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Due primarily to the excellent soft tissue contrast depictions provided by MRI, the widespread application
of head and neck MRI in clinical practice serves to assess various diseases. Artificial intelligence (AI)-based
methodologies, particularly deep learning analyses using convolutional neural networks, have recently
gained global recognition and have been extensively investigated in clinical research for their applicability
across a range of categories within medical imaging, including head and neck MRI. Analytical approaches
using AI have shown potential for addressing the clinical limitations associated with head and neck MRI.
In this review, we focus primarily on the technical advancements in deep-learning-based methodologies
and their clinical utility within the field of head and neck MRI, encompassing aspects such as image
acquisition and reconstruction, lesion segmentation, disease classification and diagnosis, and prognostic
prediction for patients presenting with head and neck diseases. We then discuss the limitations of current
deep-learning-based approaches and offer insights regarding future challenges in this field.
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Introduction

MRI is one of the important modalities for assessing patients
with head and neck diseases in routine clinical practice. The
region of the head and neck is characterized by a highly
complex anatomy comprised of numerous organs within a
narrow space, including the skull base, temporal bone, orbit,
laryngopharynx, oral cavity, nasal/sinonasal cavity, major sali-
vary glands, and many other organs/spaces. A major advan-
tage of MRI in assessing head and neck diseases is its higher

soft-tissue contrast in representative imaging sequences
(e.g., T1-weighted imaging [T1WI] and T2-weighted imaging
[T2WI]) compared to CT, thus making MRI highly useful to
assess diseases in the head and neck region without radiation
exposure.1 In addition, several advanced MR techniques can
provide functional information (e.g., diffusion-weighted ima-
ging [DWI] and perfusion/permeability weighted imaging);
these additional techniques provide useful information for
assessments of head and neck diseases.2–4 However, MRI of
the head and neck still presents challenges in various clinical
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applications: (1) In image acquisition, due to the complex
anatomical structure of the head and neck, images with higher
spatial resolution are often required, leading to longer acquisi-
tion times, which can be problematic. The complexmorphology
of the head and neck can also result in B0 and B1 field
inhomogeneity, which can make it difficult to obtain sufficient
image quality. The presence of air in the nasal/sinonasal cavity
or laryngopharynx andmetallic substances in the oral cavity can
cause magnetic susceptibility artifacts, which are also an impor-
tant problem in image quality assessment.2,5 (2) In lesion detec-
tion and segmentation, it can be difficult to detect lesions and to
accurately segment lesions because of the anatomical complex-
ity of the head and neck. Segmenting a lesion and normal
anatomical structures around the lesion is crucial for radiother-
apy treatment planning, but performing this task manually is
very time-consuming.6 (3) In lesion diagnosis and differentia-
tion, the signal intensity in the lesion is often nonspecific (e.g.,
low signal intensity on T1WI and high signal intensity on
T2WI), which can be a source of difficulty for radiologists.
Related to the disease diagnosis, it is also difficult to predict
prognoses (particularly in cancer patients) because various fac-
tors such as lesion size, surface irregularity, intralesional hetero-
geneity, and several other factors affect the treatment outcome.
Therefore, although MRI is indispensable for assessing head
and neck lesions, these limitations should be resolved.

Over the past decade, advanced analytical methods such as
texture analyses and radiomics have gained attention in the
research field of radiology.7 Compared to the interpretation
of conventional imaging findings, these advanced methods
are capable of more accurately quantifying the information

contained within the images at a higher level of detail, thus
providing high diagnostic performance.8–28 More recently,
remarkable advances have been made in the development and
clinical application of artificial intelligence (AI) in the field of
radiology.29–32 In particular, the analysis of deep learning using
convolutional neural networks (CNNs) has become main-
stream, and extensive clinical research on its application con-
tinues for various categories in medical imaging, including that
of the head and neck (Fig. 1).33–51 First, there has been remark-
able progress in the development of deep-learning reconstruc-
tion techniques in image acquisition, focusing on both the
reduction of image noise and reconstructions to high-resolution
imaging (i.e., super-resolution); these techniques provide high-
quality images and/or short scanning time-derived images.
Second, in the segmentation of targets, the application of
semantic segmentation with deep-learning algorithms has pro-
gressed, with reports of high-precision delineations of ROIs in
various targets, including lesions such as malignant tumors and
normal organs. Third, in the diagnosis or the differentiation of
lesions, classifications using a deep-learning method have
achieved very high diagnostic accuracy rates in various disease
differentiations, suggesting that deep-learning methods may
achieve diagnostic ability that is comparable to that of board-
certified radiologists and to become useful as diagnostic sup-
port tools for all physicians. Fourth, as another classification
task using a deep-learning approach, prognosis prediction
(especially in patients with cancer) will be beneficial for the
appropriate patient care. In the investigations that focused on
the head and neck, the number of segmentation-related studies
has been the highest compared to other categories, followed

Fig. 1 Representative artificial intelligence (AI)-based clinical appreciation in head and neck MRI. Representative clinical applications
using AI-based methods are shown: image reconstruction with denoising, lesion segmentation, disease classification, and prognosis
prediction from an imaging dataset. AI, artificial intelligence.
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by disease classification, prognosis prediction, and image
acquisition in recent studies using a deep-learning analysis
(Fig. 2). In addition, although the utility of deep-learning ana-
lyses in the head and neck has been investigated mainly using
CT, the number of reports investigating deep learning with
other imaging modalities, including MRI, have been increasing
(along with those of CT) (Fig. 3).

