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Pain and aging: A unique challenge in
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Abstract
Chronic pain is one of the most common, costly, and potentially debilitating health issues facing older adults, with attributable costs
exceeding $600 billion annually. The prevalence of pain in humans increases with advancing age. Yet, the contributions of sex
differences, age-related chronic inflammation, and changes in neuroplasticity to the overall experience of pain are less clear, given
that opposing processes in aging interact. This review article examines and summarizes pre-clinical research and clinical data on
chronic pain among older adults to identify knowledge gaps and provide the base for future research and clinical practice. We
provide evidence to suggest that neurodegenerative conditions engender a loss of neural plasticity involved in pain response,
whereas low-grade inflammation in aging increases CNS sensitization but decreases PNS sensitivity. Insights from preclinical studies
are needed to answer mechanistic questions. However, the selection of appropriate aging models presents a challenge that has
resulted in conflicting data regarding pain processing and behavioral outcomes that are difficult to translate to humans.
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Introduction

With a predicted 30% increase of individuals 65 years and older
in the U.S. in the next 10 years, understanding the prevalence of
chronic pain, comorbidities, mechanisms, and therapeutic
strategies in age-related pain conditions is more important than
ever.1,2 Older adults are particularly vulnerable because of the
increased prevalence of degenerative musculoskeletal disor-
ders, frailty, and multimorbidity placing them at increased risk
for pain states.3–5 Moreover, behavioral complications during
aging, such as cognitive impairments could lead to decreased
self-care, self-awareness, and worsening of health conditions,
such as prolonged pain and increased hospitalization.6–8

The International Association for the Study of Pain (IASP)
recently updated its definition of pain as “an aversive sensory
and emotional experience typically caused by, or resembling
that caused by, actual or potential tissue injury”.9 Chronic
pain is defined as pain that persists past the normal healing
time, usually lasting more than 12 weeks, making it distinct
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from acute pain.10,11 Chronic pain is a complex condition that
involves sensory, affective, cognitive, and behavioral com-
ponents.10 It has a heterogeneous etiology such as tissue
injury, inflammation, autoimmunity, chemotherapeutics, and
stress referred to as functional pain conditions. In addition,
chronic pain is often comorbid with medical conditions like
depression, anxiety, sleep disturbances, and fatigue.12 Re-
covery from chronic pain is often bleak, with the most recent
estimates by Li et al. at 30%.13 Duration of previous chronic
pain, age, chronic diseases, personality traits, and differences
in cortico-limbic structural and functional connectivity are
some factors that have been associated with a lower proba-
bility of recovery.13,14 Chronic pain syndromes are common
in older adults and are associated with social isolation,
functional disability, significant suffering, and increased
healthcare resource utilization and costs. Chronic pain is also
a risk factor for accelerated cognitive decline and premature
death, suggesting a mechanism between pain and cognition.15

As such, chronic pain has been increasingly recognized as a
condition/disease of its own, particularly in older adults.16–18

This review begins with a brief overview of the epide-
miology of pain, pain assessment, and pain management in
older adults, as these have been reviewed excellently else-
where. The main focus is on a thorough review of both pre-
clinical research and clinical data on chronic pain among
older adults to present a unifying concept, identify knowledge
gaps, and provide the basis for future research and clinical
practice.

Epidemiology of pain and aging

Chronic pain is an epidemic. In the U.S., one in five adults
(20.4%, i.e., 50 million) report suffering from pain almost
daily for at least 6 months, according to data from the 2016
National Health Interview Survey.19–21 The prevalence in-
creases with advancing age: 27.8% of 45–64 year-olds,
27.6% of 65–84 year-olds, and 33.6% of 85 years and
older have reported chronic pain.20 By severity, 8% of U.S.
adults (19.6 million) reported high-impact chronic pain, that
is, pain that restricted life or major work activities on most
days or every day during the past 6 months.20 By sub-type,
the broad prevalence of chronic neuropathic pain is 10% of
U.S. adults, with significant variation based on age and
ethnicity.22,23

Population-based pain prevalence estimates are often
broad. Pain prevalence estimates from the National Health
and Aging Trends Study (NHATS), a survey of a nationally
representative sample of Medicare beneficiaries aged 65 and
older in the U.S., employ conservative definitions of pain and
activity-limiting pain and range between 13% and 49%.
Several patient-level factors including comprehension and
memory, attitude/behavioral problems, and language factors
contribute to the wide variability in the reporting of chronic
pain in older adults. In a sample of 7601 adults enrolled in
NHATS, over half of the participants (52.9%) reported

bothersome pain in the previous month, whereby back pain
was most commonly reported (30.3%), followed by knee pain
(24.8%), and shoulder pain (19.9%).24 Moreover, a large
British longitudinal cohort and meta-analysis found that
chronic pain is a risk factor (57% greater risk) for early
death.25

