 
fibrillation potentials in numerous muscles. So, the test con-
cluded a chronic myopathic process with ongoing active 
denervation with some myotonic discharges.

Pathology
Cytological evaluation of the pleural effusion of the proband 
(II-5) revealed some reactive and bland-looking isolated 
and clustered mesothelial cells admixed with some lympho-
cytes and red blood cells in a proteinaceous background. No 
malignant cells were detected. A muscle biopsy taken from 
the left vastus lateralis at age 51 years demonstrated mild 
myopathic atrophy. Hematoxylin and eosin staining showed 
striated muscle tissue with variation in fiber size. Atrophic 
fibers were round or angular and dispersed (Fig. 2A). Rare 
dispersed necrotic fibers were seen (Fig.  2B). Only one 
fiber showed a subsarcolemmal aggregate of homogenous 
basophilic materials. Internalized nuclei were increased 
(Fig.  2C). There was neither fibrosis nor inflammation. 
Modified Gomori trichrome stain revealed a few ragged red 
fibers and rare red-rimmed cytoplasmic vacuoles (Fig. 2D). 
NADH-TR reaction demonstrated good differentiation of 
muscle fibers with slight nonspecific intermyofibrillar net-
work abnormalities as some uneven cytoplasmic staining.
SDH reaction illustrated a few fibers with abnormal mito-
chondrial proliferation. COX + SDH reaction revealed no 
COX-negative fiber (Fig. 2E). ATPase reactions PH 9.4, 4.63, 
and 4.35 revealed type 2 fiber predominance, and no fiber 
type grouping was seen. Atrophic fibers were mostly type 1, 
but no fiber type disproportion was detected (Fig. 2F).

Table 1A  Sensory NCS
Nerve / Sites Rec. site Onset last

ms
Peak Ampl
µV

Peak lat
ms

Distance
cm

Velocity
m/s

L. Median – Digit II
1. Wrist II 2.45 27.6 3.50 15 61.2
L Ulnar – Digit V
1. Wrist V 2.40 35.1 3.10 12 50.0
L Sural – Lat Malleolus
1. 2.60 7.0 3.55 12 46.2
R SURAL – Lat Malleolus
1. 3.55 8.3 4.15 15 42.3

http://bioinfo.ut.ee/primer3-0.4.0/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
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Genetic investigations
After the filtration of the WES data, a novel heterozygous 
missense mutation in exon 16 of the MYH7 (NM_000257): 
c.C1888A: p.Pro630Thr, was identified, which was prob-
ably responsible for MSM with dilated cardiomyopathy in 
this family. Sanger sequencing confirmed the presence of 
the c.C1888A variant in the affected proband (II-5). Both 
his unaffected daughter (Fig. 1A: III-1) and unaffected son 
(Fig.  1A: III-2) were heterozygous for this locus (Fig.  1B). 
Position 630 in the MYH7 protein is highly conserved 
among multiple species (Fig.  1E), and the missense muta-
tion results in an amino-acid substitution from Proline to 
Threonine at this position.

A schematic illustration of the myosin protein and its 
domains is presented in Fig. 1C. The p.Pro630Thr mutation 

occurred within the head domain. The 3D structures of 
the protein representing the wild type in contrast with the 
mutated p.Pro630Thr are depicted in Fig.  1D. According 
to the American College of Medical Genetics and Genom-
ics 2015 (ACMG) [28], c.C1888A is determined as a likely 
pathogenic variant (i.e., Criteria: PVS1, PM1, PM2, and 
PP2). The missense mutation was supported as the cause 
of the disease by CADD, SIFT, PolyPhen-2, PROVEAN, 
FATHMM, and GERP++.

Discussion
Mutations in MYH7 encoding for the β-MyHC are a com-
mon cause of hypertrophic or dilated cardiomyopathy, 
Laing distal myopathy, and MSM. MYH7 maps in tandem 
on human chromosome 14 with MYH6. The MYH7 gene is 
composed of 40 exons. In particular, mutations that cause 
MSM are located in exons 37–40 of MYH7 [29, 30].