As mentioned above, there has been an increasing number
of studies of technological innovations utilizing AI in the
field of head and neck MRI, particularly with a focus on deep
learning, and the studies have established the utility of AI in
various applications such as image acquisition, lesion seg-
mentation, disease diagnosis, and prognosis prediction. In
this review, we comprehensively describe the usefulness of

Fig. 2 The numbers of head and neck imaging studies in various clinical applications using deep-learning approach in recent years.
The search results in PubMed (https://pubmed.ncbi.nlm.nih.gov/) with ‘deep learning neck imaging (acquisition or reconstruction)’ were
categorized as acquisition/reconstruction, ‘deep learning neck imaging segmentation’ as segmentation, ‘deep learning neck imaging
classification’ as classification, and ‘deep learning neck imaging prognosis prediction’ as prognosis prediction. The data from 2020 to
2022 are presented.

Fig. 3 The numbers of head and neck imaging studies in various modalities by a deep-learning approach in recent years. The search results
in PubMed (https://pubmed.ncbi.nlm.nih.gov/) with ‘deep learning neck imaging CT’, ‘deep learning neck imaging MRI’, and ‘deep
learning neck imaging PET’ were, respectively, categorized as CT-, MRI-, and PET-related investigations using deep learning. The data
from 2020 to 2022 are shown. PET, positron emission tomography.
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AI, especially deep learning, in the field of head and neck
MRI, and we provide an overview of the demonstrated
benefits and limitations as well as future perspectives.

Image Acquisition and Reconstruction

Numerous important anatomical structures are present within
the small FOV of the head and neck, and high-spatial-
resolution imaging is thus generally required for the suffi-
cient quality of image reading. Scanning with a short acqui-
sition time is also required because imaging of the head
and neck region always suffers from the patient’s motion
by, for example, respiration and swallowing. Susceptibility
artifacts in the region located around the air space of the
laryngopharynx and metallic items in the oral cavity are also
problematic in the efforts to maintain good image quality. To
address these problems, the designs of MRI sequences and
acquisition methods have evolved and have been applied to
the head and neck over the last decade or so. A short scanning
time without a reduction of the SNR is considered a crucial
task for head and neck MRI acquisition.

The methods for image acceleration that are most
frequently used in daily clinical practice include parallel
imaging, half-scan (half Fourier), and the zero filling interpola-
tion, among others. A compressed sensing technique was
introduced in 2015 in the main field of fast MRI acquisition.52

This technique is an image reconstruction method that uses
the undersampling of k-space data with sparse image signals
and a repeated denoising cycle performed by wavelet transfor-
mation. There are several studies in which a compressed
sensing technique was applied in head and neck MRI.53–55

Takumi et al. performed a comparative study of the quality
of contrast-enhanced (CE) fat-suppressed 3D gradient-echo
imaging with both quantitative and qualitative assessments
between images with and without compressed sensing, using
a dataset of patients with pharyngolaryngeal squamous cell
carcinoma (SCC).53 They reported that the images obtained
with compressed sensing demonstrated better image quality
compared to those without, and they concluded that com-
pressed sensing improves the image quality of 3D-based
CE-T1WI for the evaluation of pharyngolaryngeal SCC,
without requiring additional acquisition time. Kami et al. also
observed improved image quality of compressed sensing-
based CE-3D-T1WI compared to the 2D multi-slice spin
echo sequence in patients with maxillofacial lesions.54 The
superiority of a T2WI sequence with compressed sensing
compared to the conventional parallel imaging-based sequence
for the evaluation of normal structures in the oral cavity was
demonstrated by Tomita et al.55

