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Purpose of review

This review highlights the problem of neuropsychiatric adverse effects (AEs) associated with elexacaftor/
tezacaftor/ivacaftor (ETI), current suboptimal mitigation approaches, a novel testable mechanistic
hypothesis, and potential solutions requiring further research.

Recent findings

Studies show that a minority of persons with cystic fibrosis (PwCF) initiating cystic fibrosis transmembrane
conductance regulator (CFTR) modulators experience neuropsychiatric AEs including worsening mood,
cognition, anxiety, sleep, and suicidality. The GABA-A receptor is a ligand-gated chloride channel, and
magnetic resonance spectroscopy neuroimaging studies have shown that reduced GABA expression in
rostral anterior cingulate cortex is associated with anxiety and depression. Recent research details the
impact of peripheral inflammation and the gut-brain axis on central neuroinflammation. Plasma ETI
concentrations and sweat chloride have been evaluated in small studies of neuropsychiatric AEs but not
validated to guide dose titration or correlated with pharmacogenomic variants or safety/efficacy.

Summary

Although ETI is well tolerated by most PwCF, some experience debilitating neuropsychiatric AEs. In some
cases, these AEs may be driven by modulation of CFTR and chloride transport within the brain.
Understanding biological mechanisms is a critical next step in identifying which PwCF are likely to
experience AEs, and in developing evidence-based strategies to mitigate them, while retaining modulator
efficacy.
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INTRODUCTION

In recent years, there has been a revolution in cystic
fibrosis (CF) treatment. The drug approach called
HEMT (highly effective CF transmembrane conduc-
tance regulator [CFTR] modulator therapy), includ-
ing elexacaftor/tezacaftor/ivacaftor (ETI), has
proven transformative for many persons with CF
(PwCF), improving lung function and respiratory
symptoms, CF-associated morbidity and mortality,
and multidimensional quality of life [1,2,3

&

]. ETI
does not work mechanistically for up to 10% of
PwCF in the US, who have 2 nonsense or other
rare CFTR gene variants that do not produce CFTR
protein [4].However, ETI is also not a feasible option
for some genotype-appropriate PwCF. Despite
improvements in physical health, a minority of
PwCF initiating CFTRmodulators have experienced
clinically significant neuropsychiatric adverse
effects (AEs), includingworseningmood, cognition,
anxiety, and sleep, and emergent suicidal thoughts
uthor(s). Published by Wolters Kluwe
or behavior [5,6 ,7 ,8,9,10 ,11 ]. These symptoms
can be so profound that some PwCF make the
difficult decision to stop using a medication that
would reduce their physical suffering and extend
their life. In order to developmanagement strategies
r Health, Inc. www.co-pulmonarymedicine.com
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KEY POINTS

� A minority of PwCF initiating CFTR modulators such as
elexacaftor/tezacaftor/ivacaftor (ETI) experience new
or worsening mood/anxiety disorders, cognitive
impairment, sleep disturbance, or suicidality.

� Chloride balance dysfunction is a core mechanism of
both cystic fibrosis and psychiatric disorders including
anxiety and depression.

� Multiple biological factors may contribute to ETI-related
neuropsychiatric adverse events, including
inflammation, gut dysbiosis, and individual differences
in drug metabolism impacting plasma
ETI concentrations.

� Understanding these biological mechanisms is key to
identifying risk for neuropsychiatric adverse events and
management strategies that optimize modulator
tolerability and efficacy.

Cystic fibrosis
for those experiencing biologically-driven neuro-
psychiatric AEs related to ETI, uncovering
underlying mechanisms is an urgent research
priority.

In this perspective piece, we first describe the
problem of neuropsychiatric AEs associated with ETI
and the current suboptimal mitigation approach.
Next, we describe a novel testable hypothesis for
these ETI-based neuropsychiatric AEs seen in some
PwCF, and briefly describe promising scientific
approaches to test this hypothesis. Finally, we offer
some potential solutions that could result from
future research.
THE SCOPE OF THE PROBLEM

There is substantial evidence that ETI can drive
clinically significant neuropsychiatric AEs in a sub-
set of PwCF. Our team at Massachusetts General
Hospital (MGH) has proposed a conceptual frame-
work regarding etiology and management strategies
[9,11

&

]. We conducted a retrospective study of
symptom trajectories in adults who initiated ETI
and subsequently had at least 1 visit with the CF
psychiatrist (N¼31) [11