Important to consider is the contribution of pain in de-
mentia and how it is reported in Alzheimer’s patients.26

Indeed, chronic pain can be a contributing factor to prema-
ture death27 and has also been linked to increased cognitive
decline and dementia (Whitlock EI et al., 2017). Therefore, it
is important to assess the relationship and role of chronic pain
in Alzheimer’s disease and dementia.28 These findings
suggest that shared mechanisms such as environmental ex-
posures, genetics, or molecular targets could play a role in
both conditions.28,29 Moreover, degeneration in brainstem
regions modulating descending pain inhibition such as per-
iaqueductal gray matter has been found in Alzheimer’s
disease.30 Cortico-limbic regions that have been implicated in
pain modulation are severely affected by Alzheimer’s pa-
thology and pain is associated with cognitive deficits that are
more pronounced with aging.31–39 Furthermore, an NHATS
study focused on older adults with pain and dementia, re-
ported that out of 804 participants, nearly two-thirds (63.5%)
reported bothersome pain in the last month (vs 54.5% among
the matched cohort without dementia), and 43.3% reported
activity-limiting pain (vs 27.2% among the matched cohort
without dementia).40 These studies in patients with dementia
suggest potentially shared mechanisms between pain (or its
treatment) and cognitive impairment. It may also suggest that
patients with dementia are able to recognize and report pain,
which is not necessarily to be expected with cognitive im-
pairment, and therefore becomes a clinical concern.

Regardless, the burden of chronic pain and other comorbid
conditions related to aging is expected to continue to increase
with the growing proportion of older adults (≥65 years of age)
representing 16.0% in 2018 to almost 20.6% by 2030.41 The
economic negative impact of chronic pain on the health care
system and the economy is staggering. In the United States
alone, estimated costs attributable to chronic pain, including
direct medical costs, disability, and loss of productive time,
exceeds $600 billion annually.19 Along with the chronic pain
crisis, the current opioid epidemic has resulted in a rising
number of drug overdose deaths associated with prescription
and synthetic opioid abuse/misuse.42

Chronic pain assessment in older adults

A thorough assessment of chronic pain is an integral step to-
ward developing an appropriate management plan for patients.
Older adults are likely to underreport their pain for numerous
reasons, including, but not limited to, assumptions that pain is a
normal part of aging, fear of being labeled weak or identified as
a complainer, fear of opioid addiction, and previous dismissal
of pain report by healthcare providers.43–45
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A comprehensive chronic pain assessment for older adults
integrates a complete medical history, physical examination,
relevant diagnostic tests, as well as an evaluation of sensory
deficits, affective changes, and cognitive impairment.45,46

Patients with chronic pain should be assessed at each visit.
An array of assessment tools are available to assess pain
intensity among patients. Simple and easy-to-understand
tools are the most effective for use with older adults, who
are more likely to face cognitive impairments.47 The most
widely used pain assessment tools for older adults are the
Numeric Rating Scale (NRS), Patient-Reported Outcomes
Measurement Information System (PROMIS), Oswestry
Disability Index (ODI), Verbal Descriptor Scale (VDS), Iowa
Pain Thermometer (IPS), and Faces Pain Scale-Revised
(FPS-R), all of which have been demonstrated to be valid
and reliable.43 NRS asks the patients to rate their pain from 0
to 10 with 0 indicating no pain and 10 representing the worst
possible pain.48 PROMIS is an NIH-funded rigorously tested
patient-reported outcome (PRO) measurement tool.49 The
survey utilizes a computer adaptive testing system to target
quality of life comprehensively and includes a pain assess-
ment component. ODI assesses the functional limitations of
low back pain in everyday life through a ten-question survey
with each question targeting a specific activity of daily living
(ADL).50 Questions are scored to a maximum of five points
and summed, with higher scores indicating a more severe
disability. VDS asks the patient to describe his/her pain from
“no pain,” to “mild,” “moderate,” “severe,” or “pain as bad as
it could be”.51 IPS is a modified VDS with seven pain de-
scriptors of increasing pain intensity.52 FPS-R asks patients to
select one of six facial expressions that correspond with their
pain, for a score between 0 to 10.53 Additional comprehensive
standardized pain assessment tools that assess the intensity
and functional impact of pain are also available: Brief Pain
Inventory, Geriatric Pain Measure, and Pain Disability
Index.44