More recently, deep-learning-based reconstruction algo-
rithms have been reported worldwide.56,57 In most of the
assessments of the image quality of deep-learning-based
reconstruction, the novel reconstruction method using a
deep-learning-based reconstruction algorithm was observed
to be the best method to obtain superb image quality in

various image-reconstruction techniques; even the above-
mentioned compressed-sensing technique tended to provide
inferior image quality compared to the deep-learning-based
reconstruction. The number of investigations that performed
deep-learning-based MRI reconstruction for the evaluation
of head and neck disorders is very limited. Naganawa et al.
evaluated the contrast-to-noise ratio (CNR) of endolymph to
perilymph in MRI examinations of endolymphatic hydrops
based on 3D fluid-attenuated inversion recovery (FLAIR)
imaging performed 4 hours after the intravenous administra-
tion of a contrast agent.40 They assessed the hybrid of (i) the
reversed image of the positive endolymph signal and (ii) the
native image of the perilymph signal multiplied with the
heavily T2-weighted MR cisternography images (named
‘HYDROPS-Mi2’) with a deep-learning-based denoising
algorithm. Their results revealed that the CNR of the images
obtained with deep-learning-based denoising (7738.6±
5149.2) was increased by more than fourfold compared to
the images obtained without denoising (1681.8± 845.2).40

In another study, Naganawa et al. performed the fast scan-
ning of endolymphatic hydrops imaging with the use of
HYDROPS2-Mi2 and a deep-learning-based denoising
algorithm. They obtained sufficient image quality within a
5-minute imaging protocol with the help of deep-learning
reconstruction, whereas the conventional imaging method
with HYDROPS2-Mi2 required 12 minutes for image
acquisition.47

Deep-learning-based super-resolution is another featured
technology in the field of deep-learning reconstruction.
Koktzoglou et al. applied the deep-learning-based super-
resolution technique to head and neck MR angiography
(MRA).58 This super-resolution model was created with the
training for the estimation of difference between the high-
and low-resolution images based on image domain deep
learning method. They reported that deep-learning-based
super-resolution (up to fourfold) as well as twofold lower-
resolution input volumes provided the same quality of
images obtained from high-resolution ground-truth volumes
with a long scanning time, based on their evaluation with the
Dice similarity coefficient (DSC), structural similarity
(SSIM), arterial diameters, and arterial sharpness. They con-
cluded that head and neck MRA with deep-learning-based
super-resolution has the potential for an up to fourfold reduc-
tion in acquisition time.58 Some of the structures that com-
prise the head and neck are especially small and anatomically
complex. It has been difficult to achieve the sufficient depic-
tion of several small normal structures (e.g., the inner ear, the
parathyroid) and lesions (e.g., T1-stage cancers) by routine
imaging sequences because of their smallness and/or the
similarity of the signal intensity located near the target.59

Super-resolution techniques could thus contribute signifi-
cantly to the acquisition of good-quality and high-spatial-
resolution images without increasing the acquisition time.

Artifact reduction is an important issue in the field of
MRI. Head and neck DWI is challenging and often results
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in poor image quality with severe image distortion and
susceptibility artifact due to the complex anatomical shapes
and the presence of air and/or metallic substances. A study
published in 2023 investigated the new technique of suscept-
ibility artifact correction in an echo planar imaging sequence
using an unsupervised deep neural model.60 This technique
can be effective for improving the image quality of the head
and neck DWI.

Synthetic imaging between modalities (i.e., image-to-
image translation) is another notable deep-learning-based
reconstruction strategy. More specifically, bone MR imaging
to synthetic CT techniques enables the visualization of cor-
tical bone without the need for radiation exposure, which is
particularly useful for pediatric patients. Although acquisi-
tion-based bone MRI technique was previously investigated,
the zero TE imaging is one of the representative methods of
bone MRI to visualize short-T2 materials (i.e., cortical
bone);61 deep-learning-based bone MRI is also considered
as an interesting technique for the bone MRI. Bambach et al.
demonstrated the optimization that can be used to create a
robust deep-learning model for the conversion of bone MR
imaging to synthetic CT with Light U-Net architecture, and
they suggested the possibility of using this technique in
clinical practice.50 Including the abovementioned deep-
learning-based super-resolution technique and the synthetic
imaging, the potential utility of these techniques is highly
expected; however, derived images are created by incorpor-
ating data that were not originally acquired from the target
and may contain artificially reconstructed false information.
This is considered one of the potential important limitations
of these types of deep-learning-based image processing.
Such images should be carefully reviewed under the close
supervision of a radiologist.

Segmentation

Target delineation and segmentation is important to accu-
rately understand the main localization of lesions and the
range of disease. Several research groups have suggested the
utility of lesion delineation or detection of the lesion extent
and segmentation using several modalities such as CE-CT,
non-CE- or CE-MRI, and 18F-fluorodeoxyglucose positron-
emission tomography/CT (FDG-PET/CT).62,63 The accurate
and rapid accomplishment of this procedure clinically is thus
desired. More specifically, target segmentation is crucial in
head and neck imaging, especially for successful radiother-
apy procedures. For treatment planning in radiotherapy,
accurate delineation of the target lesion and the organs at
risk is mandatory, and the delineation procedure directly
influences the quality of the radiotherapy.64,65 Because var-
ious types of soft tissue are present in the head and neck,
MRI is an effective modality due to its excellent contrast of
soft tissue compared to other modalities (e.g., CT) for deli-
neating the target lesion and organs at risk, and it has thus
become a more common imaging technique for the

delineation in radiotherapy treatment planning.66 However,
the delineation of target lesions and organs at risk in the head
and neck region is a very labor-intensive, time-consuming,
and observer-dependent procedure. The delineation process
is typically performed by radiologists or radiation oncolo-
gists, and it takes an average of ~3 hours to delineate a full
set of tumor volumes and organs at risk, mainly because of
the complex anatomy of the head and neck.6 To address this
limitation, AI-based segmentation methods, particularly
deep-learning-based techniques, have been widely intro-
duced as novel supportive tools and are investigated with
excellent initial results, as follows.