&

]. Of these, 16 PwCF expe-
rienced new or worsening neuropsychiatric symp-
toms that were unexpected and determined to be
probably-related to ETI, according to National Can-
cer Institute guidelines for AE reporting require-
ments and conservatively considering standard
factors such as temporal relationship, response
to ETI discontinuation, dose adjustments and
rechallenge, and existence of alternative explana-
tion. This represented an 11% incidence of probable
neuropsychiatric AEs in the overall cohort of adults
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taking ETI (N¼148) and 52% of the 31 psychiatri-
cally referred adults [11

&

].
The literature on ETI effects on depression and

anxiety in PwCF evidences a general pattern reflect-
ing increased quality of life for a majority, while a
minority has new onset or worsened depression
and/or anxiety. Piehler et al. prospectively evaluated
CF-related quality of life along with depression and
anxiety in 70 adults with CF before and after ini-
tiation of ETI [12]. At the level of group statistics,
this study showed that ETI improved CF-related
quality of life, was associated with a very small
but statistically significant improvement in median
depression scores, and had no effect on median
anxiety scores. The authors did not specify the
number of PwCF whose depression and anxiety
scores increased, but noted that two increased from
the moderate to severe range for depression and
three increased from the mild to moderate range
for anxiety, with uncertain relationship to ETI [12].
A retrospective review of 100 adults with CF also
measured CF-related quality of life along with
depression and anxiety and found no significant
group statistical difference in scores before and after
starting ETI [13

&

]. However, after starting ETI, 22
persons had initiation, increased dose or change in
psychiatric medication due to clinical worsening
and 23 had new onset of sleep difficulties; two PwCF
discontinued ETI due to depression, anxiety, and
insomnia [13

&

]. In contrast, four PwCF were able to
reduce or discontinue psychiatric medication. Qual-
ity of life, depression, and anxiety scores were sig-
nificantly worse in the group that required any
psychiatric medication adjustment versus those
who did not [13

&

]. These results support the MGH
study conclusion that a sub-group may be particu-
larly susceptible to mental health side effects [11

&

].
Another study of 78 adults taking ETI used a

simple (nonvalidated) survey about the effects of ETI
and the COVID-19 pandemic on mental health.
Among those taking ETI, 33 (40%) felt COVID-19
contributed to a worsening of either anxiety, depres-
sion, or both, and 7 (9%) felt ETI contributed to
worsening in their anxiety, depression, or both [7

&

].
These results highlight the fact that multiple
psychosocial factors can impact mental health.
However, studies including the above argue for a
unique contribution of ETI in approximately 10%
[6

&&

,7
&

,11
&

]. In 2023, the European Commission
added depression as an adverse event with a special
warning to the ETI label in the European Union,
recommending monitoring for depressed mood,
suicidal thoughts and unusual changes in behavior
[14]. We propose that the neuropsychiatric AEs that
occur in a minority of PwCF deserve to be a research
priority.
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MECHANISTIC HYPOTHESIS

To identify which PwCF are at elevated risk to expe-
rience neuropsychiatric AEs and develop strategies
to mitigate them, it is essential to elucidate the
complex underlying biological mechanisms that
may be at play.
FIGURE 1. The rostral anterior cingulate cortex (rACC) is an
important structure in emotion regulation neurocircuitry.
Several studies have shown that decreased GABA
concentration in rACC is associated with neuropsychiatric
symptoms such as anxiety and depression. ETI drug therapy
may affect GABA function via chloride. Furthermore, rACC is
dense with serotonin 2A receptors (5HT-2Ar), which are also
involved in emotion regulation and directly modulated by ETI.
CFTR expression in human brain

ETI acts by increasing production of the CFTR gene
protein product CFTR and aiding in its functionality
at the epithelial surface, where disruption of its ion
channel function is thought to be a central mech-
anism in the failure of mucociliary clearance seen in
CF [15]. ETI’s mechanism of action centers on sup-
porting the chloride ion channel function of CFTR
by targeting the F508del mutation, and by this
measure it is very effective. CFTR is classically
studied as a chloride (Cl�) channel, and was once
thought to be exclusively expressed by epithelial
cells, with disruption of its ion channel function
in the lung and the gastrointestinal system of PwCF
[15]. However, more recent research has also found
widespread CFTR expression in human brain [16].
We hypothesize that neuropsychiatric AEs in some
PwCF, perhaps particularly in those with increased
baseline inflammation, are driven by modulation of
CFTR and chloride transport within the brain [17–
19]. This is likely related to the fact that chloride is
an important ion for normal inhibitory neurotrans-
mission, which plays a central role in controlling
anxiety and depression.