When evaluating older adults with cognitive decline,
observational methods along with self-report are used.24,54,55

Caregivers are also enlisted to provide their assessments of
the patient’s pain. Reviews of various measures to assess pain
in older adults have been summarized elsewhere.10,46,48

Managing chronic pain in older adults

Evidence-based guidelines for managing chronic pain in
older adults embrace multi-model treatments (non-
pharmacological and pharmacological interventions) to ad-
dress the biopsychosocial nature of pain. Table 1 highlights
U.S. standard of care guidelines for chronic pain in the
elderly.56–59

Non-pharmacologic pain management strategies

Non-pharmacological interventions include psychosocial
interventions, complementary and integrative health

therapies, rehabilitation therapies, and exercise.10 A recent
meta-analysis of the efficacy of psychological interventions
on chronic pain analyzed 22 studies on the impact of cog-
nitive behavioral therapy (CBT)-based interventions on
chronic pain outcomes.60 The interventions produced small
yet statistically significant benefits for pain relief, cata-
strophizing beliefs, and self-efficacy. Moreover, interventions
were strongest when delivered using group-based ap-
proaches. The authors concluded that there is a need for
psychological interventions that generate greater treatment
effects for older adults.

Caregiver support is important in successful pain man-
agement programs for older adults, especially among those
with cognitive decline.61 Health professionals should partner
with caregivers on proper medication management for
patients.62

Pharmacological treatments for chronic pain

Age-associated physiological changes can affect the way the
body responds to pain medication.63 Additionally, older
adults tend to have more comorbidities, which can complicate
pharmacologic pain management.64 Therefore, in the elderly,
pain medications need to be monitored carefully by a cli-
nician to avoid side effects, adverse drug-drug interactions,
and over- or under-use.63–66 Treatment plans vary according
to origin and pain intensity. Paracetamol (acetaminophen) is
the preferred treatment for older adults with mild-to-moderate
pain, with minimal side effects.10 NSAIDs are commonly
used to treat pain and can be prescribed in combination with
acetaminophen. However, NSAIDs pose increased risks with
age and should therefore be prescribed for the shortest du-
ration possible at the lowest effective dose, due to potential
adverse effects, including gastrointestinal toxicity, nephro-
toxicity, and cardiovascular risk.67

Opioids are usually considered when pain is moderate-to-
severe and other treatments have been unsuccessful. Opioid
use needs to be monitored carefully due to the increased risk
of adverse effects among older adults, which include de-
pendence, ileus, and respiratory depression. In 2016, the
Centers for Disease Control and Prevention issued 12
guidelines for prescribing opioids for chronic pain, which
specify: (1) non-opioid therapies are preferred over opioids,
(2) when opioids are used, prescribing the lowest possible
effective dosage to reduce risks of opioid misuse and over-
dose, (3) and, monitoring all patients closely when pre-
scribing opioids.68 Precautions when using opiates in the
elderly population have been reviewed elsewhere.69

Chronic pain mechanisms and aging

Pain processing is not static but plastic, with the pain be-
coming chronic through long-term changes in the neural
structures.15,70,71 The comprehensive understanding of the
complexity of persistent pain and underlying mechanisms
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remains a challenge because studies are often focused on
individual compartments of the nervous systems, such as
nociceptors in the PNS, spinal circuits in the CNS, and to a
lesser extent, different brain regions. There is still a lack of a
system-wide understanding that integrates pain-related
changes from nociceptor populations to higher-order pro-
cessing of pain signals accounting for affective and cognitive
aspects of behavior.72 Peripheral sensory neurons undergo
alterations with aging, leading to a decreased response to
evoked stimuli73,74 and subsequent loss of pain sensation.
CNS pain pathways such as the spinothalamic, spino-
parabrachio-amygdaloid, and other pathways relay signals
from the spinal cord to the brain.15 The brain regions im-
plicated in pain perception, cognitive processing, and aver-
sive experiences include the posterior thalamus, sensorimotor
cortex, limbic regions (medial thalamus, amygdala, ventral
striatum/nucleus accumbens, hippocampus, medial prefrontal
cortex), paralimbic regions (insular cortex), and pain mod-
ulatory centers (periaqueductal gray, PAG, and rostral ven-
tromedial medulla, RVM).32,39,75–77