Investigations of MR-based ROI delineation using deep-
learning methods for head and neck cancers or organs at risk
have been performed in patients with nasopharyngeal
cancer67–70 and oropharyngeal cancer.71,72 To delineate the
appropriate ROIs, most of these investigations used the deep-
learning architecture of an Encoder-Decoder-type CNN, and
the 2D U-net or 3D U-net was the most popular type of this
model. Automatic MRI-based delineation for the primary
lesion of nasopharyngeal cancer using CNNs has been
applied in several studies.38,67–70 For example, Lin et al.
used U-net architecture for the delineation of the primary
lesion of nasopharyngeal cancer on CE-T1WI.67 They
reported the DSC of 0.79 with the ground truth by an expert
radiation oncologist or radiologist’s manual assessment,
whereas the DSCs by qualified radiation oncologists ranged
from 0.71 to 0.74. The use of their CNNmodel as an assistive
tool for radiologists also reduced the intraobserver variation
(the interquartile deviation of DSC) by 36.4%, and it reduced
the contouring time by 39.4% (from 30.2 to 18.3 minutes).67

Chen et al. proposed a novel multi-modality MRI fusion
network (MMFNet) in which T1WI, T2WI, and CE-T1WI
sequences were well integrated to provide a complete accu-
rate segmentation of nasopharyngeal cancer. Their model
consists of a multi-encoder-based network and one decoder
to capture modality-specific features. Their study achieved
the DSC of 0.72, which was higher than that obtained in a
U-net-based analysis with a single sequence of T1WI, T2WI,
or CE-T1WI.68 Although Chen et al.’s study was performed
with a multi-modal evaluation, the DSC value they reported
is lower than that obtained in the above-cited study by Lin
et al. This might be due to the variability in the two studies’
patient cohorts. In contrast, Wong et al. demonstrated the
performance a U-Net-based CNN using only the non-CE-
sequence (i.e., fat-suppressed T2WI), and their results
showed no significant difference in the DSC (0.71) com-
pared to the CE-T1WI sequence.38

Investigations of the segmentation of oropharyngeal can-
cer have also been reported.71,72 Rodríguez Outeiral et al.
obtained the best DSC values with the combination of multi-
ple MRI sequences (T1WI, T2WI, and CE-T1WI) as input
using 3D U-Net. Notably, their DSC results suggested that
manually reducing the context around the tumor, which they
defined as a semi-automatic method, results in better
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segmentations than those given by a completely automatic
method; with the semi-automatic method the DSC value was
0.74, whereas with the completely automatic method the
DSC value was 0.55.71 Wahid et al. also demonstrated
improved delineation of oropharyngeal cancer lesions with
the combination use of conventional sequences (T1WI and
T2WI) and quantitative functional image sequences; they
used the apparent diffusion coefficient (ADC) from DWI
and the volume transfer coefficient (Ktrans) and the volume
of the extravascular extracellular space (Ve) from dynamic
CE (DCE) perfusion as input channels to a 3D Residual
U-Net.72

The automatic delineation of organs at risk is also an
important task in patients with head and neck cancer who
need radiotherapy planning— especially the planning of
intensity-modulated radiation therapy (IMRT). Dai et al.
used the datasets of both CT for bony-structure contrast
and MRI for soft-tissue contrast in model training for the
delineation of multiple organs at risk (totally 18 organs) with
the CNN, resulting in high DSC values (approximately 0.8–
0.9).73 Interestingly, their study acquired the MRI data not
directly; rather, it was acquired from the CT dataset by a pre-
trained cycle-consistent generative adversarial network
(GAN).73 In contrast, Korte et al. investigated the delinea-
tions of the parotid gland, submandibular gland, and neck
lymph nodes by using a T2WI dataset with multiple 3D-U-
Net systems, resulting in DSC values of approximately 0.8.74

The segmentation of other lesions and anatomical struc-
tures such as vestibular schwannoma in the cerebellopontine
angle,75,76 the inner ear and its related structures (e.g.,
cochlea, vestibule),77–79 and venous malformations of the
neck80 has been described. Segmentation of the inner ear
and its related structures necessary for the diagnosis of
endolymphatic hydrops has also been a concern (see the
section below titled ‘Disease classification and diagnosis’)
and would be valuable for clinical practice.