The most important inhibitory neurotransmit-
ter in the brain is GABA (g-aminobutyric acid),
and chloride is so central to its proper function
that the GABA-A receptor is commonly categorized
as a ligand-gated chloride channel. Upon binding of
GABA to its receptor, a synaptic pore opens that
allows chloride anions to pass, leading to hyper-
polarization or inhibition of the neuron. Just as
chloride balance dysfunction is a core mechanism
of CF, proper chloride balance is a core mechanism
of normal brain function, particularly regulation of
anxiety and depression. For example, the antianxi-
ety and antidepressive actions of benzodiazepines
are exerted by binding to the GABA-A receptor and
modulating GABA-induced chloride current [20].

Specific emotion regulation brain circuits and
structures are particularly reliant upon GABA – and
therefore chloride – function. For example, the
rostral anterior cingulate cortex (rACC) is an emo-
tion regulation hub whose function is disrupted in
multiple psychiatric conditions, including depres-
sion and anxiety (See Fig. 1). Neuroimaging studies
using magnetic resonance spectroscopy (MRS) have
repeatedly shown that reduced GABA concentration
1070-5287 Copyright © 2023 The Author(s). Published by Wolters Kluwe
in rACC is associated with anxiety and depression
symptoms [21,22

&

,23,24]. Loss of GABAergic func-
tion disinhibits the excitatory neurotransmitter glu-
tamate, which is thought to be a central mechanism
of anxiety and depression. Relatedly, inflammation-
related activation of glial cells (the resident immune
cells of the central nervous system) causes release of
proinflammatory and neuroexcitatory mediators,
including glutamate. Therefore, loss of GABA func-
tion would interact with inflammatory processes,
driving neuropsychiatric consequences.

Furthermore, ETI appears to affect 5-HT2 sero-
tonin receptor subtypes [25]. There is high expres-
sion of serotonin 2A receptors (5HT-2AR) in the
cingulate cortex. This receptor system is intimately
related to GABA function both at the neurotrans-
mitter and receptor level [26,27]. While this topic
demands further study, given the central role of 5-
HT2 receptor subtypes in suicidality [28] there may
be a compounding effect of ETI on both GABA and
serotonin (5-HT) function in vulnerable individuals.
Peripheral inflammation can affect the brain

Inflammation may be one of the biological vulner-
abilities for the development of neuropsychiatric
complications of ETI therapy. Peripheral inflamma-
tion is itself a risk factor for depression and anxiety
[29]. Numerous inflammatory factors are elevated in
CF, including IL-1b, TNF-a, IL-6, [30–32] and CRP
[33], and even inflammatory cytokine clusters [34],
all of which have been associated with depression,
r Health, Inc. www.co-pulmonarymedicine.com 605
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psychosis, and generalized anxiety disorder;
increases or decreases in these inflammation-related
factors can impact neurocognitive functioning
across many disease states [35,36]. These inflamma-
tory factors have their neuropsychiatric effects by
activating glia, which is measurable via specialized
neuroimaging techniques [37].

Persistent and dysfunctional inflammation inCF
extends beyond cytokine production. Blood neutro-
phils from PwCF display increased phagocytosis,
infection-elicited chemotaxis, and intracellular sig-
nalling [38]. Peripheral blood mononuclear cells,
including monocytes, display tolerance to lipopoly-
saccharide (LPS) [39], impaired adhesion and traffick-
ing [40], and overly robust generalized inflammatory
responses [41]. In addition to these hyperinflamma-
tory cellular responses, platelets are highly activated
to releaseproinflammatory lipidmediators [42], all of
which can in turn drive inflammation within the
subendothelial matrix [43]. While inflammatory
response improves in PwCF treated with ETI, restora-
tion of CFTR in immune cells and resolution of
inflammatory responses can be variable between
individuals and it is possible that shifts in inflamma-
tory signals correlate with neuropsychiatric AEs of
ETI [44,45].
Gut-brain axis in CF