Compared to physiological pain, neuroplastic changes in
the peripheral and central nervous system such as “central
sensitization” play a prominent role in chronic pain devel-
opment and persistence.78–80 Failure of descending inhibition
or a switch to descending facilitation are believed to be
mechanisms that allow the persistence of pain.81–84

The descending pain modulatory system converges on the
PAG-RVM system that connects brain regions to spinal
nociceptive processing.84 Neuroplasticity in the corticolimbic
circuitry that interconnects brain regions such as the medial
prefrontal cortex and sub-cortical limbic areas such as
the amygdala, contributes to the complexity of pain, its
affective and cognitive dimensions, pain modulation,
and comorbidities, and may predict pain persistence and
resilience.14,32,33,77,85–88 Peripheral and central/spinal sensi-
tization contributes to increased nociceptive signals to the
brain to engage sensory (thalamo-cortical) and affective
(cortico-limbic) systems.89 Pain conditions are associated
with functional and structural changes in these brain
regions31–34,71 and differences in connectivity between pre-
frontal cortical and limbic regions such as the hippocampus

and amygdala play a critical role in the prediction and am-
plification of chronic pain. Cortico-limbic reorganization
amplifies nociceptive signals to the brain and drives chron-
ification through emotional learning.14

A better understanding of the mechanisms of pain tran-
sitioning from acute to chronic is critically important for pain
management. Brain scans of patients with chronic pain have
shown structural changes in these brain regions, including the
reduced amygdala, hippocampus, and medial prefrontal
cortex volumes.14,33,85,86 Studies using positron emission
tomography (PET)-magnetic resonance in combination with
radioligand tracer have been used to show glial activation in
clinical studies in low back pain90 and fibromyalgia91 pa-
tients. These findings point towards neural and non-neuronal
mechanisms of chronic pain.71,85

As we age, our immune system is primed, such that a low
level of inflammation is prevalent throughout the body
chronically in the absence of injury (inflammaging).92,93

Inflammatory mediators in the periphery, such as cyto-
kines, chemokines, bradykinins, and other algogens can
prolong the firing of nociceptors and reduce their threshold
for activation.70,94 It has been well documented that systemic
pro-inflammatory modulators are consistently upregulated in
the elderly.92,93,95,96 Cytokines such as tumor necrosis factor
alpha (TNFα), interleukins, and signaling molecules like
inducible nitric oxide synthase (iNOS) are known activators
of nociceptors for mediating pain responses.92,97 Aging also
alters cell adhesion molecules via inflammation, which can
affect wound healing.98 Another major factor in age-related
inflammation is the perturbance of anti-inflammatory and
redox pathways. It has been shown that antioxidants are
decreased with advanced age, leading to an upregulation of
pro-inflammatory pathways.92,99 Currently, gerontologists
and nutritionists recommend caloric restriction in the elderly,
to help combat the activation of pro-inflammatory signaling
and redox-responsive transcription factors like those of the
peroxisome-proliferator-activated receptor (PPAR) family.100

Downstream activation of relevant pathways such as pros-
taglandin E2 (PGE2), cyclic adenosine monophosphate
(cAMP), and cyclooxygenase 2 (COX-2) can be prevented
and pain hypersensitivity can be avoided through calorie

Table 1. U.S. Guidelines for standardized care of chronic pain in the elderly.

Source Recommendations

American geriatrics society panel 200956 • Outlines recommendations for the use of drugs for persistent pain in older persons: Non-
opioids, opioids, adjuvant analgesic drugs, other drugs

U.S. Department of health and human
services 201957

• Discusses recommendations with respect to: medications, restorative therapies (i.e., physical
therapy, occupational therapy), interventional approaches, behavioral approaches for
psychological, cognitive, emotional, and social aspects of pain, and complementary and
integrative health

University of Iowa’s www.geriatricpain.org
2009-201258,59

• Discusses recommendations related to: treatment plans, medication management,
incorporating older adult and family teaching throughout assessment and treatment, and
addressing pain using an interdisciplinary approach.
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restriction.70,101 Thus, it is likely that aging-associated
chronic inflammation drives the development and persis-
tence of chronic pain in geriatric individuals. Some unique
aspects of inflammation and pain hypersensitivity in the PNS
and CNS during aging are presented in Figure 1.