Due to the excellent soft-tissue contrast obtained from
MRI, MRI-based segmentation could contribute to the highly
accurate segmentation of various lesions and organs at risk.
The currently used segmentation process is usually per-
formed for treatment-planning CT, but the combination use
of multiple modalities, including MRI, is expected to be
established in the future as a more useful method.
Unfortunately, most of the studies mentioned above did not
use external validation; they used internal validation with a
hold-out or cross-validation scheme for the test set when
assessing the created model’s accuracy. The performance of
each new deep-learning model must therefore be interpreted
carefully before its use in clinical practice.

Disease Classification and Diagnosis

There is a wide variety of differential diagnoses in head and
neck imaging depending on the various anatomical origins.
The ability to accurately determine the final diagnosis with

high diagnostic confidence using images can help reduce
unnecessary invasive examinations and surgical procedures.
Numerous radiological investigations have described lesion
enhancement patterns, lesion morphological shapes, and
morphological changes in lesions over a given follow-up
period, and several additional parameters obtained from
functional imaging techniques are valuable for the diagnostic
prediction of the histological type or differentiation of benign
and malignant lesions in various head and neck diseases.81–83

However, there are still many nonspecific imaging findings
in head and neck MRI, and standard imaging sequences such
as T1WI and T2WI can be limited in their ability to reliably
differentiate, for example, benign from malignant lesions,
resulting in difficulty reaching a diagnosis even among
experienced radiologists. Advanced analytical methods
such as a texture analysis or radiomics approach have been
reported to provide mostly equivalent diagnostic accuracy
(or sometimes better accuracy) in classifying head and neck
diseases compared to classifications by expert radiologists
who specialize in head and neck imaging.84 There is a great
need for a supplementary tool, and AI-based methods have
the potential to make a significant contribution to this appli-
cation. We next describe the aspects of the usefulness of AI-
based techniques, especially deep-learning methods, for the
diagnoses and classification of head and neck diseases.

Major salivary gland tumors; parotid tumors
The origin of approximately 80% of salivary gland tumors is
a parotid gland. Pleomorphic adenoma is the most common
histological subtype of parotid tumors, followed by Warthin
tumor. Mucoepidermoid carcinoma is the most common
subtype in malignant tumors. MRI is often used to investi-
gate a parotid tumor’s diagnosis based on various imaging
findings (mainly T2WI and CE-T1WI).85 However, the ima-
ging findings of parotid gland tumors are sometimes unspe-
cific and often difficult to diagnose even by radiologists who
specialize in the head and neck. Chang et al. demonstrated
the differentiation of parotid tumors among pleomorphic
adenoma, Warthin tumor, and malignant tumors with the
use of 2D U-Net and five types of MRI sequences (T1WI,
T2WI, CE-T1WI, DWI with b-value of 0 s/mm2 [DWIb0],
DW with b-value of 1000 s/mm2 [DWIb1000], and ADC)
with a fully automated method. They achieved high overall
diagnostic performance with a DWI-based model consisting
of DWIb0, DWIb1000, and ADC (0.71–0.81 accuracy).86

Interestingly, combining DWI and other sequences did not
improve the prediction accuracy. Matsuo et al. performed the
integration of T1WI and T2WI into single pseudo-color
images and then conducted an analysis with the combination
use of a VGG16-based deep learning-model and the L2-
constrained softmax loss function. The highest area under
the curve (AUC) value to differentiate between benign and
malignant parotid gland tumors (0.86) was obtained with this
method, higher than that obtained visually by a board-certi-
fied radiologist (0.74).87 More recently, the ‘transformer’
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method has been applied to computer vision, including dis-
ease classifications in medical imaging; this technique uses
the self-attention function which enables early information
collection and combining of the total global information by
dividing images into several parts.88 Dai et al. used an MRI
dataset and the combination use of a CNN and the transfor-
mer method for the classification of parotid gland tumors.89

In their created model, named as TransMed, the CNN was
used to extract a low-level feature from multi-modal imaging
dataset; the output of CNN was conducted by a linear projec-
tion layer to create a low-level feature-based map. This low-
level feature map was analyzed by the transformer layer to
provide the final classification. Their proposed model
achieved the diagnostic accuracy of 0.89 in differentiating
the parotid gland tumors, which was superior compared to a
CNNmodel’s performance.89 Liu et al. performed a two-step
approach using Res-Net deep-learning architecture and then
the Transformer network. This two-step method employed
aligns with the technique utilized in the aforementioned
study by Dai, et al. First, a vector describing image features
was produced using image dataset through the Resnet-18.
Subsequently, a sequence classification network by transfor-
mer model identified the subtype of tumors using the
extracted image by Resnet-18 as an input. Their results
demonstrated that the multiple sequences-based model with
T2WI, CE-T1WI, and DWI produced the best results with
0.85 accuracy to differentiate between malignant and benign
parotid tumors.90