In this study, we analyzed three generations of an Ira-
nian family with suspected myopathy using WES to 

Table 1B  Motor NCS
Nerve / sites Latency

ms
Ampl
mV

Distance
cm

Velocity
m/s

L Median – APB
1. Wrist 3.80 5.6
2. Elbow 7.55 5.4 2.3 61.3
 L. Ulnar – ADM
1. Wrist 2.95 9.3
2. B. Elbow 6.90 8.9 20 50.6
3. A. Elbow 8.95 9.0 10 48.8
 L Tibial (Knee) – AH
1. Ankle 4.35 10.8
2.Knee 13.85 8.8 38 40.0
R Tibial (Knee) – AH
1. Ankle 4.05 9.9
2 Knee 14.05 7.2 40 40.0
 L Comm peroneal – Tib Ant
1. Fib Head 3.35 4.8
2. Knee 5.70 3.7 12 51.1

Table 1C  F Wave
Nerve Min F Lat

ms
Max Lat
ms

Mean Flat
ms

L TIBIAL (KNEE) - AH 52.15 57.40 54.73

Table 1D  Needle EMG
EMG Summary Table Spontaneous MUAP Recruitment

IA Fib PSW Fase Myotonic disch Amp Dur PPP Pattern
L. Thor pspinals N 2+ 2+ None 1+ 1- 1- 1+ 1+
L. First d inteross N 1+ 1+ None 1+ 1- 1- 1+ N
L. Flex carpi rad N 1+ 1+ None 1+ 1- 1- 1+ 1+
L. Biceps N 2+ 1+ None 1+ 2- 3+ 1+ 1+
L. Deltoid N 1+ 1+ None 1+ 1- 1- 1+ 1+
L. Iliopsoas N 2+ 2+ None 1+ 2- 2- 1+ 1+
L. Vast lateralis N 1+ 2+ None 1+ 1- 1- 1+ 1+
L. Tib anterior N 1+ 1+ None 1+ 1- 1- 1+ No Activity
L. Gastrocn (MED) N 1+ 1+ None 1+ 1- 1- 1+ 1+
NCS, nerve conduction study; AMP, amplitude; MUAP, motor unit action potential; IA, insertion activity; Fib, fibrillation; PSW, positive sharp waves; Dur, durations; 
PPP, polyphasic potential; L, left; R, right
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detect the causative mutation. We found that the proband 
(II-5) in the family carried a heterozygous c.C1888A: 
p.Pro630Thr variant in the MYH7 gene associated with 
MSM. The proband (II-5) had two children. The two 
unaffected siblings, III-1 (the proband’s daughter) and 
III-2 (the proband’s son), carried the same c.C1888A: 
p.Pro630Thr variant in the MYH7 gene. However, no 
symptoms of the disease have been witnessed in them 
thus far, highlighting the importance of discussing dis-
ease penetrance during genetic counseling. There was no 
family history of muscle weakness in the remaining fam-
ily members. The findings suggested that the c.C1888A: 
p.Pro630Thr variant could be a de novo variant that 
appeared to have occurred in the affected proband (II-
5). Nonetheless, because DNA was not available from his 
deceased parents, we could not prove it. The recurrent 
independent emergence of MYH7 mutations in different 
ethnic backgrounds is thought to be associated with the 
high prevalence of de novo mutations in the MYH7 gene 
[31, 32].

Age at the onset of initial symptoms is usually infancy 
or childhood with variable penetrance. Still, it has been 
reported that in some patients, symptoms emerge in adult 
life or some may even be asymptomatic in their 40s. Li et 
al. reported two cases including a 46-year-old man with 
late-onset proximal weakness and his 26-year-old son show-
ing talipes cavus and calf pseudohypertrophy [33]. Bohlega 
et al. reported three generations of a Saudi Arabian family, 
with the index patient who experienced the first symptoms 
around age 40 and her offspring in early childhood [17]. 
These reports indicate the intrafamilial heterogeneity on 
both clinical manifestations and age at onset. In the present 

study, the proband (II-5), a 51-year-old man, manifested his 
initial symptoms at around 47 years of age with no other 
affected relatives. Although cardiomyopathy is typically not 
present in MSM, we observed dilated cardiomyopathy in 
the proband (II-5).

Predominantly, mutations existing within the globular 
head of MyHC I have been associated with hypertrophic 
and dilated cardiomyopathies [34], whereas mutations 
located in the distal rod region of the protein, including 
Leu1793Pro, Arg1845Trp, Glu1886Lys, and His1901Leu, 
have been reported to cause MSM [3, 35]. Nevertheless, this 
final distinction is not very pertinent since there have been 
several reports of cases with skeletal myopathies and muta-
tions in the globular head region [36], often representing 
associated cardiac involvement [9, 37]. On the other hand, 
numerous reports have described cardiomyopathy and 
mutations in the COOH-tail region of the protein [3, 14, 
38, 39]. Of note, the c.C1888A: p.Pro630Thr variant, which 
we detected in our study and deemed culpable for MSM, is 
located in the myosin globular head domain.