Additionally, an increase in the frequency of injuries/
disease/physiological degeneration is associated with in-
creased persistent pain. In the elderly, chronic pain is mainly
caused by musculoskeletal conditions; neuropathic pain, is-
chemic pain, and pain associated with cancer and its treatment
are also major contributors.64 Also, elderly women experi-
ence a high incidence of pain due to vertebral compression
fractures.64 The geriatric population is particularly vulnerable
to these comorbidities and is consistently moving towards
more independent/unassisted living. These contributing
factors can lead to decreased care and increased painful
outcomes.102

The elderly have constant low-grade inflammation103 and
often aging-associated neurodegeneration,104 which suggests
that changes in brain structure play an important role in

neuroplasticity associated with chronic pain. Age-associated
comorbidities show decreased CNS plasticity and tissue
degeneration.6,105,106 However, dynamic PNS plasticity with
altered pain sensitization during aging and in response to
inflammatory stimuli107–109 makes it especially challenging
to develop a unifying hypothesis that captures these complex
and seemingly opposing interactions (Figure 1). It is only
logical that the research focus is now shifting toward in-
vestigations into aging-associated degeneration and inflam-
mation and how these factors may facilitate chronic pain
development.

Sex differences in pain

Epidemiological and clinical studies provide strong evidence
for a greater prevalence of chronic pain syndromes such as
fibromyalgia, osteoarthritis, and musculoskeletal pain, in
females compared to males.110 Also, it has been well-
documented that males and females experience pain differ-
ently.111 However, preclinical and clinical evidence for sex

Figure 1. Unique aspects of pain in aging. (a) Persistent low-grade inflammation (pink patches) in the aged is characterized by activated
immune cells, namely microglia in the CNS and macrophages in the periphery. Secretion of pro-inflammatory factors affects nerves in the
periphery as well as responses in the CNS. (b) Differences in PNS inflammatory state, neuronal activity, and pain response in aged peripheral
tissues, compared to young. Chronic secretion of pro-inflammatory mediators damages nerves and alters pain sensitivity in the aged. (c) CNS
immune sensitization or microglia become “primed”, leading to behavioral deficits in the aged.
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differences in pain sensitivity and tolerance is less
clear.112–114 A meta-analysis of 122 articles published be-
tween 1998 and 2008 investigated sex differences in the
perception of various experimental pain modalities in healthy
subjects.115 The study found that pressure pain thresholds
were lower in females than in males, while cold and ischemic
pain thresholds were similar in both sexes. Similarly, toler-
ance to thermal and pressure pain was lower in females than
in males, but there was no sex difference in ischemic pain
tolerance. Additionally, pain intensity did not show any sex
differences in many of the pain modalities studied. Based on
these findings, the authors proposed that sex differences in
pain sensitivity show inconsistent patterns. However, a re-
analysis of the same set of articles, which considered the
direction of the sex difference reported by each article,
showed that women were consistently more sensitive to pain
than men, irrespective of pain modality or outcome mea-
sure.116 Depression was not shown to mediate sex differences
whereas the evidence for involvement of anxiety is further
complicated in aged individuals as their hormonal levels are
changed over time. Preclinical studies have shown that sex
differences in pain processing and modulation exist at the
molecular, cellular, and systems levels and involve genetic,
hormonal, and neuroimmune factors.113

The contribution of hormones to differences in pain
sensitivity between sexes is unclear. Estrogen receptors are
distributed throughout the peripheral and central nervous
system in both males and females. Estrogen alpha and beta
subtype receptors have been shown to be present in regions of
the brain responsible for pain processing and modulation such
as the amygdala, hypothalamus, periaqueductal gray, and
regions of the dorsal spinal cord.117,118 In the peripheral
nervous system, estrogen receptors punctate the cell surface
of all nociceptors.

Preclinical studies in ovariectomized rodents suggest a
role for estrogen in pain chronification that is yet to be well-
defined. Some studies demonstrated increased mechanical
and thermal hyperalgesia in ovariectomized rodents that were
alleviated with estrogen administration.119,120 Other studies
found estrogen-dependent hyperalgesic priming in female
rodents but increased pain after knocking out or inhibiting
estrogen receptors.121–123 This lack of clarity in the pre-
clinical setting and a need to improve our understanding of
hormonal influence in pain development offers exciting
opportunities for further research. It should be noted that the
role of other sex hormones, specifically androgens, remains to
be clarified. Given this ambiguity, it is not clear if and how
physiological or psychological factors could mediate sex
differences in pain perception. However, cognitive and social
factors appear to partially affect these differences, with in-
dividual history influencing pain responses in the female
population.124