Head and neck squamous cell carcinoma
Head and neck SCC is the most common malignancy arising
from various regions of the head and neck. The main anatomy
includes the pharyngolarynx and the nasal/sinonasal cavity.
The correct diagnosis of this pathology is crucial for prompt
decision-making regarding treatment planning in appropriate
patient care. Deep-learning-based approaches have been
assessed as a potential supportive tool for the rapid and precise
diagnosis of these head and neck cancers. Wong et al. per-
formed a discrimination analysis between early-stage (i.e., T1
stage) nasopharyngeal cancer and benign hyperplasia, using
fat-suppressed T2WI with the Residual Attention Network
and 3D volume input and multiple 2D acquired slices.91

They achieved high diagnostic accuracy (0.92) with a CNN-
based algorithm, and this value was not significantly different
from the diagnostic performance of an experienced radiolo-
gist. In another study, deep-learning-based T-staging in
patients with nasopharyngeal cancer was investigated using
imaging datasets of T1WI, T2WI, and CE-T1WI with the
deep-learning architecture of ResNet.92 Those authors used
the ‘weakly supervised learning’ method in which slice-by-
slice analyses of multiple slices are conducted, after which the
slice with the highest score (named the T-score) was used in
the model’s training procedure. Their created model achieved
0.76 accuracy in the determination of T-staging. In patients
with nasal or sinonasal cavity tumors, the differentiation

between benign inverted papillomas and those with malignant
transformation to SCC is important but challenging, particu-
larly by imaging findings alone. Liu et al. investigated an
MRI-based deep-learning approach to accomplish this
challenge.93 They performed a 3D-CNN analysis using
T1WI with or without a contrast agent and/or T2WI, resulting
in the highest diagnostic accuracy (0.78) with their developed
CNN model, named ‘All-Net,’ a 3D CNN model with four
convolutional layers followed by rectified linear unit activa-
tion functions and max pooling layers.

Lesions in the temporal bone
Diseases in the temporal bone for which an MRI-based
diagnosis is useful include cholesteatoma, Meniere’s disease
(i.e., endolymphatic hydrops), vestibular and facial schwan-
noma, and many others. In particular, the diagnosis of endo-
lymphatic hydrops in medical imaging can be attained
exclusively through the utilization of MRI incorporating
specific techniques. In the past, an intratympanic injection
of a gadolinium-based contrast agent was required to obtain
an SNR that was sufficient to visualize the endolymphatic
hydrops. However, with the widespread use of high-field
MRI and the optimization of imaging protocols, endolym-
phatic hydrops can be well detected with an intravenous (not
intratympanic) injection of a contrast agent and image acqui-
sition 4 hours later, and this imaging sequence has been well
developed for clinical use.94–97 A deep-learning-based sup-
portive tool for the assessment of endolymphatic hydrops
was reported in 2020. Cho et al. described the combination
use of automatically segmented images of the cochlea and
vestibule by a deep-learning method with VGG19-based
architecture and post-CE-3D-FLAIR images to obtain diag-
nostic information that indicates the degree of endolympha-
tic hydrops. This deep-learning-based output was highly
consistent with the results obtained manually by experts,
with an intraclass correlation coefficient of 0.971.77 Park
et al. further improved this deep-learning-based model by
developing it with the use of the architectures of the
Inception-v3 and U-Net combination use; the newly devel-
oped system successfully achieved the automatic selection of
representative images from a full MRI dataset with a very
short total analysis time: 3.5 seconds.79

In disease classification and diagnoses using image data-
sets, deep-learning techniques are considered a promising
method and have provided high overall diagnostic perfor-
mance. However, most of the above-cited studies did not use
images with the whole FOV for preparing the input used to
train the deep-learning model. Rather, they used segmented
images that include the lesion and exclude the area outside
the lesion obtained by a manual procedure. A fully auto-
mated approach would be in great demand for easier clinical
use because approaches using manual methods require high
amounts of time and human effort. This methodological
background may impede the worldwide use of deep-learn-
ing-based applications in clinical practice. Fully automated
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procedures with lesion detection, delineation, and classifica-
tion abilities are desired for practical use in the field of
diagnostic imaging. As in the studies of segmentation, most
of the investigations of disease classification and diagnoses
used internal (and not external) validation for the test set in
order to assess the model’s performance. The diagnostic
performance described in these reports might thus be higher
than the real-world accuracy.98 This limitation should be
addressed by future studies.