Circulating inflammatory factors are more likely to
induce neuroinflammatory consequences if high
levels of zonulin, a key regulator of the gut-brain
axis [46], are detected in circulation. Zonulin was
initially described as a mediator of gastrointestinal
permeability by Fasano et al. and is the precursor for
haptaglobin-2 [47]. Zonulin leads to transactivation
of EGF receptor via proteinase-activated receptor 2,
resulting in loss of tight junctions’ competency and
increased intestinal permeability [47–49]. Intact
tight junctions are critical for regulation of para-
cellular trafficking and loss of tight junctions have
been associated with numerous inflammatory dis-
eases. Beside regulating gut permeability, zonulin
has been shown to also regulate the blood brain
barrier (BBB) [50] and in a transgenic zonulin mouse
model the combined loss of gut and BBB barriers’
function led to behavioral changes that were
dependent on intestinal microbiota [51

&

]. Gastro-
intestinal dysbiosis, as seen in celiac disease [50],
inflammatory bowel disease [52], acute COVID-19
[53], and post-COVID complications [54], have
all been associated with increased zonulin release.
While zonulin levels have not been reported in CF,
dysbiosis in CF is well established [55

&&

]. CFTR-/-
murine models display increased evidence of
zonulin-mediated intestinal permeability [56].
606 www.co-pulmonarymedicine.com
Importantly, zonulin has been shown to be elevated
in numerous mental health conditions [57], includ-
ing obsessive-compulsive disorder [58], bipolar dis-
order [59], attention-deficit/hyperactivity disorder
[60], and major depressive disorder [61,62]. Thus,
understanding the role of zonulin in CF and in ETI-
mediated neuropsychiatric AEs will be highly infor-
mative, and variability in peripheral inflammation
and dysbiosis in CF could be important regulators of
glial activation in the central nervous system.

Activated glia drive neuroexcitation, the oppo-
site of GABA signaling. If ETI disrupts GABA func-
tion, this could predispose some individuals to a
double-hit of reduced GABA function (less inhibi-
tion) from the drug and intensified glutamate sig-
naling (more excitation) from the inflammation.
This effect may potentially be exacerbated in indi-
viduals with reduced ability to metabolize ETI,
including due to genetic variants.
Pharmacogenomic variation

Decreaseddrugmetabolismmaybea factor indriving
CNS effects of ETI, particularly given that its compo-
nents appear capable of crossing the blood-brain
barrier. Pharmacogenomic variants in CYP3A4,
CYP3A5 (primary metabolism), and additionally,
ABCG2, SLOC1B1/1B3,ABCB1mayhave aminor role
in ETI plasma concentrations [63,64]. Ivacaftor also
inhibitsCYP3A4 [65,66]. Inflammation has also been
shown to inhibit CYP3A [67]. PwCF have chronic
lung infections associated with chronic inflamma-
tion. Inhibition ofCYP3A4 by either drug-drug inter-
action or inflammation results in decreased CYP3A4
metabolism and increased plasma ETI concentra-
tions, which could increase risk of AEs. Therefore,
dose reduction is recommended when concomitant
use ofCYP3A4 inhibitors is necessary.Hepatic injury,
cataracts, andhypersensitivity reactionswere cited in
the product labeling as significant AEs, yet it is
unclear which or of these are ETI concentration
dependent. The relationship between ETI plasma
concentrations and neuropsychiatric AEs has yet to
be determined. Additionally, degree of CF liver or
kidney disease may have an additive impact on
metabolism which was not accounted for in ETI
metabolism studies in healthy subjects [66,68,69].
CURRENT APPROACHES TO
MANAGEMENT

One current approach to mitigating neuropsychiat-
ric AEs of ETI in PwCF is off-label ETI dose reduction.
This is suboptimal because there is minimal data
informing the approach to dose reduction, andwhile
dose reduction can help mitigate neuropsychiatric
Volume 29 � Number 6 � November 2023
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symptoms for some, it comes at the cost of an uncer-
tain risk of short- or long-term reduced effectiveness
against CF symptoms. PwCF, family caregivers and
CF care teams may thus be reluctant to employ this
strategy or differ in opinion about its risk/benefit
ratio. Additionally, in some cases neuropsychiatric
AEs continue unless ETI is discontinued or psycho-
pharmacologic therapies are employed [6

&&

,11
&

,70
&

].
In a study of 266 adults with CF taking ETI, 19

(7%) reported neuropsychiatric AEs including anxi-
ety, low mood, insomnia, brain fog, and reduced
concentration [6