Clinical studies found that sex differences in pain per-
ception are subtle. A study conducted on both sexes of re-
productive age determined that noxious laser-evoked

potentials were lower in men than women, but there were no
differences in subjective pain ratings.125 Another study
showed that behaviorally defined parameters had clear sex-
based differences.126 Measures of two such parameters, ac-
ceptance of pain and the fear of movement (kinesiophobia),
showed that when men and women are subjected to the same
magnitude of pain, women tend to be more active, accept the
pain, and draw on social support while men have a lower
activity level, kinesiophobia, and mood disturbances.126

Thus, it becomes imperative to study sex differences with
regard to different aspects of pain (sensorimotor, affective,
cognitive, social) and at different ages in clinical pain con-
ditions as well as in pre-clinical models to determine un-
derlying mechanisms. Animal models of pain are well suited
for mechanistic and preclinical studies, whereas experimental
human pain models have limitations due to ethical concerns
about invasive stimuli and because the prediction for clinical
pain would be based on psychophysical readouts,127 which
would be particularly difficult in advanced age populations
due to factors like cognitive impairment. Robust pain as-
sessments need to be conducted to accurately classify chronic
pain and detect sex- and age-related differences. This would
include assessing the sensory and affective parameters of
pain, the temporal aspect or location of pain, and the dis-
tribution of pain in a patient’s body.128 Again, advanced-age
individuals may have difficulties in accurately expressing
such aspects, and therefore, more objective measures of pain
mechanisms need to be included such as brain imaging,
biomarkers, genetic factors, pharmacological phenotypes,
and others to understand sex differences in pain and aging and
to design effective strategies targeting the burden of pain.128

Additional challenges include multiple comorbidities and
ongoing medical treatments.

Preclinical pain research on aging

Animal models used for studying pain processing and
testing therapeutic efficacy rely on non-report measures such
as evoked responses (mechanical and thermal sensitivity tests
or vocalizations) and non-evoked pain behaviors (grimace
scales, conditioned place preference, and other operant
assays) in models of inflammatory, neuropathic, or func-
tional pain. A major challenge in the field is the need for
pain-related parameters beyond nociceptive reflex
measurements.129

In pre-clinical studies, the findings related to age-
differences in pain responses vary based on the pain test
employed and are often equivocal (for a review of the lit-
erature before 2000 see).130 More recent behavioral experi-
ments demonstrate similar ambiguity in response to painful
stimuli and are summarized in Table 2.74,131–145 For instance,
studies using the hot plate test to examine age-related effects
on nociception have reported an increase, decrease, as well as
no difference in pain behaviors in older rodents compared to
younger rodents.74,131,133,134,146–148 Similar inconsistencies
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in age-related changes in pain sensitivity have been reported
in studies using inflammatory and neuropathic pain
models.73,134–138,140–145,149,150 One of the possible reasons
for the ambiguities in the results of preclinical studies on pain
in aging (see Table 2) could be the use of animals of various
ages from 10 months onwards classified as
aged.73,109,130,141,151,152 Some investigations done on 10- to
11-month-old animals are misleadingly labeled as aging
studies and confound the literature with conflicting find-
ings.151 These animals should be more accurately reported as
middle-aged groups. Some groups have used 17- or 18-
month-old rodents for aging studies.141,152,153 Other studies
classified 22-month-old or older animals as aged for their
investigations.154–156 While age is a relative parameter, the
selection of an age range in animals that appropriately reflects
aging in humans is paramount for determining aging-related
changes in pain and related conditions.157–160 It is also im-
portant that appropriate models are selected that recapitulate
specific clinical conditions and nociception upon manipu-
lation by injury, application of chemical agents, or surgeries
(see Table 2 for more details about preclinical studies).
Therefore, the method of noxious stimulation and pain in-
duction, and the end-point measurements from genes to
systems levels are important considerations.161

Aged rodents demonstrate altered neuronal activity in the
spinal cord.109 As compared to young adult dorsal horn
neurons, aged dorsal horn neurons showed increased excit-
ability but reduced excitatory synaptic input and increased
GABAergic inhibitory synaptic input.109 Studies on dorsal
horn neural function in pain models have also shown in-
creased background and evoked activity in aged (>29 months
old) compared to young rodents.135,136 To that effect, tem-
poral aspects of treatments or duration of testing on animal
pain models become important for protocol relevance.