Prognosis Prediction

Challenges in predicting the prognoses of patients with head
and neck lesions, for example, predictions of the initial treat-
ment outcome and long-term predictions of the disease con-
trol, are still difficult. Prognosis prediction contributes to the
optimization of treatment strategies, including the selection of
initial therapy and the indication for adjuvant therapies, and
the prediction is also considered useful to validate the treat-
ment plan for each patient with head or neck cancer. Over the
past few decades, imaging methods have been well developed
and used together with advanced imaging techniques such as
DWI and DCE,99–110 or a high-dimensional analytical method
such as a texture analysis or radiomics method14,22,24,111,112 in
various diseases as well as head and neck lesions. However,
achieving accurate predictions is still challenging. Recently
developed deep-learning-based techniques can make signifi-
cant contributions to the prediction of patient prognoses as
effective support tools with higher accuracy compared to MR
imaging biomarkers and older analytical techniques.

Among the prognosis prediction studies using deep-learn-
ing-based methods with an MRI dataset, the number of
studies of nasopharyngeal cancer is relatively high, and
each of these studies assessed the prognosis in patients
receiving chemoradiotherapy. As an initial result, Qiang
et al. reported the utility of deep-learning-based MRI scores
using T1WI, T2WI, and CE-T1WI.113 Their analysis was
performed using MR images fed into 3D-DenseNet, and
the low-dimensional features were then analyzed using
DeepSurvivalNet and outputted as an MRI score. A combi-
nation diagnostic model of the clinical features and the deep-
learning-based MRI score by a conventional machine
learning algorithm of XGBoost were finally created. The
model described by Qiang et al. demonstrated a statistically
significant improvement in prognosis prediction with a
Concordance Index (C-index) around 0.7–0.8 compared to
the conventional tumor, node, metastasis (TNM) staging
system. Notably, they used whole FOV images rather than
manually segmented images, and they used external valida-
tion for the test set with the C-index of 0.72–0.76; the results
of this analysis might be valuable toward the use of deep-
learning-based prognosis prediction in other institutions.113

Zhong et al. investigated a deep-learning-radiomics model to
predict the prognoses of patients with T3-stage nasopharyn-
geal cancer.114 They performed deep-learning-based feature

map extraction by SE Res-Net using manually segmented
T1WI, T2WI, and CE-T1WI. These deep-learning-based
features were finally integrated by radiomics signature build-
ing. The created model showed excellent prognostic ability
for disease-free survival, with the C-index of 0.8–0.9.114 Li
et al. reported the utility of an ensemble learning method that
effectively combined two sets of single deep-learning-based
results for the prediction of the prognosis of patients with
nasopharyngeal carcinoma at an advanced clinical stage.115

They used the Resnet-V2 deep-learning architecture with
pre-treatment and post-treatment MRI, finally combining
the datasets into one deep-learning-based diagnostic model.
The ensemble learning-based diagnostic model exhibited the
best performance compared to a single deep-learning-based
model and conventional clinical staging, probably because
the combined use of two datasets effectively improved the
model’s performance. Li et al. also performed an analysis of
gradient-weighted class activation mapping (Grad-CAM)
images.115 Grad-CAM is used for visualization when a
deep-learning diagnostic model is used to look at a target
image. Interestingly, the deep-learning model suggested that
the areas around the tumor and some cervical lymph nodes
were strongly related to the prognosis of the tumor, whereas
the relationship between the signal of the primary tumor area
and the prognosis was not as strong as expected in many
cases.115 In another study, Li et al. investigated deep-learn-
ing-based prognosis predictions and conducted a Grad-CAM
analysis using several sizes of FOVs fed into the deep-
learning model, and they observed a similar tendency: the
area around the tumor is the most important for predicting
the prognosis of patients with nasopharyngeal carcinoma.116

Regarding other primary sites of head and neck cancers,
Tomita et al. investigated the utility of DWI with a deep-
learning analysis in patients with hypopharyngeal or laryngeal
SCC treated by definitive chemoradiotherapy. They trained
the deep learning of Xception architecture by using anatomi-
cally masked DWI including the primary lesion at two time
points (pre-treatment and intra-treatment). The results
revealed that a deep-learning model trained with intra-treat-
ment DWI provided the highest diagnostic performance to
predict local recurrence, with the accuracy value of 0.767.117

In addition to directly estimating the prognosis, it is impor-
tant to predict the genetic information that is well known as an
independent prognostic factor, such as human papillomavirus
(HPV) in oropharyngeal cancer and Epstein-Barr virus (EBV)
in nasopharyngeal cancer. Image-based parameter integration
and calculation for the prediction of the genomic information
is recognized as ‘radiogenomics.’118 Research using deep-
learning-based radiogenomics is still in progress, but the use
of radiogenomics in clinical practice may be realized in the
near future.

Duan et al. investigated the MRI findings of patients with
large vestibular aqueduct syndrome and performed a deep-
learning analysis to predict the patients’ hearing prognosis.
They used images from a segmented T2-weighted sequence
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to include the target anatomical structure for the evaluation.
The GoogLeNet-trained diagnostic model provided the best
diagnostic accuracy (0.98) to differentiate between patients
with stable versus fluctuating hearing loss.119

Prognosis prediction is essential for the determination of
the best treatment planning and the appropriate post-treat-
ment strategy, particularly in patients with cancer of the head
and neck.120 Few studies have investigated this, but more
precise patient classification might be feasible in the near
future. Because MRI provides excellent contrast of various
tissues and a large amount of information about the target
lesion, combinations of a deep-learning method and the
information derived from MRI will bring the diagnostic
performance to a higher stage.