Remarkably, different phenotypes have been found to 
be associated with various mutations of the same amino-
acid residue of β-MyHC [32]. The missense mutation, 
p.Leu1793Pro, is known to cause MSM [12], whereas the 
heterozygous deletion at this position (pLeu1793del) was 
reported in a boy with distal myopathy who had under-
gone heart transplantation at age 3 [40]. Contrarily, the 
same mutation at the residue can lead to either MSM or 
Laing early-onset distal myopathy [23, 41]. While it remains 
largely unexplained why myopathy associated with MYH7 
mutations presents a variable phenotypic expression, Tasca 
et al. suggested that it could be due to the effect of genetic or 

Fig. 2  The image shows a muscle biopsy from the left vastus lateralis. (A) Fiber size variation with round and angular atrophic fibers and increased inter-
nalization of nuclei (H&E X200). (B) One necrotic fiber with myophagocytosis (H&E X200). (C) Subsarcolemmal basophilic aggregate in only one fiber (H&E 
X200). (D) Red-rimmed vacuole (Modified Gomori Trichrome X200). (E) Checkerboard pattern with no COX-negative fiber (COX + SDH x100). (F) Type 2 
fibers predominance and slight atrophy with no fiber type grouping (ATPase 9.4 × 100)
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environmental modifiers [41]. For instance, skeletal muscle 
fiber type proportions in humans are different based on race 
[42] and are influenced by both environmental and inherited 
factors [43]. Differences in disease severity and phenotypes 
can also result in variation in the ratio of mutant-to-wild 
type protein [44]. Proteins that interact with myosin tail like 
titin, alpha actinin, myomesin, M-protein, and desmin show 
candidate genes to modulate MSM clinical phenotypes and 
genetic penetrance [9].

A drosophila MSM model has recently been described 
to study the effects of Leu1793Pro, Arg1845Trp, and Glu-
1883Lys MSM mutant myosins expressed in an indirect 
flight and jump muscle myosin null background. Mutant 
animals showed highly compromised jump and flight ability. 
The indirect flight structure displayed myofibrillar disarray 
and degeneration with hyaline-like inclusions. It was dem-
onstrated that the mutant myosin had both decreased ability 
to polymerize and reduced stability [45, 46]. Dahl-Halvars-
son et al. expressed mutated myosin proteins in cultured 
human muscle cells to evaluate the impact of four missense 
mutations—namely Leu1793Pro, Arg1845Trp, Glu1883Lys, 
and His1901Leu—on myosin assembly and muscle function 
and assess the mechanisms leading to protein aggregation 
in MSM. The results indicated that the Arg1845Trp and 
His1901Leu mutants were prone to the formation of myosin 
aggregates without assembly into striated sarcomeric thick 
filaments [47]. On the whole, available data suggest that 
changes in the structural, rather than functional, properties 
of MyHC I caused by a mutation in the MYH7 gene may 
exhibit the primary trigger of MSM [47]. Further research 
is needed to explain the pathogenic basis of MSM, which 
may play a crucial role in clinical decision-making as well as 
diagnostic and therapeutic development.

Clinical and genetic characteristics of at-risk individuals 
and carrier screening can provide more information about 
genetic counseling for future pregnancies in this family 
which will improve their quality of life. Moreover, a popu-
lation study for the frequency of the p.Pro630Thr variant is 
currently still required. The limitations of our study are the 
lack of clinical and genetic data of individuals at risk of hav-
ing inherited the MYH7 variant within the family and also 
the confirmed carriers.

Conclusions
An accurate diagnosis of myopathy requires information 
from muscle MRI and/or muscle biopsies, in tandem with 
complete examinations of clinical phenotypes as well as 
respiratory and cardiac evaluations. In the last decade, the 
NGS molecular technology has provided a greater discovery 
power to detect novel or rare variants even if clinical infor-
mation is limited. In the present study, WES enabled us to 
make a possibly diagnosis of myopathy as MSM caused by a 
mutation in the MYH7 gene.
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