Numerous studies have shown increased neuro-
inflammation in aged rodents.106,155,162–164 It is known that
chronic activation of immune cells, both in the periphery and
the CNS, can lead to increased sensitization.105,106,164–166

However, opposing effects of inflammation and im-
munosenescence are reported for pain. Some preclinical
studies have shown that inflammation and neuroinflammation
are higher in the aged than young and decreased pain sen-
sitivity was observed.130,154,156,167 Other preclinical studies
have reported increased pain with inflammatory
conditions.73,103 Peripheral infusion of lipopolysaccharide
(LPS) into young and aged mice caused higher levels of
neuroinflammation in the aged females compared to young
females, as well as young and aged males, indicating sex and
age differences.168 In contrast, mechanical hypersensitivity
responses to complete Freund’s adjuvant (CFA) are reduced
in aged male and female mice, while pro-inflammatory cy-
tokine levels in the spinal cord are higher, despite no changes
in the dorsal root ganglia.154 These data suggest that sex-
specific differences may also be influenced by age in rodent
models, which adds a layer of complexity and yet opens up

opportunities for new research avenues. It has been shown
that spinal microglia and astrocytes in aged rodents are in a
relatively higher primed or reactive state and secrete cyto-
kines that affect the PNS; however, their pain behavior does
not necessarily reflect that change.152,156,168–170 This high-
lights an important gap in characterizing the responses of
aging rodents to pain tests. Reduced pain sensitivity despite
increased aged-induced inflammation with advanced age,
may suggest that the response to pain-relieving therapies
based on anti-inflammatory actions may be quite subtle in
these animals. Thus, there is a need to re-evaluate methods
used to assess pain behaviors and outcomes in aged rodent
pain models.

Based on current literature, aged rodents display, in most
studies, decreased pain behavior, but more activation of
neurons and immune cells and higher levels of pro-
inflammatory mediators.146,170–172 This suggests that
there is a disconnect in age-induced inflammation, noci-
ceptor signaling, and ascending facilitation to the brain,
which may result in decreased pain prevalence in the aged.
Interestingly, there are no studies assessing age differences
in pain behaviors, neuronal function, and inflammation in
the brain, and therefore studies addressing this knowledge
gap are needed.

Clinical research on pain and aging models

In clinical studies, measuring experimentally-induced pain
thresholds is the most commonly used approach to study age-
related differences in pain perception or pain modulation (see
Table 3). Healthy, informed adult volunteers comprise most
of these studies due to ethical limitations. The two experi-
mental methodologies prevalent in the literature are the re-
sponse to direct painful stimulation and conditioned pain
modulation (CPM). Noxious stimuli typically include ther-
mal (hot or cold) or electrical stimulation. CPM measures
inhibition of the effects of one painful test stimulus by another
painful conditioned stimulus at an alternative site to study
central mechanisms and integrity of pain inhibition [for
example].173,174 Table 3 summarizes recent clinical literature
studying age-related differences in pain perception and
demonstrates considerable heterogeneity. The findings re-
lated to age-associated effects on pain perception vary de-
pending on the type, intensity, duration, and site of the
stimulus applied.175–187 The results from the CPM assess-
ment suggest that older adults have decreased facilities in
central inhibitory responses to pain, however, a study by
Wrobel et al. showed that inhibitory controls were similar
between old and young adults following placebo
analgesia.175–179,182 Acute and isometric exercise has been
shown to temporarily reduce pain sensitivity, and the mag-
nitude of pain reduction has been shown to be associated with
endogenous pain inhibition capacity.188,189 The magnitude of
exercise-induced hypoalgesia was lower in older adults
compared to younger adults.190
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When devising a clinical study to address aging-related
changes in general, there are important considerations. As
study participants are enrolled voluntarily, there is an in-
herent participation bias towards healthier older patients
who often have fewer comorbidities, less physical health
decline, improved cognitive abilities, and better mental
health than the average older adult. This is important in

clinical practice and may affect the results of studies on pain
perception and pain intensity in the elderly. Older patients
have been found to report less pain from similar pathology
regarding pain frequency and severity, further exacerbated
by female gender and specific ethnicity differences.181 As
such, caution should be taken in generalizing the results of
such studies.

Table 3. Clinical studies that highlight age-related differences in pain perception and assessment (2000–Present).