Future Perspective

Analyses of deep-learning techniques using MRI datasets are
expected to be useful for a variety of purposes, including
image acquisition/reconstruction, target segmentation, dis-
ease classification/diagnosis, and prognosis prediction.
Such innovative methods will bring about a higher level of
diagnostic performance compared to conventional methods.
However, several issues remain. First, almost all of the
studies related to head and neck MRI described above were
performed with a transfer learning technique, whereas the
CNN architecture used in the studies were quite different. In
addition, some of the studies used a single CNN network, but

other studies combined multiple architectures into one diag-
nostic model. Moreover, a wide range of methods for setting
hyperparameters was present. The majority of the investiga-
tions cited above applied various deep-learning architectures
and hyperparameters. With this background, it is challenging
to establish a universally applicable model setting method,
and it might be necessary to optimize the technical issues in
model development based on each institution. A recent report
by Sellergren et al. described a solution to address this
limitation. Their general pretrained model followed by addi-
tional pretraining by medical images achieved higher model
accuracy, and this technique may therefore contribute to the
generalization of the pretraining procedure.121 It might also
be helpful to build a basic model using large-scale medical
images before the individual use; it could be effective to first
build a fundamental deep-learning diagnostic model using a
large sample size as the basis to accommodate image-quality
differences due to multiple vendors and varying parameter
settings, and then conduct fine-tuning of the model for indi-
vidual uses for various purposes. Such an approach may help
unify the processes of deep-learning techniques. In addition,
the use of eXplainable AI (i.e., XAI) is an important method
that can improve the utility of deep-learning algorithms for
routine clinical practice. This function will aid the human
interpretation of deep-learning-based diagnoses more objec-
tively. A Grad-CAM approach as a type of XAI has been
used frequently in recent investigations to identify the site at
which a deep-learning model focuses (Fig. 4). Second,

Fig. 4 An example of gradient-weighted class activation mapping (Grad-CAM) for a deep-learning analysis targeting head and neck cancer.
(a) Left maxillary cancer is observed on fat-suppressed T2WI (arrows). (b) The image shows the Grad-CAM displaying where the deep-
learning model will be looking; this colormap represents a mathematical computation of the degree to which each pixel influences the final
diagnosis; pixels with a stronger degree of influence are represented with a more intense red on the red-green-blue (RGB) color scale. In this
case, the model analyzed the presence or absence of head and neck cancers on the MRI. Hot spots can be easily identified on the tumor
lesion in this map (arrows). Grad-CAM, gradient-weighted class activation mapping; RGB, red-green-blue; T2WI, T2-weighted imaging.
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instead of using the entire images (those including the full
FOV) as the input in model training, most of the prior analyses
have been of the images after a manual segmentation of the
lesion by a physician. Particularly, as described above in the
‘Disease classification and diagnosis’ section, most of the
studies were performed using the segmented images for
model training and testing. A full FOV image might be diffi-
cult to analyze for appropriate lesion detection/segmentation
or diagnosis, probably because the complex anatomical struc-
ture of the head and neck includes a large amount of informa-
tion. However, even with localized input data as well as a full
FOVinput, AI might output data by focusing on different parts
of the target areas as the basis for decision-making.115 Such
findings can also be revealed by using the above-mentioned
function of Grad-CAM. Moreover, only a few studies have
used external validation for the test set to estimate their
diagnostic models. The deep-learning model created in such
a situation might result in very limited use; the created model
is likely to be used only in its developers’ institution. A review
published in 2022 also indicated that among the AI-related
studies focused on the head and neck, the number of investi-
gations with the use of external validation in the test session is
relatively small.122 For an appropriate external-validation pro-
cedure, the use of large amounts of data from public academic
institutions (e.g., J-MID from the Japan Radiology Society)
may be one of the steps to solve this problem.123 Further
research is necessary to address these limitations, as are dis-
cussions to integrate the existing knowledge and future
aspects. From this perspective, we speculate that the incor-
poration of deep-learning-based clinical tools into daily clin-
ical practice may require more time. However, we believe that
with the further development and careful monitoring of appro-
priate approaches and basic/clinical investigations, clinically
significant achievements can be made.

Conclusion

AI-related techniques, particularly deep learning, are consid-
ered promising for the assessment of head and neck MRI,
including image acquisition/reconstruction, segmentation,
classification/diagnosis, and prognosis prediction. However,
several limitations must be addressed before the deep-learning
techniques can be applied in general medical practice in the
field of radiology, and all of the future development of AI-
based techniques should be closely monitored.
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