&&

]. Of these, 13 attempted ETI dose
reduction, of whom all also received psychological
intervention and six received antidepressants; all
maintained clinical efficacy and sweat chlorides in
the normal to borderline range. Ten of 13 had
improvement or resolution of neuropsychiatric
AEs, with postdose reduction sweat chlorides in
the normal or borderline range; two required dis-
continuation and one switched back to ivacaftor
[6

&&

]. The authors hypothesized that neuropsychi-
atric AEs were attributable to psychiatric vulnerabil-
ity, differences in elexacaftor metabolism, and
increased systemic CFTR expression [6

&&

].
In a case series of ten PwCF with new neuro-

psychiatric symptoms after ETI initiation, including
anxiety, irritability, sleep disturbance and/or mental
slowness, one discontinued ETI and resumed ivacaf-
tor therapy. Nine underwent dose reduction, using a
standardized protocol with serial sweat chloride
measurement [70

&

]. Mean sweat chlorides were
similar on the standard dose (33.4mmol/L) and the
reduced dose (34mmol/L). While six of the nine had
complete resolution of symptoms with dose reduc-
tion, three had only partial resolution [70

&

]. Sweat
chloride concentrations decreasewithETI treatment,
and data show a direct relationship between
improved pulmonary function and sweat chloride
concentrations [71], but to our knowledge neither
ETI concentrations nor sweat chloride concentra-
tions have been associated with the occurrence of
AEs [72]. Additionally, when an AE is associated with
ETI, there is not a standard approach to monitoring
the balance of safety (avoidance of AEs) and efficacy
(pulmonary function, exacerbations, etc.). Plasma
concentrations of ETI and sweat chloride concentra-
tions have been evaluated in small studies but are not
clinically validated to guidedose titration andarenot
correlated with safety or efficacy [73–75].
MECHANISTIC RESEARCH TO IMPROVE
UNDERSTANDING OF
NEUROPSYCHIATRIC EFFECTS OF ETI

Research to discover measurable markers that
correlate with ETI efficacy and AEs is key to AE
1070-5287 Copyright © 2023 The Author(s). Published by Wolters Kluwe
mitigation. It is important to investigate the impact
of pharmacogenes including ABCG2, SLOC1B1/1B3,
ABCB1, CYP3A4, and CYP3A5 variants on ETI con-
centrations in PwCF to determine if these differ-
ences in drug metabolism contribute to AEs. If so,
pharmacogenomic testing and measurement of ETI
concentrations could be incorporated into routine
clinical care to predict risk for AEs and guide pro-
tocols for individualized ETI dose adjustment and
monitoring. Additional efforts are also needed to
define dysbiosis and the inflammatory profiles in
individuals who develop complications from ETI,
and determine the role of the gut-brain axis [76

&

].
Measures of drug function and metabolism can

be combined with measures of inflammation and
central nervous system GABA function. MRS is a
noninvasive neuroimaging technique that uses
MRI (magnetic resonance imaging) scanners; it is
capable of detecting the concentration of certain
chemical metabolites in brain tissue without the use
of injections or radiation. Although GABA is only
present at millimolar levels in the human brain, its
concentration can be measured with tailored MRS
sequences, making MRS an effective technique for
noninvasively measuring both GABA and neuroin-
flammation [37,77] and therefore a potentially fruit-
ful technique to test the hypothesis that GABA
alterations and inflammation are central to neuro-
psychiatric side effects in some PwCF taking ETI.
MRS studies have repeatedly shown that reduced
GABA expression in rACC is associated with anxiety
and depression symptoms [21,22

&

,23,24], providing
evidence that similar mechanismsmay be occurring
– and measurable – in PwCF experiencing neuro-
psychiatric AEs. This line of work may ultimately
elucidate factors contributing to the elevated prev-
alence of psychiatric conditions such as depression,
anxiety and attention-deficit hyperactivity disorder
in PwCF [78

&

], predating the availability of CFTR
modulators. Further, improved mechanistic under-
standing will lay the foundation to determine
whether psychopharmacologic treatments employ-
ing specific mechanisms of action (including novel
agents targeting GABA) [79

&

] are preferential for
managing various neuropsychiatric AEs related to
ETI [11

&

].
CONCLUSION

Although ETI is well tolerated by most PwCF, some
experience debilitating neuropsychiatric AEs.
Understanding biological mechanisms is a critical
next step in identifying which PwCF are likely to
experience AEs, and in developing evidence-based,
efficient strategies to mitigate them, while retaining
modulator efficacy.
r Health, Inc. www.co-pulmonarymedicine.com 607
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