Methodology Source
Human
model type

Age category
(mean) Difference

Non-noxious
(Mechanical)/Noxious
(thermal/Electrical)
stimulus

186 Healthy
adults

Young (22) old
(62)

Older adults exhibit higher ratings of the intensity and
unpleasantness of thermal pain and enhanced temporal
summation of thermal pain relative to younger adults

187 Healthy
adults

Young (22) old
(62.2)

Older adults have lower ischemic pain thresholds and tolerances
assessed via the modified submaximal effort tourniquet
procedure

183 Healthy
adults

Young (30) old
(78.9)

The study finds an age-dependent temporal relationship with pain
stimuli. There is a higher thermal and electrical stimulation
threshold when the stimulus duration is short, but no differences
when the stimulus duration is long

184 Healthy
adults

Young (27) old
(71)

There are stimulus-specific age differences. Non-noxious stimuli
thresholds increase with age whereas pressure pain thresholds
decrease. Heat pain thresholds show no age-related changes.
Older adults demonstrate greater temporal summation, but pain
summation was not affected

181 Healthy
adults

Middle (45–56)
older (57–79)

There are stimulus-specific age differences. Older adults are less
sensitive to warm and painful heat stimuli than middle-aged
adults. In addition, there is a greater decrease in sensitivity
associated with aging in the lower extremities

103 Healthy
adults

Young (21.4) older
(68.1)

Observed greater elevations in pro-inflammatory cytokines (TNF-α
and IL-8) following cold pressor task and focal heat pain in older
subjects. Only greater elevations of IL-6 after cold pressor task in
older subjects Anti-inflammatory cytokines (IL-4, IL-5, and IL-10)
peaked later in older subjects with increased elevations for focal
heat pain only

182 Healthy
adults

Young (27) old
(69)

Heat pain threshold increases with age, however, adult adults
report more pain intensity. Inhibitory controls were identical
between old and young adults following placebo analgesia

185 Healthy
adults

Young (34) old
(67)

Older adults experienced greater temporal summation of spatial
perception of cold stimuli compared with younger adults.
Temporal summation of pain intensity for heat or cold stimuli
showed no age differences

Conditioned pain
modulation

178 Healthy
adults

Young (23) old
(78)

Older adults needed a higher intensity of noxious stimulation to
first report pain

175 Healthy
adults

Young (21) old
(63)

Older adults did not exhibit inhibitory controls whereas younger
adults were able to on repetitive stimulus

176 Healthy
adults

Young (25) elderly
(47) old (68)

Endogenous pain modulation was negatively correlated with
advancing age

177 Healthy
adults

Young (25) old
(65.2)

Older adults exhibit decreased inhibitory controls compared to
young adults

179 Healthy
adults

Young (29) old
(63)

Older adults have an age-related reduction in inhibitory processes

180 Healthy
adults

Young (24) old
(64)

Older individuals experienced greater fluctuations in pain sensitivity
following the varying intensity of the conditioned stimulus

Exercise 190 Healthy
adults

Young (22) old
(64)

There are age-related differences in exercise-induced hypoalgesia.
Younger adults experience greater hypoalgesia following
exercise compared with older adults
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Implications and future directions for
clinical practice and pre-clinical and
clinical research

To address chronic pain management among older adults in
the clinical setting, the U.S. Pain Management Best Practices
Inter-Agency Task Force has called for the development
of pain management guidelines for older adults that address
their unique risk factors; consideration of multidisciplinary
approaches combining pharmacological and non-
pharmacological approaches; and the establishment of ap-
propriate pain management education for health care providers
who treat older adults.57

At present, there is a paucity of studies on pain during
aging in the diagnostics and therapeutics field, with most
published studies reporting outcomes of pain-relieving
medications or therapy after various surgeries or disease
modalities.40,67,191,192 While these are important areas of
investigation required to address the need for novel treat-
ments and their administration, the mechanistic underpin-
nings of pain in older adults remain unclear. Furthermore, the
preponderance of published studies focused primarily on
men, limiting our understanding of chronic pain syndromes in
women.126,146,156 While using human experimental models
for pain research has ethical considerations for inflicting or
evoking pain to study pain responses, animal models offer a
wider array of tools to examine different aspects of pain and
underlying mechanisms in different pain conditions but rely
on surrogate measures of pain.127,129,161 A unifying concept
about altered pain sensitivity and neuroinflammation in aging
has yet to emerge from preclinical studies. Moreover, studies
assessing pain thresholds over the lifespan have been
inconsistent.108,193 The understanding of the two inevitable
conditions of the human, age and pain, has been complicated in
a cloud of conflicting data from preclinical and translational
studies, due to inconsistencies in pain modality testing (site,
testing paradigm, and tools used), age of subjects, and lack of
utilization of both sexes.175,193 A more robust characterization
of aging pain models is necessary to document behavioral
responses to pain, correlate themwith neurobiological changes,
and determine if these changes are age and/or sex-dependent.
With the knowledge gap regarding age-related changes in pain
processing in the brain, there are numerous advanced-age
animal models for various neurodegenerative diseases194 that
could be repurposed to study various aspects of pain in aged
animals and conditions of cognitive decline.
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